Advertisement

Out on the Fringe: Modulation of Notch Signaling by Glycosylation

  • Keli Xu
  • Sean E. Egan
Chapter

Abstract

Differential glycosylation of Notch, often as part of a feedback loop, represents a powerful mechanism by which signaling is regulated. Together with Dll (Delta) and Jagged (Serrate) ligands, Fringe, Rumi, and other sugar transferase proteins form a remarkably versatile system to coordinate Notch-dependent tissue patterning. When Fringe is induced in the same cell as Dll, it enhances signal reception through Notch, downregulates Dll through cis-inhibition, and helps to make neighboring cells distinct. When induced in a Jagged-expressing cell, it helps to create a hybrid signal sender/receiver identity with low levels of Notch signal reception, accompanied by (Jagged) signal sending activity without cis-inhibition. In this situation, Fringe can help drive neighbors to the same state. Fringe can even work together with Dll3 to inhibit Notch signaling in neighboring cells. A detailed mechanism by which Fringes control development of several tissues has begun to emerge. With time, studies on Notch glycosylation should help define how this system is used to control development in most tissues and how it can be exploited for therapeutic benefit in the fight against cancer and cardiovascular disease.

Keywords

Notch Lunatic Fringe Manic Fringe Radical Fringe Rumi Delta Serrate Dll Jagged Somitogenesis Lymphocyte development T-cells Human cancer 

Notes

Acknowledgments

K.X. is supported by grants from the National Institutes of Health. S.E.E. is supported by grants from the Terry Fox Foundation, the Canadian Breast Cancer Foundation, the Canadian Institutes for Health Research, and the Cancer Research Society. We thank Dr. Cynthia Guidos for valuable comments on the hematopoiesis and lymphocyte development section of the manuscript.

References

  1. 1.
    Irvine, K. D., & Wieschaus, E. (1994). fringe, a Boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell, 79, 595–606.PubMedCrossRefGoogle Scholar
  2. 2.
    Rauskolb, C., Correia, T., & Irvine, K. D. (1999). Fringe-dependent separation of dorsal and ventral cells in the Drosophila wing. Nature, 401, 476–480.PubMedCrossRefGoogle Scholar
  3. 3.
    Papayannopoulos, V., Tomlinson, A., Panin, V. M., Rauskolb, C., & Irvine, K. D. (1998). Dorsal-Ventral Signaling in the Drosophila Eye. Science, 281, 2031–2034.PubMedCrossRefGoogle Scholar
  4. 4.
    Rauskolb, C., & Irvine, K. D. (1999). Notch-mediated segmentation and growth control of the Drosophila leg. Developmental Biology, 210, 339–350.PubMedCrossRefGoogle Scholar
  5. 5.
    Grammont, M., & Irvine, K. D. (2001). fringe and Notch specify polar cell fate during Drosophila oogenesis. Development, 128, 2243–2253.PubMedGoogle Scholar
  6. 6.
    Grammont, M., & Irvine, K. D. (2002). Organizer activity of the polar cells during Drosophila oogenesis. Development, 129, 5131–5140.PubMedGoogle Scholar
  7. 7.
    Wu, J. Y., Wen, L., Zhang, W.-J., & Rao, Y. (1996). The secreted product of Xenopus gene lunatic Fringe, a vertebrate signaling molecule. Science, 273, 355–358.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Laufer, E., et al. (1997). Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature, 386, 366–373.PubMedCrossRefGoogle Scholar
  9. 9.
    Rodriguez-Esteban, C., et al. (1997). Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature, 386, 360–366.PubMedCrossRefGoogle Scholar
  10. 10.
    Cohen, B., et al. (1997). Fringe boundaries coincide with Notch-dependent patterning centres in mammals and alter Notch-dependent development in Drosophila. Nature Genetics, 16, 283–288.PubMedCrossRefGoogle Scholar
  11. 11.
    Johnston, S. H., et al. (1997). A family of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development, 124, 2245–2254.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Moran, J. L., et al. (1999). Genomic structure, mapping, and expression analysis of the mammalian Lunatic, Manic, and Radical fringe genes. Mammalian Genome, 10, 535–541.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Moran, J. L., Levorse, J. M., & Vogt, T. F. (1999). Limbs move beyond the radical fringe. Nature, 399, 742–743.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Zhang, N., & Gridley, T. (1999). Reply: Limbs move beyond the Radical Fringe. Nature, 399, 743.CrossRefGoogle Scholar
  15. 15.
    Zhang, N., Norton, C. R., & Gridley, T. (2002). Segmentation defects of Notch pathway mutants and absence of a synergistic phenotype in lunatic fringe/radical fringe double mutant mice. Genesis, 33, 21–28.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Fleming, R. J., Gu, Y., & Hukriede, N. A. (1997). Serrate-mediated activation of Notch is specifically blocked by the product of the gene fringe in the dorsal compartment of the Drosophila wing imaginal disc. Development, 124, 2973–2981.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Panin, V. M., Papayannopoulos, V., Wilson, R., & Irvine, K. D. (1997). Fringe modulates Notch-ligand interactions. Nature, 387, 908–912.PubMedCrossRefGoogle Scholar
  18. 18.
