Notch Signaling: A Pivot Regulator of Adaptive and Innate Immunity

  • Takumi Kumai
  • Paulo C. RodriguezEmail author


The coordinated activities of the innate and adaptive arms of the immune system are essential to protect individuals against infectious and neoplastic pathologies and to prevent the development of autoimmune responses. The Notch family of receptors is a highly conserved signaling pathway that controls the development, function, and differentiation of many cell types, including the immune cells. Although the effects of Notch-linked mediators in the innate and adaptive immunity are the focus of an active research field, there are still multiple unknown areas regarding how this cellular signaling pathway plays such a primary role in the regulation of immune responses. In this review, we summarize and discuss the emerging role of Notch in the regulation of adaptive and innate immunity. We postulate that a better understanding of the effects of Notch in immune cells will provide new approaches for therapies in various diseases.


Cancer Tumor Immunity Immune responses T lymphocytes Myeloid cells Immunotherapy Cytokines Tolerance Tumor growth and metastasis 


  1. 1.
    Radtke, F., MacDonald, H. R., & Tacchini-Cottier, F. (2013). Regulation of innate and adaptive immunity by Notch. Nature Reviews Immunology, 13, 427–437.PubMedCrossRefGoogle Scholar
  2. 2.
    Guruharsha, K. G., Kankel, M. W., & rtavanis-Tsakonas, S. (2012). The Notch signalling system: Recent insights into the complexity of a conserved pathway. Nature Reviews Genetics, 13, 654–666.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Radtke, F., Fasnacht, N., & MacDonald, H. R. (2010). Notch signaling in the immune system. Immunity, 32, 14–27.PubMedCrossRefGoogle Scholar
  4. 4.
    Osborne, B. A., & Minter, L. M. (2007). Notch signalling during peripheral T-cell activation and differentiation. Nature Reviews Immunology, 7, 64–75.PubMedCrossRefGoogle Scholar
  5. 5.
    Minter, L. M., & Osborne, B. A. (2012). Canonical and non-canonical Notch signaling in CD4(+) T cells. Current Topics in Microbiology and Immunology, 360, 99–114.PubMedGoogle Scholar
  6. 6.
    Samon, J. B., Champhekar, A., Minter, L. M., Telfer, J. C., Miele, L., Fauq, A., Das, P., Golde, T. E., & Osborne, B. A. (2008). Notch1 and TGFbeta1 cooperatively regulate Foxp3 expression and the maintenance of peripheral regulatory T cells. Blood, 112, 1813–1821.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Poellinger, L., & Lendahl, U. (2008). Modulating Notch signaling by pathway-intrinsic and pathway-extrinsic mechanisms. Current Opinion in Genetics & Development, 18, 449–454.CrossRefGoogle Scholar
  8. 8.
    Heitzler, P. (2010). Biodiversity and noncanonical Notch signaling. Current Topics in Developmental Biology, 92, 457–481.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Cheng, P., Zhou, J., & Gabrilovich, D. (2010). Regulation of dendritic cell differentiation and function by Notch and Wnt pathways. Immunological Reviews, 234, 105–119.PubMedCrossRefGoogle Scholar
  10. 10.
    Tanigaki, K., & Honjo, T. (2007). Regulation of lymphocyte development by Notch signaling. Nature Immunology, 8, 451–456.PubMedCrossRefGoogle Scholar
  11. 11.
    Shi, J., Fallahi, M., Luo, J. L., & Petrie, H. T. (2011). Nonoverlapping functions for Notch1 and Notch3 during murine steady-state thymic lymphopoiesis. Blood, 118, 2511–2519.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Taghon, T., Yui, M. A., Pant, R., Diamond, R. A., & Rothenberg, E. V. (2006). Developmental and molecular characterization of emerging beta- and gammadelta-selected pre-T cells in the adult mouse thymus. Immunity, 24, 53–64.PubMedCrossRefGoogle Scholar
  13. 13.
    Radtke, F., Wilson, A., Stark, G., Bauer, M., van Meerwijk, J., MacDonald, H. R., & Aguet, M. (1999). Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity, 10, 547–558.PubMedCrossRefGoogle Scholar
  14. 14.
    Han, H., Tanigaki, K., Yamamoto, N., Kuroda, K., Yoshimoto, M., Nakahata, T., Ikuta, K., & Honjo, T. (2002). Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. International Immunology, 14, 637–645.PubMedCrossRefGoogle Scholar
  15. 15.
    Weng, A. P., Millholland, J. M., Yashiro-Ohtani, Y., Arcangeli, M. L., Lau, A., Wai, C., Del Bianco, C., Rodriguez, C. G., Sai, H., Tobias, J., Li, Y., Wolfe, M. S., Shachaf, C., Felsher, D., Blacklow, S. C., Pear, W. S., & Aster, J. C. (2006). c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes & Development, 20, 2096–2109.CrossRefGoogle Scholar
  16. 16.
    Grabher, C., von Boehmer, H., & Look, A. T. (2006). Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nature Reviews Cancer, 6, 347–359.PubMedCrossRefGoogle Scholar
  17. 17.
    Robey, E., Chang, D., Itano, A., Cado, D., Alexander, H., Lans, D., Weinmaster, G., & Salmon, P. (1996). An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell, 87, 483–492.PubMedCrossRefGoogle Scholar
  18. 18.
    Dervovic, D. D., Liang, H. C., Cannons, J. L., Elford, A. R., Mohtashami, M., Ohashi, P. S., Schwartzberg, P. L., & Zuniga-Pflucker, J. C. (2013). Cellular and molecular requirements for the selection of in vitro-generated CD8 T cells reveal a role for Notch. Journal of Immunology, 191, 1704–1715.CrossRefGoogle Scholar
  19. 19.
    Jaleco, A. C., Neves, H., Hooijberg, E., Gameiro, P., Clode, N., Haury, M., Henrique, D., & Parreira, L. (2001). Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. The Journal of Experimental Medicine, 194, 991–1002.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Schmitt, T. M., & Zuniga-Pflucker, J. C. (2002). Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity, 17, 749–756.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hozumi, K., Mailhos, C., Negishi, N., Hirano, K., Yahata, T., Ando, K., Zuklys, S., Hollander, G. A., Shima, D. T., & Habu, S. (2008). Delta-like 4 is indispensable in thymic environment specific for T cell development. The Journal of Experimental Medicine, 205, 2507–2513.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Koch, U., Fiorini, E., Benedito, R., Besseyrias, V., Schuster-Gossler, K., Pierres, M., Manley, N. R., Duarte, A., Macdonald, H. R., & Radtke, F. (2008). Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. The Journal of Experimental Medicine, 205, 2515–2523.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Mohtashami, M., Shah, D. K., Nakase, H., Kianizad, K., Petrie, H. T., & Zuniga-Pflucker, J. C. (2010). Direct comparison of Dll1- and Dll4-mediated Notch activation levels shows differential lymphomyeloid lineage commitment outcomes. Journal of Immunology, 185, 867–876.CrossRefGoogle Scholar
  24. 24.