    Kim, J., Irvine, K. D., & Carrol, S. B. (1995). Cell recognition, signal induction, and symmetrical gene activation at the Dorsal-Ventral boundary of the developing Drosophila wing. Cell, 82, 795–802.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Troost, T., & Klein, T. (2012). Sequential Notch signalling at the boundary of fringe expressing and non-expressing cells. PLoS One, 7, e49007.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Yuan, Y. P., Schultz, J., Mlodzik, M., & Bork, P. (1997). Secreted Fringe-like signaling molecules may be glycosyltransferases. Cell, 88, 9–11.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Moloney, D. J., et al. (2000). Mammalian Notch1 Is Modified with Two Unusual Forms of O-Linked Glycosylation Found on Epidermal Growth Factor-like Modules. The Journal of Biological Chemistry, 275, 9604–9611.PubMedCrossRefGoogle Scholar
  22. 22.
    Shao, L., Moloney, D. J., & Haltiwanger, R. (2003). Fringe modifies O-fucose on mouse Notch1 at epidermal growth factor-like repeats within the ligand-binding site and the Abruptex region. The Journal of Biological Chemistry, 278, 7775–7782.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Panin, V. M., et al. (2002). Notch ligands are substrates for protein O-fucosyltransferase-1 and Fringe. The Journal of Biological Chemistry, 277, 29945–29952.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Rana, N. A., et al. (2011). O-glucose trisaccharide is present at high but variable stoichiometry at multiple sites on mouse Notch1. The Journal of Biological Chemistry, 286, 31623–31637.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Moloney, D. J., et al. (2000). Fringe is a glycosyltransferase that modifies Notch. Nature, 406, 369–375.PubMedCrossRefGoogle Scholar
  26. 26.
    Bruckner, K., Perez, L., Clausen, H., & Cohen, S. (2000). Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature, 406, 411–415.PubMedCrossRefGoogle Scholar
  27. 27.
    Xu, A., et al. (2007). In vitro reconstitution of the modulation of Drosophila Notch-ligand binding by Fringe. The Journal of Biological Chemistry, 282, 35153–35162.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Aoki, K., et al. (2008). The diversity of O-linked glycans expressed during Drosophila melanogaster development reflects stage- and tissue-specific requirements for cell signaling. The Journal of Biological Chemistry, 283, 30385–30400.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Rana, N. A., & Haltiwanger, R. S. (2011). Fringe benefits: functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors. Current Opinion in Structural Biology, 21, 583–589.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Correia, T., et al. (2003). Molecular genetic analysis of the glycosyltransferase Fringe in Drosophila. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 100, pp. 6404–6409).Google Scholar
  31. 31.
    Rampal, R., et al. (2005). Lunatic fringe, manic fringe, and radical fringe recognize similar specificity determinants in O-fucosylated epidermal growth factor-like repeats. The Journal of Biological Chemistry, 280, 42454–42463.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Munro, S., & Freeman, M. (2000). The Notch signalling regulator Fringe acts in the Golgi apparatus and requires the glycosyltransferase signature motif DxD. Current Biology, 10, 813–820.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Luther, K. B., Schindelin, H., & Haltiwanger, R. S. (2009). Structural and mechanistic insights into lunatic fringe from a kinetic analysis of enzyme mutants. The Journal of Biological Chemistry, 284, 3294–3305.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hicks, C., et al. (2000). Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nature Cell Biology, 2, 515–520.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Yang, L. T., et al. (2005). Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Molecular Biology of the Cell, 16, 927–942.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Wang, Y., et al. (2001). Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase. The Journal of Biological Chemistry, 276, 40338–40345.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Okajima, T., & Irvine, K. D. (2002). Regulation of notch signaling by o-linked fucose. Cell, 111, 893–904.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Sasamura, T., et al. (2003). neurotic, a novel maternal neurogenic gene, encodes an O-fucosyltransferase that is essential for Notch-Delta interactions. Development, 130, 4785–4795.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Stanley, P., & Guidos, C. J. (2009). Regulation of Notch signaling during T- and B-cell development by O-fucose glycans. Immunology Reviews, 230, 201–215.CrossRefGoogle Scholar
  40. 40.
    Shi, S., & Stanley, P. (2003). Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 100, pp. 5234–5239).Google Scholar
  41. 41.
    Yao, D., et al. (2011). Protein O-fucosyltransferase 1 (Pofut1) regulates lymphoid and myeloid homeostasis through modulation of Notch receptor ligand interactions. Blood, 117, 5652–5662.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ge, C., & Stanley, P. (2008). The O-fucose glycan in the ligand-binding domain of Notch1 regulates embryogenesis and T cell development. In Proceedings of the National Academy of Sciences of the United States of America 105 (pp. 1539–1544).Google Scholar
  43. 43.