    Van de Walle, I., De Smet, G., Gartner, M., De Smedt, M., Waegemans, E., Vandekerckhove, B., Leclercq, G., Plum, J., Aster, J. C., Bernstein, I. D., Guidos, C. J., Kyewski, B., & Taghon, T. (2011). Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions. Blood, 117, 4449–4459.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Amsen, D., Blander, J. M., Lee, G. R., Tanigaki, K., Honjo, T., & Flavell, R. A. (2004). Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell, 117, 515–526.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Meng, L., Bai, Z., He, S., Mochizuki, K., Liu, Y., Purushe, J., Sun, H., Wang, J., Yagita, H., Mineishi, S., Fung, H., Yanik, G. A., Caricchio, R., Fan, X., Crisalli, L. M., Hexner, E. O., Reshef, R., Zhang, Y., & Zhang, Y. (2016). The Notch ligand DLL4 defines a capability of human dendritic cells in regulating Th1 and Th17 differentiation. Journal of Immunology, 196, 1070–1080.CrossRefGoogle Scholar
  27. 27.
    Skokos, D., & Nussenzweig, M. C. (2007). CD8- DCs induce IL-12-independent Th1 differentiation through Delta 4 Notch-like ligand in response to bacterial LPS. The Journal of Experimental Medicine, 204, 1525–1531.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Elyaman, W., Bassil, R., Bradshaw, E. M., Orent, W., Lahoud, Y., Zhu, B., Radtke, F., Yagita, H., & Khoury, S. J. (2012). Notch receptors and Smad3 signaling cooperate in the induction of interleukin-9-producing T cells. Immunity, 36, 623–634.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Gillgrass, A., Gill, N., Babian, A., & Ashkar, A. A. (2014). The absence or overexpression of IL-15 drastically alters breast cancer metastasis via effects on NK cells, CD4 T cells, and macrophages. Journal of Immunology, 193, 6184–6191.CrossRefGoogle Scholar
  30. 30.
    Sierra, R. A., Thevenot, P., Raber, P. L., Cui, Y., Parsons, C., Ochoa, A. C., Trillo-Tinoco, J., Del Valle, L., & Rodriguez, P. C. (2014). Rescue of notch-1 signaling in antigen-specific CD8+ T cells overcomes tumor-induced T-cell suppression and enhances immunotherapy in cancer. Cancer Immunology Research, 2, 800–811.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Amsen, D., Antov, A., & Flavell, R. A. (2009). The different faces of Notch in T-helper-cell differentiation. Nature Reviews Immunology, 9, 116–124.PubMedCrossRefGoogle Scholar
  32. 32.
    Barbarulo, A., Grazioli, P., Campese, A. F., Bellavia, D., Di Mario, G., Pelullo, M., Ciuffetta, A., Colantoni, S., Vacca, A., Frati, L., Gulino, A., Felli, M. P., & Screpanti, I. (2011). Notch3 and canonical NF-kappaB signaling pathways cooperatively regulate Foxp3 transcription. Journal of Immunology, 186, 6199–6206.CrossRefGoogle Scholar
  33. 33.
    Asano, N., Watanabe, T., Kitani, A., Fuss, I. J., & Strober, W. (2008). Notch1 signaling and regulatory T cell function. Journal of Immunology, 180, 2796–2804.CrossRefGoogle Scholar
  34. 34.
    Mota, C., Nunes-Silva, V., Pires, A. R., Matoso, P., Victorino, R. M., Sousa, A. E., & Caramalho, I. (2014). Delta-like 1-mediated Notch signaling enhances the in vitro conversion of human memory CD4 T cells into FOXP3-expressing regulatory T cells. Journal of Immunology, 193, 5854–5862.CrossRefGoogle Scholar
  35. 35.
    Bassil, R., Zhu, B., Lahoud, Y., Riella, L. V., Yagita, H., Elyaman, W., & Khoury, S. J. (2011). Notch ligand delta-like 4 blockade alleviates experimental autoimmune encephalomyelitis by promoting regulatory T cell development. Journal of Immunology, 187, 2322–2328.CrossRefGoogle Scholar
  36. 36.
    Crome, S. Q., Wang, A. Y., & Levings, M. K. (2010). Translational mini-review series on Th17 cells: Function and regulation of human T helper 17 cells in health and disease. Clinical and Experimental Immunology, 159, 109–119.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Keerthivasan, S., Suleiman, R., Lawlor, R., Roderick, J., Bates, T., Minter, L., Anguita, J., Juncadella, I., Nickoloff, B. J., Le Poole, I. C., Miele, L., & Osborne, B. A. (2011). Notch signaling regulates mouse and human Th17 differentiation. Journal of Immunology, 187, 692–701.CrossRefGoogle Scholar
  38. 38.
    Mukherjee, S., Schaller, M. A., Neupane, R., Kunkel, S. L., & Lukacs, N. W. (2009). Regulation of T cell activation by Notch ligand, DLL4, promotes IL-17 production and Rorc activation. Journal of Immunology, 182, 7381–7388.CrossRefGoogle Scholar
  39. 39.
    Wongchana, W., Lawlor, R. G., Osborne, B. A., & Palaga, T. (2015). Impact of Notch1 deletion in macrophages on proinflammatory cytokine production and the outcome of experimental autoimmune encephalomyelitis. Journal of Immunology, 195, 5337–5346.CrossRefGoogle Scholar
  40. 40.
    Wang, Y., Xing, F., Ye, S., Xiao, J., Di, J., Zeng, S., & Liu, J. (2015). Jagged-1 signaling suppresses the IL-6 and TGF-beta treatment-induced Th17 cell differentiation via the reduction of RORgammat/IL-17A/IL-17F/IL-23a/IL-12rb1. Scientific Reports, 5, 8234.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Vegran, F., Apetoh, L., & Ghiringhelli, F. (2015). Th9 cells: A novel CD4 T-cell subset in the immune war against cancer. Cancer Research, 75, 475–479.PubMedCrossRefGoogle Scholar
  42. 42.
    Audia, S., Rossato, M., Santegoets, K., Spijkers, S., Wichers, C., Bekker, C., Bloem, A., Boon, L., Flinsenberg, T., Compeer, E., van den Broek, T., Facy, O., Ortega-Deballon, P., Berthier, S., Leguy-Seguin, V., Martin, L., Ciudad, M., Samson, M., Trad, M., Lorcerie, B., Janikashvili, N., Saas, P., Bonnotte, B., & Radstake, T. R. (2014). Splenic TFH expansion participates in B-cell differentiation and antiplatelet-antibody production during immune thrombocytopenia. Blood, 124, 2858–2866.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Auderset, F., Schuster, S., Fasnacht, N., Coutaz, M., Charmoy, M., Koch, U., Favre, S., Wilson, A., Trottein, F., Alexander, J., Luther, S. A., MacDonald, H. R., Radtke, F., & Tacchini-Cottier, F. (2013). Notch signaling regulates follicular helper T cell differentiation. Journal of Immunology, 191, 2344–2350.CrossRefGoogle Scholar
  44. 44.
    Fasnacht, N., Huang, H. Y., Koch, U., Favre, S., Auderset, F., Chai, Q., Onder, L., Kallert, S., Pinschewer, D. D., MacDonald, H. R., Tacchini-Cottier, F., Ludewig, B., Luther, S. A., & Radtke, F. (2014). Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct Notch-regulated immune responses. The Journal of Experimental Medicine, 211, 2265–2279.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Parente-Pereira, A. C., Shmeeda, H., Whilding, L. M., Zambirinis, C. P., Foster, J., van der Stegen, S. J., Beatson, R., Zabinski, T., Brewig, N., Sosabowski, J. K., Mather, S., Ghaem-Maghami, S., Gabizon, A., & Maher, J. (2014). Adoptive immunotherapy of epithelial ovarian cancer with Vgamma9Vdelta2 T cells, potentiated by liposomal alendronic acid. Journal of Immunology, 193, 5557–5566.CrossRefGoogle Scholar
  46. 46.
    Washburn, T., Schweighoffer, E., Gridley, T., Chang, D., Fowlkes, B. J., Cado, D., & Robey, E. (1997). Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell, 88, 833–843.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Van de Walle, I., Waegemans, E., De Medts, J., De Smet, G., De Smedt, M., Snauwaert, S., Vandekerckhove, B., Kerre, T., Leclercq, G., Plum, J., Gridley, T., Wang, T., Koch, U., Radtke, F., & Taghon, T. (2013). Specific Notch receptor-ligand interactions control human TCR-alphabeta/gammadelta development by inducing differential Notch signal strength. The Journal of Experimental Medicine, 210, 683–697.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Terabe, M., & Berzofsky, J. A. (2014). The immunoregulatory role of type I and type II NKT cells in cancer and other diseases. Cancer Immunology, Immunotherapy: CII, 63, 199–213.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Oh, S. J., Ahn, S., Jin, Y. H., Ishifune, C., Kim, J. H., Yasutomo, K., & Chung, D. H. (2015). Notch 1 and Notch 2 synergistically regulate the differentiation and function of invariant NKT cells. Journal of Leukocyte Biology, 98, 781–789.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Wilson, A., MacDonald, H. R., & Radtke, F. (2001). Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. The Journal of Experimental Medicine, 194, 1003–1012.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Izon, D. J., Aster, J. C., He, Y., Weng, A., Karnell, F. G., Patriub, V., Xu, L., Bakkour, S., Rodriguez, C., Allman, D., & Pear, W. S. (2002). Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1. Immunity, 16, 231–243.PubMedCrossRefGoogle Scholar
  52. 52.
    Dallas, M. H., Varnum-Finney, B., Delaney, C., Kato, K., & Bernstein, I. D. (2005). Density of the Notch ligand Delta1 determines generation of B and T cell precursors from hematopoietic stem cells. The Journal of Experimental Medicine, 201, 1361–1366.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Schneider, P., Takatsuka, H., Wilson, A., Mackay, F., Tardivel, A., Lens, S., Cachero, T. G., Finke, D., Beermann, F., & Tschopp, J. (2001). Maturation of marginal zone and follicular B cells requires B cell activating factor of the tumor necrosis factor family and is independent of B cell maturation antigen. The Journal of Experimental Medicine, 194, 1691–1697.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Oliver, A. M., Martin, F., & Kearney, J. F. (1999). IgMhighCD21high lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. Journal of Immunology, 162, 7198–7207.Google Scholar
  55. 55.
    Attanavanich, K., & Kearney, J. F. (2004). Marginal zone, but not follicular B cells, are potent activators of naive CD4 T cells. Journal of Immunology, 172, 803–811.CrossRefGoogle Scholar
  56. 56.
    Tanigaki, K., Han, H., Yamamoto, N., Tashiro, K., Ikegawa, M., Kuroda, K., Suzuki, A., Nakano, T., & Honjo, T. (2002). Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nature Immunology, 3, 443–450.PubMedCrossRefGoogle Scholar
  57. 57.
    Oyama, T., Harigaya, K., Muradil, A., Hozumi, K., Habu, S., Oguro, H., Iwama, A., Matsuno, K., Sakamoto, R., Sato, M., Yoshida, N., & Kitagawa, M. (2007). Mastermind-1 is required for Notch signal-dependent steps in lymphocyte development in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 9764–9769.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wu, L., Maillard, I., Nakamura, M., Pear, W. S., & Griffin, J. D. (2007). The transcriptional coactivator Maml1 is required for Notch2-mediated marginal zone B-cell development. Blood, 110, 3618–3623.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Zhang, P., Zhao, Y., & Sun, X. H. (2013). Notch-regulated periphery B cell differentiation involves suppression of E protein function. Journal of Immunology, 191, 726–736.CrossRefGoogle Scholar
  60. 60.
    Thomas, M., Calamito, M., Srivastava, B., Maillard, I., Pear, W. S., & Allman, D. (2007). Notch activity synergizes with B-cell-receptor and CD40 signaling to enhance B-cell activation. Blood, 109, 3342–3350.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Yoon, S. O., Zhang, X., Berner, P., Blom, B., & Choi, Y. S. (2009). Notch ligands expressed by follicular dendritic cells protect germinal center B cells from apoptosis. Journal of Immunology, 183, 352–358.CrossRefGoogle Scholar
  62. 62.
    Spits, H., & Cupedo, T. (2012). Innate lymphoid cells: Emerging insights in development, lineage relationships, and function. Annual Review of Immunology, 30, 647–675.PubMedCrossRefGoogle Scholar
  63. 63.
    Spits, H., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J. P., Eberl, G., Koyasu, S., Locksley, R. M., McKenzie, A. N., Mebius, R. E., Powrie, F., & Vivier, E. (2013). Innate lymphoid cells – a proposal for uniform nomenclature. Nature Reviews Immunology, 13, 145–149.PubMedCrossRefGoogle Scholar
  64. 64.