    Rampal, R., Arboleda-Velasquez, J. F., Nita-Lazar, A., Kosik, K. S., & Haltiwanger, R. S. (2005). Highly conserved O-fucose sites have distinct effects on Notch1 function. The Journal of Biological Chemistry, 280, 32133–32140.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Rampal, R., Luther, K. B., & Haltiwanger, R. S. (2007). Notch signaling in normal and disease States: possible therapies related to glycosylation. Current Molecular Medicine, 7, 427–445.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Okajima, T., Xu, A., Lei, L., & Irvine, K. D. (2005). Chaperone activity of protein O-fucosyltransferase 1 promotes notch receptor folding. Science, 307, 1599–1603.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Okajima, T., Reddy, B., Matsuda, T., & Irvine, K. D. (2008). Contributions of chaperone and glycosyltransferase activities of O-fucosyltransferase 1 to Notch signaling. BMC Biology, 6, 1.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Okamura, Y., & Saga, Y. (2008). Pofut1 is required for the proper localization of the Notch receptor during mouse development. Mechanisms of Development, 125, 663–673.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Sasamura, T., et al. (2007). The O-fucosyltransferase O-fut1 is an extracellular component that is essential for the constitutive endocytic trafficking of Notch in Drosophila. Development, 134, 1347–1356.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Stahl, M., et al. (2008). Roles of Pofut1 and O-fucose in mammalian Notch signaling. The Journal of Biological Chemistry, 283, 13638–13651.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sullivan, F. X., et al. (1998). Molecular cloning of human GDP-mannose 4,6-dehydratase and reconstitution of GDP-fucose biosynthesis in vitro. The Journal of Biological Chemistry, 273, 8193–8202.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Ohyama, C., et al. (1998). Molecular cloning and expression of GDP-D-mannose-4,6-dehydratase, a key enzyme for fucose metabolism defective in Lec13 cells. The Journal of Biological Chemistry, 273, 14582–14587.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ripka, J., Adamany, A., & Stanley, P. (1986). Two Chinese hamster ovary glycosylation mutants affected in the conversion of GDP-mannose to GDP-fucose. Archives of Biochemistry and Biophysics, 249, 533–545.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kanda, Y., et al. (2007). Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. Journal of Biotechnology, 130, 300–310.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Jacobsen, T. L., Brennan, K., Arias, A. M., & Muskavitch, M. A. (1998). Cis-interactions between Delta and Notch modulate neurogenic signalling in Drosophila. Development, 125, 4531–4540.PubMedPubMedCentralGoogle Scholar
  55. 55.
    de Celis, J. F., & Bray, S. J. (2000). The Abruptex domain of Notch regulates negative interactions between Notch, its ligands and Fringe. Development, 127, 1291–1302.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Sakamoto, K., Ohara, O., Takagi, M., Takeda, S., & Katsube, K. (2002). Intracellular cell-autonomous association of Notch and its ligands: a novel mechanism of Notch signal modification. Developmental Biology, 241, 313–326.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Whiteman, P., et al. (2013). Molecular basis for Jagged-1/Serrate ligand recognition by the Notch receptor. The Journal of Biological Chemistry, 288, 7305–7312.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Luca, V. C., et al. (2015). Structural biology. Structural basis for Notch1 engagement of Delta-like 4. Science, 347, 847–853.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Taylor, P., et al. (2014). Fringe-mediated extension of O-linked fucose in the ligand-binding region of Notch1 increases binding to mammalian Notch ligands. Proceedings of the National Academy of Sciences of the United States of America, 111, 7290–7295.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Andrawes, M. B., et al. (2013). Intrinsic selectivity of Notch 1 for Delta-like 4 over Delta-like 1. The Journal of Biological Chemistry, 288, 25477–25489.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Chen, J., Moloney, D. J., & Stanley, P. (2001). Fringe modulation of Jagged1-induced Notch signaling requires the action of beta 4galactosyltransferase-1. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 98, pp. 13716–13721).Google Scholar
  62. 62.
    Hou, X., Tashima, Y., & Stanley, P. (2012). Galactose differentially modulates lunatic and manic fringe effects on Delta1-induced NOTCH signaling. The Journal of Biological Chemistry, 287, 474–483.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Tan, J. B., et al. (2009). Lunatic and manic fringe cooperatively enhance marginal zone B cell precursor competition for delta-like 1 in splenic endothelial niches. Immunity, 30, 254–263.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Shimizu, K., et al. (2001). Manic fringe and lunatic fringe modify different sites of the Notch2 extracellular region, resulting in different signaling modulation. The Journal of Biological Chemistry, 276, 25753–25758.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Van de Walle, I., et al. (2011). Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions. Blood, 117, 4449–4459.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Muller, J., et al. (2014). O-fucosylation of the notch ligand mDLL1 by POFUT1 is dispensable for ligand function. PLoS One, 9, e88571.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Serth, K., et al. (2015). O-fucosylation of DLL3 is required for its function during somitogenesis. PLoS One, 10, e0123776.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Heuss, S. F., Ndiaye-Lobry, D., Six, E. M., Israel, A., & Logeat, F. (2008). The intracellular region of Notch ligands Dll1 and Dll3 regulates their trafficking and signaling activity. Proceedings of the National Academy of Sciences of the United States of America, 105, 11212–11217.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Geffers, I., et al. (2007). Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 in vivo. Journal of Cell Biology, 178, 465–476.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Ladi, E., et al. (2005). The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. Journal of Cell Biology, 170, 983–992.PubMedCrossRefGoogle Scholar
  71. 71.