    Lee, J. S., Cella, M., McDonald, K. G., Garlanda, C., Kennedy, G. D., Nukaya, M., Mantovani, A., Kopan, R., Bradfield, C. A., Newberry, R. D., & Colonna, M. (2012). AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nature Immunology, 13, 144–151.CrossRefGoogle Scholar
  65. 65.
    Cherrier, M., Sawa, S., & Eberl, G. (2012). Notch, Id2, and RORgammat sequentially orchestrate the fetal development of lymphoid tissue inducer cells. The Journal of Experimental Medicine, 209, 729–740.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wong, S. H., Walker, J. A., Jolin, H. E., Drynan, L. F., Hams, E., Camelo, A., Barlow, J. L., Neill, D. R., Panova, V., Koch, U., Radtke, F., Hardman, C. S., Hwang, Y. Y., Fallon, P. G., & McKenzie, A. N. (2012). Transcription factor RORalpha is critical for nuocyte development. Nature Immunology, 13, 229–236.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Huber, S., Gagliani, N., Zenewicz, L. A., Huber, F. J., Bosurgi, L., Hu, B., Hedl, M., Zhang, W., O'Connor, W., Jr., Murphy, A. J., Valenzuela, D. M., Yancopoulos, G. D., Booth, C. J., Cho, J. H., Ouyang, W., Abraham, C., & Flavell, R. A. (2012). IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature, 491, 259–263.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Auderset, F., Schuster, S., Coutaz, M., Koch, U., Desgranges, F., Merck, E., MacDonald, H. R., Radtke, F., & Tacchini-Cottier, F. (2012). Redundant Notch1 and Notch2 signaling is necessary for IFNgamma secretion by T helper 1 cells during infection with Leishmania major. PLoS Pathogens, 8, e1002560.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Sauma, D., Ramirez, A., Alvarez, K., Rosemblatt, M., & Bono, M. R. (2012). Notch signalling regulates cytokine production by CD8+ and CD4+ T cells. Scandinavian Journal of Immunology, 75, 389–400.PubMedCrossRefGoogle Scholar
  70. 70.
    Minter, L. M., & Osborne, B. A. (2012). Notch and the survival of regulatory T cells: Location is everything! Science Signaling, 5, e31.CrossRefGoogle Scholar
  71. 71.
    Adler, S. H., Chiffoleau, E., Xu, L., Dalton, N. M., Burg, J. M., Wells, A. D., Wolfe, M. S., Turka, L. A., & Pear, W. S. (2003). Notch signaling augments T cell responsiveness by enhancing CD25 expression. Journal of Immunology, 171, 2896–2903.CrossRefGoogle Scholar
  72. 72.
    Joshi, I., Minter, L. M., Telfer, J., Demarest, R. M., Capobianco, A. J., Aster, J. C., Sicinski, P., Fauq, A., Golde, T. E., & Osborne, B. A. (2009). Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood, 113, 1689–1698.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Palaga, T., Miele, L., Golde, T. E., & Osborne, B. A. (2003). TCR-mediated Notch signaling regulates proliferation and IFN-gamma production in peripheral T cells. Journal of Immunology, 171, 3019–3024.CrossRefGoogle Scholar
  74. 74.
    Bheeshmachar, G., Purushotaman, D., Sade, H., Gunasekharan, V., Rangarajan, A., & Sarin, A. (2006). Evidence for a role for notch signaling in the cytokine-dependent survival of activated T cells. Journal of Immunology, 177, 5041–5050.CrossRefGoogle Scholar
  75. 75.
    Maekawa, Y., Ishifune, C., Tsukumo, S., Hozumi, K., Yagita, H., & Yasutomo, K. (2015). Notch controls the survival of memory CD4+ T cells by regulating glucose uptake. Nature Medicine, 21, 55–61.PubMedCrossRefGoogle Scholar
  76. 76.
    Wood, S., Feng, J., Chung, J., Radojcic, V., Sandy-Sloat, A. R., Friedman, A., Shelton, A., Yan, M., Siebel, C. W., Bishop, D. K., & Maillard, I. (2015). Transient blockade of delta-like Notch ligands prevents allograft rejection mediated by cellular and humoral mechanisms in a mouse model of heart transplantation. Journal of Immunology, 194, 2899–2908.CrossRefGoogle Scholar
  77. 77.
    Laky, K., Evans, S., Perez-Diez, A., & Fowlkes, B. J. (2015). Notch signaling regulates antigen sensitivity of naive CD4+ T cells by tuning co-stimulation. Immunity, 42, 80–94.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Amsen, D., Antov, A., Jankovic, D., Sher, A., Radtke, F., Souabni, A., Busslinger, M., McCright, B., Gridley, T., & Flavell, R. A. (2007). Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity, 27, 89–99.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Tu, L., Fang, T. C., Artis, D., Shestova, O., Pross, S. E., Maillard, I., & Pear, W. S. (2005). Notch signaling is an important regulator of type 2 immunity. Journal of Experimental Medicine, 202, 1037–1042.PubMedCrossRefGoogle Scholar
  80. 80.
    Charbonnier, L. M., Wang, S., Georgiev, P., Sefik, E., & Chatila, T. A. (2015). Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling. Nature Immunology, 16, 1162–1173.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Zhang, W., Zhang, X., Sheng, A., Weng, C., Zhu, T., Zhao, W., & Li, C. (2015). Gamma-secretase inhibitor alleviates acute airway inflammation of allergic asthma in mice by downregulating Th17 cell differentiation. Mediators of Inflammation, 2015, 258168.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Kryczek, I., Zhao, E., Liu, Y., Wang, Y., Vatan, L., Szeliga, W., Moyer, J., Klimczak, A., Lange, A., & Zou, W. (2011). Human TH17 cells are long-lived effector memory cells. Science Translational Medicine, 3, 104ra100.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Jiao, Z., Wang, W., Hua, S., Liu, M., Wang, H., Wang, X., Chen, Y., Xu, H., & Lu, L. (2014). Blockade of Notch signaling ameliorates murine collagen-induced arthritis via suppressing Th1 and Th17 cell responses. The American Journal of Pathology, 184, 1085–1093.PubMedCrossRefGoogle Scholar
  84. 84.
    Cho, O. H., Shin, H. M., Miele, L., Golde, T. E., Fauq, A., Minter, L. M., & Osborne, B. A. (2009). Notch regulates cytolytic effector function in CD8+ T cells. Journal of Immunology, 182, 3380–3389.CrossRefGoogle Scholar
  85. 85.
    Backer, R. A., Helbig, C., Gentek, R., Kent, A., Laidlaw, B. J., Dominguez, C. X., de Souza, Y. S., van Trierum, S. E., van Beek, R., Rimmelzwaan, G. F., ten Brinke, A., Willemsen, A. M., van Kampen, A. H., Kaech, S. M., Blander, J. M., van Gisbergen, K., & Amsen, D. (2014). A central role for Notch in effector CD8(+) T cell differentiation. Nature Immunology, 15, 1143–1151.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Maekawa, Y., Minato, Y., Ishifune, C., Kurihara, T., Kitamura, A., Kojima, H., Yagita, H., Sakata-Yanagimoto, M., Saito, T., Taniuchi, I., Chiba, S., Sone, S., & Yasutomo, K. (2008). Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity. Nature Immunology, 9, 1140–1147.PubMedCrossRefGoogle Scholar
  87. 87.
    Mathieu, M., Duval, F., Daudelin, J. F., & Labrecque, N. (2015). The Notch signaling pathway controls short-lived effector CD8+ T cell differentiation but is dispensable for memory generation. Journal of Immunology, 194, 5654–5662.CrossRefGoogle Scholar
  88. 88.
    Huang, Y., Lin, L., Shanker, A., Malhotra, A., Yang, L., Dikov, M. M., & Carbone, D. P. (2011). Resuscitating cancer immunosurveillance: Selective stimulation of DLL1-Notch signaling in T cells rescues T-cell function and inhibits tumor growth. Cancer Research, 71, 6122–6131.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kijima, M., Iwata, A., Maekawa, Y., Uehara, H., Izumi, K., Kitamura, A., Yagita, H., Chiba, S., Shiota, H., & Yasutomo, K. (2009). Jagged1 suppresses collagen-induced arthritis by indirectly providing a negative signal in CD8+ T cells. Journal of Immunology, 182, 3566–3572.CrossRefGoogle Scholar
  90. 90.
    Zhao, E., Maj, T., Kryczek, I., Li, W., Wu, K., Zhao, L., Wei, S., Crespo, J., Wan, S., Vatan, L., Szeliga, W., Shao, I., Wang, Y., Liu, Y., Varambally, S., Chinnaiyan, A. M., Welling, T. H., Marquez, V., Kotarski, J., Wang, H., Wang, Z., Zhang, Y., Liu, R., Wang, G., & Zou, W. (2016). Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nature Immunology, 17, 95–103.PubMedCrossRefGoogle Scholar
  91. 91.
    Biktasova, A. K., Dudimah, D. F., Uzhachenko, R. V., Park, K., Akhter, A., Arasada, R. R., Evans, J. V., Novitskiy, S. V., Tchekneva, E. E., Carbone, D. P., Shanker, A., & Dikov, M. M. (2015). Multivalent forms of the Notch ligand DLL-1 enhance antitumor T-cell immunity in lung cancer and improve efficacy of EGFR-targeted therapy. Cancer Research, 75, 4728–4741.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Thounaojam, M. C., Dudimah, D. F., Pellom, S. T., Jr., Uzhachenko, R. V., Carbone, D. P., Dikov, M. M., & Shanker, A. (2015). Bortezomib enhances expression of effector molecules in anti-tumor CD8+ T lymphocytes by promoting Notch-nuclear factor-kappaB crosstalk. Oncotarget, 6, 32439–32455.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Gogoi, D., Dar, A. A., & Chiplunkar, S. V. (2014). Involvement of Notch in activation and effector functions of gammadelta T cells. Journal of Immunology, 192, 2054–2062.CrossRefGoogle Scholar
  94. 94.
    Tanaka, S., Tsukada, J., Suzuki, W., Hayashi, K., Tanigaki, K., Tsuji, M., Inoue, H., Honjo, T., & Kubo, M. (2006). The interleukin-4 enhancer CNS-2 is regulated by Notch signals and controls initial expression in NKT cells and memory-type CD4 T cells. Immunity, 24, 689–701.PubMedCrossRefGoogle Scholar
  95. 95.
    Milner, L. A., Bigas, A., Kopan, R., Brashem-Stein, C., Bernstein, I. D., & Martin, D. I. (1996). Inhibition of granulocytic differentiation by mNotch1. Proceedings of the National Academy of Sciences of the United States of America, 93, 13014–13019.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Bigas, A., Martin, D. I., & Milner, L. A. (1998). Notch1 and Notch2 inhibit myeloid differentiation in response to different cytokines. Molecular and Cellular Biology, 18, 2324–2333.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Schroeder, T., & Just, U. (2000). mNotch1 signaling reduces proliferation of myeloid progenitor cells by altering cell-cycle kinetics. Experimental Hematology, 28, 1206–1213.PubMedCrossRefGoogle Scholar
  98. 98.
    Schroeder, T., & Just, U. (2000). Notch signalling via RBP-J promotes myeloid differentiation. The EMBO Journal, 19, 2558–2568.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kumano, K., Chiba, S., Shimizu, K., Yamagata, T., Hosoya, N., Saito, T., Takahashi, T., Hamada, Y., & Hirai, H. (2001). Notch1 inhibits differentiation of hematopoietic cells by sustaining GATA-2 expression. Blood, 98, 3283–3289.PubMedCrossRefGoogle Scholar
  100. 100.
    Tan-Pertel, H. T., Walker, L., Browning, D., Miyamoto, A., Weinmaster, G., & Gasson, J. C. (2000). Notch signaling enhances survival and alters differentiation of 32D myeloblasts. Journal of Immunology, 165, 4428–4436.CrossRefGoogle Scholar
  101. 101.
    Carlesso, N., Aster, J. C., Sklar, J., & Scadden, D. T. (1999). Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood, 93, 838–848.PubMedGoogle Scholar
  102. 102.
    Zhou, L., Li, L. W., Yan, Q., Petryniak, B., Man, Y., Su, C., Shim, J., Chervin, S., & Lowe, J. B. (2008). Notch-dependent control of myelopoiesis is regulated by fucosylation. Blood, 112, 308–319.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Delaney, C., Varnum-Finney, B., Aoyama, K., Brashem-Stein, C., & Bernstein, I. D. (2005). Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood, 106, 2693–2699.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Lauret, E., Catelain, C., Titeux, M., Poirault, S., Dando, J. S., Dorsch, M., Villeval, J. L., Groseil, A., Vainchenker, W., Sainteny, F., & Bennaceur-Griscelli, A. (2004). Membrane-bound delta-4 notch ligand reduces the proliferative activity of primitive human hematopoietic CD34+CD38low cells while maintaining their LTC-IC potential. Leukemia, 18, 788–797.PubMedCrossRefGoogle Scholar
  105. 105.