    Zhang, N., & Gridley, T. (1998). Defects in somite formation in lunatic fringe-deficient mice. Nature, 394, 374–377.PubMedCrossRefGoogle Scholar
  72. 72.
    Evrard, Y. A., Lun, Y., Aulehla, A., Gan, L., & Johnson, R. L. (1998). Lunatic fringe is an essential mediator of somite segmentation and patterning. Nature, 394, 377–381.PubMedCrossRefGoogle Scholar
  73. 73.
    Conlon, R. A., Reaume, A. G., & Rossant, J. (1995). Notch1 is required for the coordinate segmentation of somites. Development, 121, 1533–1545.PubMedGoogle Scholar
  74. 74.
    Barrantes, I. B., et al. (1999). Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse. Current Biology, 9, 470–480.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Swiatek, P. J., Lindsell, C. E., Franco del Amo, F., Weinmaster, G., & Gridley, T. (1994). Notch1 is essential for postimplantation development in mice. Genes & Development, 8, 707–719.CrossRefGoogle Scholar
  76. 76.
    Oka, C., et al. (1995). Disruption of the mouse RBPJk gene results in early embryonic death. Development, 121, 3291–3301.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Hrabe de Angelis, M., McIntyre, J., 2nd, & Gossler, A. (1997). Maintenance of somite borders in mice requires the Delta homologue DII1. Nature, 386, 717–721.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Saga, Y., Hata, N., Koseki, H., & Taketo, M. M. (1997). Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes & Development, 11, 1827–1839.CrossRefGoogle Scholar
  79. 79.
    Wong, P. C., et al. (1997). Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature, 387, 288–292.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Shen, J., et al. (1997). Skeletal and CNS defects in Presenilin-1-deficient mice. Cell, 89, 629–639.PubMedCrossRefGoogle Scholar
  81. 81.
    Kusumi, K., et al. (1998). The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nature Genetics, 19, 274–278.PubMedCrossRefGoogle Scholar
  82. 82.
    Sparrow, D. B., et al. (2006). Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. American Journal of Human Genetics, 78, 28–37.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Dunwoodie, S. L. (2009). The role of Notch in patterning the human vertebral column. Current Opinion on Genetics & Development, 19, 329–337.CrossRefGoogle Scholar
  84. 84.
    Chapman, G., Sparrow, D. B., Kremmer, E., & Dunwoodie, S. L. (2011). Notch inhibition by the ligand DELTA-LIKE 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Human Molecular Genetics, 20, 905–916.CrossRefGoogle Scholar
  85. 85.
    McInerney-Leo, A. M., et al. (2015). Compound heterozygous mutations in RIPPLY2 associated with vertebral segmentation defects. Human Molecular Genetics, 24, 1234–1242.PubMedCrossRefGoogle Scholar
  86. 86.
    Sparrow, D. B., Guillen-Navarro, E., Fatkin, D., & Dunwoodie, S. L. (2008). Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Human Molecular Genetics, 17, 3761–3766.PubMedCrossRefGoogle Scholar
  87. 87.
    Whittock, N. V., et al. (2004). Mutated MESP2 causes spondylocostal dysostosis in humans. American journal of Human Genetics, 74, 1249–1254.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Dunwoodie, S. L., et al. (2002). Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm. Development, 129, 1795–1806.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Bulman, M. P., et al. (2000). Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nature Genetics, 24, 438–441.PubMedCrossRefGoogle Scholar
  90. 90.
    Sparrow, D. B., Sillence, D., Wouters, M. A., Turnpenny, P. D., & Dunwoodie, S. L. (2010). Two novel missense mutations in HAIRY-AND-ENHANCER-OF-SPLIT-7 in a family with spondylocostal dysostosis. European Journal of Human Genetics, 18, 674–679.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hubaud, A., & Pourquie, O. (2014). Signalling dynamics in vertebrate segmentation. Nature reviews. Molecular Cell Biology, 15, 709–721.PubMedGoogle Scholar
  92. 92.
    Pourquie, O. (2011). Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell, 145, 650–663.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Jiang, Y. J., et al. (2000). Notch signalling and the synchronization of the somite segmentation clock. Nature, 408, 475–479.PubMedCrossRefGoogle Scholar
  94. 94.