    Lam, L. T., Ronchini, C., Norton, J., Capobianco, A. J., & Bresnick, E. H. (2000). Suppression of erythroid but not megakaryocytic differentiation of human K562 erythroleukemic cells by notch-1. The Journal of Biological Chemistry, 275, 19676–19684.PubMedCrossRefGoogle Scholar
  106. 106.
    Henning, K., Heering, J., Schwanbeck, R., Schroeder, T., Helmbold, H., Schafer, H., Deppert, W., Kim, E., & Just, U. (2008). Notch1 activation reduces proliferation in the multipotent hematopoietic progenitor cell line FDCP-mix through a p53-dependent pathway but Notch1 effects on myeloid and erythroid differentiation are independent of p53. Cell Death and Differentiation, 15, 398–407.PubMedCrossRefGoogle Scholar
  107. 107.
    Klinakis, A., Lobry, C., Abdel-Wahab, O., Oh, P., Haeno, H., Buonamici, S., van De Walle, I., Cathelin, S., Trimarchi, T., Araldi, E., Liu, C., Ibrahim, S., Beran, M., Zavadil, J., Efstratiadis, A., Taghon, T., Michor, F., Levine, R. L., & Aifantis, I. (2011). A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature, 473, 230–233.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Caton, M. L., Smith-Raska, M. R., & Reizis, B. (2007). Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. The Journal of Experimental Medicine, 204, 1653–1664.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Lewis, K. L., Caton, M. L., Bogunovic, M., Greter, M., Grajkowska, L. T., Ng, D., Klinakis, A., Charo, I. F., Jung, S., Gommerman, J. L., Ivanov, I. I., Liu, K., Merad, M., & Reizis, B. (2011). Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity, 35, 780–791.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Cheng, P., Zlobin, A., Volgina, V., Gottipati, S., Osborne, B., Simel, E. J., Miele, L., & Gabrilovich, D. I. (2001). Notch-1 regulates NF-kappaB activity in hemopoietic progenitor cells. Journal of Immunology, 167, 4458–4467.CrossRefGoogle Scholar
  111. 111.
    Cheng, P., Nefedova, Y., Miele, L., Osborne, B. A., & Gabrilovich, D. (2003). Notch signaling is necessary but not sufficient for differentiation of dendritic cells. Blood, 102, 3980–3988.PubMedCrossRefGoogle Scholar
  112. 112.
    Sekine, C., Moriyama, Y., Koyanagi, A., Koyama, N., Ogata, H., Okumura, K., & Yagita, H. (2009). Differential regulation of splenic CD8- dendritic cells and marginal zone B cells by Notch ligands. International Immunology, 21, 295–301.PubMedCrossRefGoogle Scholar
  113. 113.
    Cheng, P., Kumar, V., Liu, H., Youn, J. I., Fishman, M., Sherman, S., & Gabrilovich, D. (2014). Effects of notch signaling on regulation of myeloid cell differentiation in cancer. Cancer Research, 74, 141–152.PubMedCrossRefGoogle Scholar
  114. 114.
    Cheng, P., Nefedova, Y., Corzo, C. A., & Gabrilovich, D. I. (2007). Regulation of dendritic-cell differentiation by bone marrow stroma via different Notch ligands. Blood, 109, 507–515.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Liu, H., Zhou, J., Cheng, P., Ramachandran, I., Nefedova, Y., & Gabrilovich, D. I. (2013). Regulation of dendritic cell differentiation in bone marrow during emergency myelopoiesis. Journal of Immunology, 191, 1916–1926.CrossRefGoogle Scholar
  116. 116.
    Zhou, J., Cheng, P., Youn, J. I., Cotter, M. J., & Gabrilovich, D. I. (2009). Notch and wingless signaling cooperate in regulation of dendritic cell differentiation. Immunity, 30, 845–859.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Ohishi, K., Varnum-Finney, B., Serda, R. E., Anasetti, C., & Bernstein, I. D. (2001). The Notch ligand, Delta-1, inhibits the differentiation of monocytes into macrophages but permits their differentiation into dendritic cells. Blood, 98, 1402–1407.PubMedCrossRefGoogle Scholar
  118. 118.
    Oswald, F., Liptay, S., Adler, G., & Schmid, R. M. (1998). NF-kappaB2 is a putative target gene of activated Notch-1 via RBP-Jkappa. Molecular and Cellular Biology, 18, 2077–2088.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Bellavia, D., Campese, A. F., Alesse, E., Vacca, A., Felli, M. P., Balestri, A., Stoppacciaro, A., Tiveron, C., Tatangelo, L., Giovarelli, M., Gaetano, C., Ruco, L., Hoffman, E. S., Hayday, A. C., Lendahl, U., Frati, L., Gulino, A., & Screpanti, I. (2000). Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice. The EMBO Journal, 19, 3337–3348.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Nickoloff, B. J., Qin, J. Z., Chaturvedi, V., Denning, M. F., Bonish, B., & Miele, L. (2002). Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-kappaB and PPARgamma. Cell Death and Differentiation, 9, 842–855.PubMedCrossRefGoogle Scholar
  121. 121.
    Guan, E., Wang, J., Laborda, J., Norcross, M., Baeuerle, P. A., & Hoffman, T. (1996). T cell leukemia-associated human Notch/translocation-associated Notch homologue has I kappa B-like activity and physically interacts with nuclear factor-kappa B proteins in T cells. The Journal of Experimental Medicine, 183, 2025–2032.PubMedCrossRefGoogle Scholar
  122. 122.
    Olivier, A., Lauret, E., Gonin, P., & Galy, A. (2006). The Notch ligand delta-1 is a hematopoietic development cofactor for plasmacytoid dendritic cells. Blood, 107, 2694–2701.PubMedCrossRefGoogle Scholar
  123. 123.
    Dontje, W., Schotte, R., Cupedo, T., Nagasawa, M., Scheeren, F., Gimeno, R., Spits, H., & Blom, B. (2006). Delta-like1-induced Notch1 signaling regulates the human plasmacytoid dendritic cell versus T-cell lineage decision through control of GATA-3 and Spi-B. Blood, 107, 2446–2452.PubMedCrossRefGoogle Scholar
  124. 124.
    Radtke, F., Ferrero, I., Wilson, A., Lees, R., Aguet, M., & MacDonald, H. R. (2000). Notch1 deficiency dissociates the intrathymic development of dendritic cells and T cells. The Journal of Experimental Medicine, 191, 1085–1094.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Ferrero, I., Held, W., Wilson, A., Tacchini-Cottier, F., Radtke, F., & MacDonald, H. R. (2002). Mouse CD11c(+) B220(+) Gr1(+) plasmacytoid dendritic cells develop independently of the T-cell lineage. Blood, 100, 2852–2857.PubMedCrossRefGoogle Scholar
  126. 126.