    Chalamalasetty, R. B., et al. (2011). The Wnt3a/beta-catenin target gene Mesogenin1 controls the segmentation clock by activating a Notch signalling program. Nature Communications, 2, 390.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Vilhais-Neto, G. C., et al. (2010). Rere controls retinoic acid signalling and somite bilateral symmetry. Nature, 463, 953–957.PubMedCrossRefGoogle Scholar
  96. 96.
    Aulehla, A., et al. (2003). Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Developmental Cell, 4, 395–406.PubMedCrossRefGoogle Scholar
  97. 97.
    Dubrulle, J., McGrew, M. J., & Pourquie, O. (2001). FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell, 106, 219–232.PubMedCrossRefGoogle Scholar
  98. 98.
    Sawada, A., et al. (2001). Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development, 128, 4873–4880.PubMedGoogle Scholar
  99. 99.
    Lewis, J. (2003). Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Current Biology, 13, 1398–1408.PubMedCrossRefGoogle Scholar
  100. 100.
    Hoyle, N. P., & Ish-Horowicz, D. (2013). Transcript processing and export kinetics are rate-limiting steps in expressing vertebrate segmentation clock genes. Proceedings of the National Academy of Sciences of the United States of America, 110, E4316–E4324.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Niwa, H. (2007). How is pluripotency determined and maintained? Development, 134, 635–646.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Rossant, J., Zirngibl, R., Cado, D., Shago, M., & Giguere, V. (1991). Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes & Development, 5, 1333–1344.CrossRefGoogle Scholar
  103. 103.
    Shimozono, S., Iimura, T., Kitaguchi, T., Higashijima, S., & Miyawaki, A. (2013). Visualization of an endogenous retinoic acid gradient across embryonic development. Nature, 496, 363–366.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Diez del Corral, R., et al. (2003). Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron, 40, 65–79.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Dequeant, M. L., et al. (2006). A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science, 314, 1595–1598.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Sewell, W., et al. (2009). Cyclical expression of the Notch/Wnt regulator Nrarp requires modulation by Dll3 in somitogenesis. Developmental Biology, 329, 400–409.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Dale, J. K., et al. (2003). Periodic notch inhibition by lunatic fringe underlies the chick segmentation clock. Nature, 421, 275–278.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Cole, S. E., Levorse, J. M., Tilghman, S. M., & Vogt, T. F. (2002). Clock regulatory elements control cyclic expression of Lunatic fringe during somitogenesis. Developmental Cell, 3, 75–84.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Williams, D. R., Shifley, E. T., Lather, J. D., & Cole, S. E. (2014). Posterior skeletal development and the segmentation clock period are sensitive to Lfng dosage during somitogenesis. Developmental Biology, 388, 159–169.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Shifley, E. T., et al. (2008). Oscillatory lunatic fringe activity is crucial for segmentation of the anterior but not posterior skeleton. Development, 135, 899–908.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Oginuma, M., et al. (2010). The oscillation of Notch activation, but not its boundary, is required for somite border formation and rostral-caudal patterning within a somite. Development, 137, 1515–1522.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Riley, M. F., Bochter, M. S., Wahi, K., Nuovo, G. J., & Cole, S. E. (2013). Mir-125a-5p-mediated regulation of Lfng is essential for the avian segmentation clock. Developmental Cell, 24, 554–561.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Nitanda, Y., et al. (2014). 3'-UTR-dependent regulation of mRNA turnover is critical for differential distribution patterns of cyclic gene mRNAs. The FEBS Journal, 281, 146–156.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Shifley, E. T., & Cole, S. E. (2008). Lunatic fringe protein processing by proprotein convertases may contribute to the short protein half-life in the segmentation clock. Biochimica et Biophysica Acta, 1783, 2384–2390.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Okubo, Y., et al. (2012). Lfng regulates the synchronized oscillation of the mouse segmentation clock via trans-repression of Notch signalling. Nature Communications, 3, 1141.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Sprinzak, D., et al. (2010). Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature, 465, 86–90.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    LeBon, L., Lee, T. V., Sprinzak, D., Jafar-Nejad, H., & Elowitz, M. B. (2014). Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states. eLife, 3, e02950.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Matsuda, M., Koga, M., Nishida, E., & Ebisuya, M. (2012). Synthetic signal propagation through direct cell-cell interaction. Science Signaling, 5, ra31.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Matsuda, M., Koga, M., Woltjen, K., Nishida, E., & Ebisuya, M. (2015). Synthetic lateral inhibition governs cell-type bifurcation with robust ratios. Nature Communications, 6, 6195.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Kato, T. M., Kawaguchi, A., Kosodo, Y., Niwa, H., & Matsuzaki, F. (2010). Lunatic fringe potentiates Notch signaling in the developing brain. Molecular and Cellular Neurosciences, 45, 12–25.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Manderfield, L. J., et al. (2012). Notch activation of Jagged1 contributes to the assembly of the arterial wall. Circulation, 125, 314–323.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Boareto, M., et al. (2015). Jagged-Delta asymmetry in Notch signaling can give rise to a Sender/Receiver hybrid phenotype. Proceedings of the National Academy of Sciences of the United States of America, 112, E402–E409.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Mullighan, C. G. (2013). Genome sequencing of lymphoid malignancies. Blood, 122, 3899–3907.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Koch, U., & Radtke, F. (2011). Mechanisms of T cell development and transformation. Annual Review of Cell and Developmental Biology, 27, 539–562.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Pajcini, K. V., Speck, N. A., & Pear, W. S. (2011). Notch signaling in mammalian hematopoietic stem cells. Leukemia, 25, 1525–1532.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Yuan, J. S., Kousis, P. C., Suliman, S., Visan, I., & Guidos, C. J. (2010). Functions of notch signaling in the immune system: consensus and controversies. Annual Review of Immunology, 28, 343–365.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Kumano, K., et al. (2003). Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity, 18, 699–711.PubMedCrossRefGoogle Scholar
  128. 128.
    Hadland, B. K., et al. (2004). A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood, 104, 3097–3105.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Guiu, J., et al. (2014). Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence. The Journal of Experimental Medicine, 211, 2411–2423.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Gama-Norton, L., et al. (2015). Notch signal strength controls cell fate in the haemogenic endothelium. Nature Communications, 6(8510), 8510.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Dzierzak, E., & Speck, N. A. (2008). Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nature Immunology, 9, 129–136.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Bigas, A., D'Altri, T., & Espinosa, L. (2012). The Notch pathway in hematopoietic stem cells. Current Topics in Microbiology and Immunology, 360, 1–18.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Ayllon, V., et al. (2015). The Notch ligand DLL4 specifically marks human hematoendothelial progenitors and regulates their hematopoietic fate. Leukemia, 29, 1741–1753.PubMedCrossRefGoogle Scholar
  134. 134.
    Jang, I. H., et al. (2015). Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood, 125, 1418–1426.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Bigas, A., & Espinosa, L. (2012). Hematopoietic stem cells: to be or Notch to be. Blood, 119, 3226–3235.PubMedCrossRefGoogle Scholar
  136. 136.
    Robert-Moreno, A., et al. (2008). Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1. The EMBO Journal, 27, 1886–1895.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Radtke, F., et al. (1999). Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity, 10, 547–558.PubMedCrossRefGoogle Scholar
  138. 138.
    Yu, V. W., et al. (2015). Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. The Journal of Experimental Medicine, 212, 759–774.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Hozumi, K., et al. (2008). Delta-like 4 is indispensable in thymic environment specific for T cell development. The Journal of Experimental Medicine, 205, 2507–2513.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Koch, U., et al. (2008). Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. The Journal of Experimental Medicine, 205, 2515–2523.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Tan, J. B., Visan, I., Yuan, J. S., & Guidos, C. J. (2005). Requirement for Notch1 signals at sequential early stages of intrathymic T cell development. Nature Immunology, 6, 671–679.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Yui, M. A., & Rothenberg, E. V. (2014). Developmental gene networks: a triathlon on the course to T cell identity. Nature Reviews. Immunology, 14, 529–545.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Hoyne, G. F., Chapman, G., Sontani, Y., Pursglove, S. E., & Dunwoodie, S. L. (2011). A cell autonomous role for the Notch ligand Delta-like 3 in alphabeta T-cell development. Immunology and Cell Biology, 89, 696–705.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Visan, I., Yuan, J. S., Tan, J. B., Cretegny, K., & Guidos, C. J. (2006). Regulation of intrathymic T-cell development by Lunatic Fringe- Notch1 interactions. Immunological Reviews, 209, 76–94.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Visan, I., et al. (2006). Regulation of T lymphopoiesis by Notch1 and Lunatic fringe-mediated competition for intrathymic niches. Nature Immunology, 7, 634–643.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Visan, I., Yuan, J. S., Liu, Y., Stanley, P., & Guidos, C. J. (2010). Lunatic fringe enhances competition for delta-like Notch ligands but does not overcome defective pre-TCR signaling during thymocyte beta-selection in vivo. Journal of Immunology, 185, 4609–4617.CrossRefGoogle Scholar
  147. 147.
    Koch, U., et al. (2001). Subversion of the T/B lineage decision in the thymus by lunatic fringe-mediated inhibition of Notch-1. Immunity, 15, 225–236.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Amsen, D., et al. (2007). Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity, 27, 89–99.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Amsen, D., et al. (2004). Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell, 117, 515–526.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Backer, R. A., et al. (2014). A central role for Notch in effector CD8(+) T cell differentiation. Nature Immunology, 15, 1143–1151.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Mukherjee, S., et al. (2014). STAT5-induced lunatic fringe during Th2 development alters delta-like 4-mediated Th2 cytokine production in respiratory syncytial virus-exacerbated airway allergic disease. Journal of Immunology, 192, 996–1003.CrossRefGoogle Scholar
  152. 152.