    Feyerabend, T. B., Terszowski, G., Tietz, A., Blum, C., Luche, H., Gossler, A., Gale, N. W., Radtke, F., Fehling, H. J., & Rodewald, H. R. (2009). Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms. Immunity, 30, 67–79.PubMedCrossRefGoogle Scholar
  127. 127.
    Wang, Y. C., Hu, X. B., He, F., Feng, F., Wang, L., Li, W., Zhang, P., Li, D., Jia, Z. S., Liang, Y. M., & Han, H. (2009). Lipopolysaccharide-induced maturation of bone marrow-derived dendritic cells is regulated by notch signaling through the up-regulation of CXCR4. The Journal of Biological Chemistry, 284, 15993–16003.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Feng, F., Wang, Y. C., Hu, X. B., Liu, X. W., Ji, G., Chen, Y. R., Wang, L., He, F., Dou, G. R., Liang, L., Zhang, H. W., & Han, H. (2010). The transcription factor RBP-J-mediated signaling is essential for dendritic cells to evoke efficient anti-tumor immune responses in mice. Molecular Cancer, 9, 90.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Bugeon, L., Gardner, L. M., Rose, A., Gentle, M., & Dallman, M. J. (2008). Cutting edge: Notch signaling induces a distinct cytokine profile in dendritic cells that supports T cell-mediated regulation and IL-2-dependent IL-17 production. Journal of Immunology, 181, 8189–8193.CrossRefGoogle Scholar
  130. 130.
    Mochizuki, K., Xie, F., He, S., Tong, Q., Liu, Y., Mochizuki, I., Guo, Y., Kato, K., Yagita, H., Mineishi, S., & Zhang, Y. (2013). Delta-like ligand 4 identifies a previously uncharacterized population of inflammatory dendritic cells that plays important roles in eliciting allogeneic T cell responses in mice. Journal of Immunology, 190, 3772–3782.CrossRefGoogle Scholar
  131. 131.
    Huang, H. M., Hsiao, G., Fan, C. K., Lin, C. L., Leu, S. J., Chiang, B. L., & Lee, Y. L. (2013). Notch ligand delta-like 4-pretreated dendritic cells alleviate allergic airway responses by enhancing IL-10 production. PLoS One, 8, e63613.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Raber, P. L., Thevenot, P., Sierra, R., Wyczechowska, D., Halle, D., Ramirez, M. E., Ochoa, A. C., Fletcher, M., Velasco, C., Wilk, A., Reiss, K., & Rodriguez, P. C. (2014). Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. International Journal of Cancer, 134, 2853–2864.PubMedCrossRefGoogle Scholar
  133. 133.
    Fung, E., Tang, S. M., Canner, J. P., Morishige, K., Arboleda-Velasquez, J. F., Cardoso, A. A., Carlesso, N., Aster, J. C., & Aikawa, M. (2007). Delta-like 4 induces notch signaling in macrophages: Implications for inflammation. Circulation, 115, 2948–2956.PubMedCrossRefGoogle Scholar
  134. 134.
    Foldi, J., Chung, A. Y., Xu, H., Zhu, J., Outtz, H. H., Kitajewski, J., Li, Y., Hu, X., & Ivashkiv, L. B. (2010). Autoamplification of Notch signaling in macrophages by TLR-induced and RBP-J-dependent induction of Jagged1. Journal of Immunology, 185, 5023–5031.CrossRefGoogle Scholar
  135. 135.
    Ando, K., Kanazawa, S., Tetsuka, T., Ohta, S., Jiang, X., Tada, T., Kobayashi, M., Matsui, N., & Okamoto, T. (2003). Induction of Notch signaling by tumor necrosis factor in rheumatoid synovial fibroblasts. Oncogene, 22, 7796–7803.PubMedCrossRefGoogle Scholar
  136. 136.
    Maniati, E., Bossard, M., Cook, N., Candido, J. B., Emami-Shahri, N., Nedospasov, S. A., Balkwill, F. R., Tuveson, D. A., & Hagemann, T. (2011). Crosstalk between the canonical NF-kappaB and Notch signaling pathways inhibits Ppargamma expression and promotes pancreatic cancer progression in mice. The Journal of Clinical Investigation, 121, 4685–4699.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Ottaviani, S., Tahiri, K., Frazier, A., Hassaine, Z. N., Dumontier, M. F., Baschong, W., Rannou, F., Corvol, M. T., Savouret, J. F., & Richette, P. (2010). Hes1, a new target for interleukin 1beta in chondrocytes. Annals of the Rheumatic Diseases, 69, 1488–1494.PubMedCrossRefGoogle Scholar
  138. 138.
    Ostroukhova, M., Qi, Z., Oriss, T. B., Dixon-McCarthy, B., Ray, P., & Ray, A. (2006). Treg-mediated immunosuppression involves activation of the Notch-HES1 axis by membrane-bound TGF-beta. The Journal of Clinical Investigation, 116, 996–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Hu, X., & Ivashkiv, L. B. (2009). Cross-regulation of signaling pathways by interferon-gamma: Implications for immune responses and autoimmune diseases. Immunity, 31, 539–550.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Osipo, C., Golde, T. E., Osborne, B. A., & Miele, L. A. (2008). Off the beaten pathway: The complex cross talk between Notch and NF-kappaB. Laboratory Investigation, 88, 11–17.CrossRefGoogle Scholar
  141. 141.
    Aguilera, C., Hoya-Arias, R., Haegeman, G., Espinosa, L., & Bigas, A. (2004). Recruitment of IkappaBalpha to the hes1 promoter is associated with transcriptional repression. Proceedings of the National Academy of Sciences of the United States of America, 101, 16537–16542.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Nefedova, Y., Cheng, P., Gilkes, D., Blaskovich, M., Beg, A. A., Sebti, S. M., & Gabrilovich, D. I. (2005). Activation of dendritic cells via inhibition of Jak2/STAT3 signaling. Journal of Immunology, 175, 4338–4346.CrossRefGoogle Scholar
  143. 143.
    Kusmartsev, S., Nefedova, Y., Yoder, D., & Gabrilovich, D. I. (2004). Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. Journal of Immunology, 172, 989–999.CrossRefGoogle Scholar
  144. 144.
    Hu, X., Chung, A. Y., Wu, I., Foldi, J., Chen, J., Ji, J. D., Tateya, T., Kang, Y. J., Han, J., Gessler, M., Kageyama, R., & Ivashkiv, L. B. (2008). Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity, 29, 691–703.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Palaga, T., Buranaruk, C., Rengpipat, S., Fauq, A. H., Golde, T. E., Kaufmann, S. H., & Osborne, B. A. (2008). Notch signaling is activated by TLR stimulation and regulates macrophage functions. European Journal of Immunology, 38, 174–183.PubMedCrossRefGoogle Scholar
  146. 146.
    Zhang, Q., Wang, C., Liu, Z., Liu, X., Han, C., Cao, X., & Li, N. (2012). Notch signal suppresses Toll-like receptor-triggered inflammatory responses in macrophages by inhibiting extracellular signal-regulated kinase 1/2-mediated nuclear factor kappaB activation. The Journal of Biological Chemistry, 287, 6208–6217.PubMedCrossRefGoogle Scholar
  147. 147.
    Franklin, R. A., Liao, W., Sarkar, A., Kim, M. V., Bivona, M. R., Liu, K., Pamer, E. G., & Li, M. O. (2014). The cellular and molecular origin of tumor-associated macrophages. Science, 344, 921–925.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Maekawa, Y., Tsukumo, S., Chiba, S., Hirai, H., Hayashi, Y., Okada, H., Kishihara, K., & Yasutomo, K. (2003). Delta1-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity, 19, 549–559.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Schaller, M. A., Neupane, R., Rudd, B. D., Kunkel, S. L., Kallal, L. E., Lincoln, P., Lowe, J. B., Man, Y., & Lukacs, N. W. (2007). Notch ligand Delta-like 4 regulates disease pathogenesis during respiratory viral infections by modulating Th2 cytokines. The Journal of Experimental Medicine, 204, 2925–2934.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Elyaman, W., Bradshaw, E. M., Wang, Y., Oukka, M., Kivisakk, P., Chiba, S., Yagita, H., & Khoury, S. J. (2007). JAGGED1 and delta1 differentially regulate the outcome of experimental autoimmune encephalomyelitis. Journal of Immunology, 179, 5990–5998.CrossRefGoogle Scholar
  151. 151.
    Liotta, F., Frosali, F., Querci, V., Mantei, A., Fili, L., Maggi, L., Mazzinghi, B., Angeli, R., Ronconi, E., Santarlasci, V., Biagioli, T., Lasagni, L., Ballerini, C., Parronchi, P., Scheffold, A., Cosmi, L., Maggi, E., Romagnani, S., & Annunziato, F. (2008). Human immature myeloid dendritic cells trigger a TH2-polarizing program via Jagged-1/Notch interaction. The Journal of Allergy and Clinical Immunology, 121(1000–5), e8.Google Scholar
  152. 152.
    Pinnell, N., Yan, R., Cho, H. J., Keeley, T., Murai, M. J., Liu, Y., Alarcon, A. S., Qin, J., Wang, Q., Kuick, R., Elenitoba-Johnson, K. S., Maillard, I., Samuelson, L. C., Cierpicki, T., & Chiang, M. Y. (2015). The PIAS-like coactivator Zmiz1 is a direct and selective cofactor of Notch1 in T cell development and leukemia. Immunity, 43, 870–883.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Yu, X. M., Jaskula-Sztul, R., Georgen, M. R., Aburjania, Z., Somnay, Y. R., Leverson, G., Sippel, R. S., Lloyd, R. V., Johnson, B. P., & Chen, H. (2016). Notch1 Signaling Regulates the Aggressiveness of Differentiated Thyroid Cancer and Inhibits SERPINE1 Expression. Clinical Cancer Research.Google Scholar
  154. 154.
    Tolcher, A. W., Messersmith, W. A., Mikulski, S. M., Papadopoulos, K. P., Kwak, E. L., Gibbon, D. G., Patnaik, A., Falchook, G. S., Dasari, A., Shapiro, G. I., Boylan, J. F., Xu, Z. X., Wang, K., Koehler, A., Song, J., Middleton, S. A., Deutsch, J., Demario, M., Kurzrock, R., & Wheler, J. J. (2012). Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. Journal of Clinical Oncology, 30, 2348–2353.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Maccalli, C., & De Maria, R. (2015). Cancer stem cells: Perspectives for therapeutic targeting. Cancer Immunology, Immunotherapy: CII, 64, 91–97.PubMedCrossRefGoogle Scholar
  156. 156.
    Bozkulak, E. C., & Weinmaster, G. (2009). Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Molecular and Cellular Biology, 29, 5679–5695.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Kannan, S., Sutphin, R. M., Hall, M. G., Golfman, L. S., Fang, W., Nolo, R. M., Akers, L. J., Hammitt, R. A., McMurray, J. S., Kornblau, S. M., Melnick, A. M., Figueroa, M. E., & Zweidler-McKay, P. A. (2013). Notch activation inhibits AML growth and survival: A potential therapeutic approach. The Journal of Experimental Medicine, 210, 321–337.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Ning, L., Jaskula-Sztul, R., Kunnimalaiyaan, M., & Chen, H. (2008). Suberoyl bishydroxamic acid activates notch1 signaling and suppresses tumor progression in an animal model of medullary thyroid carcinoma. Annals of Surgical Oncology, 15, 2600–2605.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Landreville, S., Agapova, O. A., Matatall, K. A., Kneass, Z. T., Onken, M. D., Lee, R. S., Bowcock, A. M., & Harbour, J. W. (2012). Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma. Clinical Cancer Research, 18, 408–416.PubMedCrossRefGoogle Scholar
  160. 160.
    Pinchot, S. N., Jaskula-Sztul, R., Ning, L., Peters, N. R., Cook, M. R., Kunnimalaiyaan, M., & Chen, H. (2011). Identification and validation of Notch pathway activating compounds through a novel high-throughput screening method. Cancer, 117, 1386–1398.PubMedCrossRefGoogle Scholar
  161. 161.
    Sugimoto, K., Maekawa, Y., Kitamura, A., Nishida, J., Koyanagi, A., Yagita, H., Kojima, H., Chiba, S., Shimada, M., & Yasutomo, K. (2010). Notch2 signaling is required for potent antitumor immunity in vivo. Journal of Immunology, 184, 4673–4678.CrossRefGoogle Scholar
  162. 162.
    Kuijk, L. M., Verstege, M. I., Rekers, N. V., Bruijns, S. C., Hooijberg, E., Roep, B. O., de Gruijl, T. D., van, K. Y., & Unger, W. W. (2013). Notch controls generation and function of human effector CD8+ T cells. Blood, 121, 2638–2646.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Asahikawa Medical UniversityAsahikawaJapan
  2. 2.Georgia Regents University (GRU) Cancer CenterAugustaUSA
  3. 3.Moffitt Cancer CenterTampaUSA

Personalised recommendations