    Pillai, S., & Cariappa, A. (2009). The follicular versus marginal zone B lymphocyte cell fate decision. Nature Reviews. Immunology, 9, 767–777.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Fasnacht, N., et al. (2014). Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct Notch-regulated immune responses. The Journal of Experimental Medicine, 211, 2265–2279.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Besseyrias, V., et al. (2007). Hierarchy of Notch-Delta interactions promoting T cell lineage commitment and maturation. The Journal of Experimental Medicine, 204, 331–343.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Hozumi, K., et al. (2004). Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nature Immunology, 5, 638–644.PubMedCrossRefGoogle Scholar
  156. 156.
    Saito, T., et al. (2003). Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity, 18, 675–685.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Perou, C. M. (2010). Molecular stratification of triple-negative breast cancers. The Oncologist, 15(Suppl 5), 39–48.PubMedCrossRefGoogle Scholar
  158. 158.
    Prat, A., et al. (2010). Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Research, 12, R68.CrossRefGoogle Scholar
  159. 159.
    Prat, A., & Perou, C. M. (2009). Mammary development meets cancer genomics. Nature Medicine, 15, 842–844.PubMedCrossRefGoogle Scholar
  160. 160.
    Prat, A., et al. (2013). Molecular characterization of basal-like and non-basal-like triple-negative breast cancer. The Oncologist, 18, 123–133.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Visvader, J. E., & Stingl, J. (2014). Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes & Development, 28, 1143–1158.CrossRefGoogle Scholar
  162. 162.
    Lim, E., et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature Medicine, 15, 907–913.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Chaffer, C. L., & Weinberg, R. A. (2011). A perspective on cancer cell metastasis. Science, 331, 1559–1564.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Baccelli, I., & Trumpp, A. (2012). The evolving concept of cancer and metastasis stem cells. The Journal of Cell Biology, 198, 281–293.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Mani, S. A., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Creighton, C. J., Chang, J. C., & Rosen, J. M. (2010). Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15, 253–260.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Bouras, T., et al. (2008). Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell, 3, 429–441.CrossRefGoogle Scholar
  168. 168.
    Buono, K. D., et al. (2006). The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Developmental Biology, 293, 565–580.CrossRefGoogle Scholar
  169. 169.
    Raouf, A., et al. (2008). Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell, 3, 109–118.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Gonzalez, D. M., & Medici, D. (2014). Signaling mechanisms of the epithelial-mesenchymal transition. Science Signaling, 7, re8.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Reedijk, M., et al. (2005). High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Research, 65, 8530–8537.CrossRefGoogle Scholar
  172. 172.
    Stoeck, A., et al. (2014). Discovery of biomarkers predictive of GSI response in triple-negative breast cancer and adenoid cystic carcinoma. Cancer Discovery, 4, 1154–1167.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Wang, K., et al. (2015). PEST domain mutations in Notch receptors comprise an oncogenic driver segment in triple-negative breast cancer sensitive to a gamma-secretase inhibitor. Clinical Cancer Research, 21, 1487–1496.CrossRefGoogle Scholar
  174. 174.
    Robinson, D. R., et al. (2011). Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nature Medicine, 17, 1646–1651.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Ling, H., Sylvestre, J. R., & Jolicoeur, P. (2010). Notch1-induced mammary tumor development is cyclin D1-dependent and correlates with expansion of pre-malignant multipotent duct-limited progenitors. Oncogene, 29, 4543–4554.PubMedCrossRefGoogle Scholar
  176. 176.
    Gonzalez, M. E., et al. (2014). EZH2 expands breast stem cells through activation of NOTCH1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 111, 3098–3103.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Sale, S., Lafkas, D., & Artavanis-Tsakonas, S. (2013). Notch2 genetic fate mapping reveals two previously unrecognized mammary epithelial lineages. Nature Cell Biology, 15, 451–460.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Lafkas, D., et al. (2013). Notch3 marks clonogenic mammary luminal progenitor cells in vivo. The Journal of Cell Biology, 203, 47–56.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Ling, H., Sylvestre, J. R., & Jolicoeur, P. (2013). Cyclin D1-dependent induction of luminal inflammatory breast tumors by activated notch3. Cancer Research, 73, 5963–5973.PubMedCrossRefGoogle Scholar
  180. 180.
    Pradeep, C. R., et al. (2012). Modeling ductal carcinoma in situ: a HER2-Notch3 collaboration enables luminal filling. Oncogene, 31, 907–917.PubMedCrossRefGoogle Scholar
  181. 181.
    Harrison, H., et al. (2010). Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Research, 70, 709–718.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Simoes, B. M., et al. (2015). Anti-estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-Dependent Cancer Stem Cell Activity. Cell Reports, 12, 1968–1977.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Lombardo, Y., et al. (2014). Nicastrin and Notch4 drive endocrine therapy resistance and epithelial to mesenchymal transition in MCF7 breast cancer cells. Breast Cancer Research, 16, R62.CrossRefGoogle Scholar
  184. 184.
    Brennan, K., & Clarke, R. B. (2013). Combining Notch inhibition with current therapies for breast cancer treatment. Therapeutic Advances in Medical Oncology, 5, 17–24.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Schott, A. F., et al. (2013). Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clinical Cancer Research, 19, 1512–1524.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Yen, W. C., et al. (2015). Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clinical Cancer Research, 21, 2084–2095.CrossRefGoogle Scholar
  187. 187.
    Xu, K., et al. (2012). Lunatic fringe deficiency cooperates with the Met/Caveolin gene amplicon to induce basal-like breast cancer. Cancer Cell, 21, 626–641.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Gastaldi, S., et al. (2013). Met signaling regulates growth, repopulating potential and basal cell-fate commitment of mammary luminal progenitors: implications for basal-like breast cancer. Oncogene, 32, 1428–1440.PubMedCrossRefGoogle Scholar
  189. 189.
    Graveel, C. R., et al. (2009). Met induces diverse mammary carcinomas in mice and is associated with human basal breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 106, 12909–12914.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Knight, J. F., et al. (2013). Met synergizes with p53 loss to induce mammary tumors that possess features of claudin-low breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 110, E1301–E1310.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Ponzo, M. G., et al. (2009). Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 106, 12903–12908.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Zhang, S., Chung, W. C., Miele, L., & Xu, K. (2014). Targeting Met and Notch in the Lfng-deficient, Met-amplified triple-negative breast cancer. Cancer Biology & Therapy, 15, 633–642.CrossRefGoogle Scholar
  193. 193.
    Zhang, S., et al. (2015). Manic fringe promotes a claudin-low breast cancer phenotype through notch-mediated PIK3CG induction. Cancer Research, 75, 1936–1943.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Muellner, M. K., et al. (2011). A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nature Chemical Biology, 7, 787–793.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Xie, Y., et al. (2013). Identification of upregulated phosphoinositide 3-kinase gamma as a target to suppress breast cancer cell migration and invasion. Biochemical Pharmacology, 85, 1454–1462.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Mazzone, M., et al. (2010). Dose-dependent induction of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 107, 5012–5017.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Xu, K., et al. (2010). Lunatic Fringe-mediated Notch signaling is required for lung alveogenesis. American Journal of Physiology. Lung Cellular and Molecular Physiology, 298, L45–L56.PubMedCrossRefGoogle Scholar
  198. 198.
    Lindahl, P., et al. (1999). Role of platelet-derived growth factors in angiogenesis and alveogenesis. Current Topics in Pathology, 93, 27–33.PubMedCrossRefGoogle Scholar
  199. 199.
    Tsao, P. N., et al. (2009). Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development, 136, 2297–2307.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Dang, T. P., Eichenberger, S., Gonzalez, A., Olson, S., & Carbone, D. P. (2003). Constitutive activation of Notch3 inhibits terminal epithelial differentiation in lungs of transgenic mice. Oncogene, 22, 1988–1997.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Guseh, J. S., et al. (2009). Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development, 136, 1751–1759.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Deimling, J., et al. (2007). Mesenchymal maintenance of distal epithelial cell phenotype during late fetal lung development. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292, L725–L741.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Morimoto, M., Nishinakamura, R., Saga, Y., & Kopan, R. (2012). Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development, 139, 4365–4373.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Zhang, S., Loch, A. J., Radtke, F., Egan, S. E., & Xu, K. (2013). Jagged1 is the major regulator of Notch-dependent cell fate in proximal airways. Developmental Dynamics, 242, 678–686.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Kim, C. F., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121, 823–835.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Neptune, E. R., et al. (2008). Targeted disruption of NeuroD, a proneural basic helix-loop-helix factor, impairs distal lung formation and neuroendocrine morphology in the neonatal lung. The Journal of Biological Chemistry, 283, 21160–21169.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Branchfield, K., et al. (2016). Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science, 351, 707.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Semenova, E. A., Nagel, R., & Berns, A. (2015). Origins, genetic landscape, and emerging therapies of small cell lung cancer. Genes & Development, 29, 1447–1462.CrossRefGoogle Scholar
  209. 209.
    George, J., et al. (2015). Comprehensive genomic profiles of small cell lung cancer. Nature, 524, 47–53.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Moran, J. L., et al. (2009). Manic fringe is not required for embryonic development, and fringe family members do not exhibit redundant functions in the axial skeleton, limb, or hindbrain. Developmental Dynamics, 238, 1803–1812.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Berrieman, H. K., et al. (2004). Chromosomal analysis of non-small-cell lung cancer by multicolour fluorescent in situ hybridisation. British Journal of Cancer, 90, 900–905.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Testa, J. R., et al. (1994). Cytogenetic analysis of 63 non-small cell lung carcinomas: recurrent chromosome alterations amid frequent and widespread genomic upheaval. Genes, Chromosomes & Cancer, 11, 178–194.CrossRefGoogle Scholar
  213. 213.
    Yi, F., Amarasinghe, B., & Dang, T. P. (2013). Manic fringe inhibits tumor growth by suppressing Notch3 degradation in lung cancer. American Journal of Cancer Research, 3, 490–499.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Zhang, Z., et al. (2004). Cancer chemopreventive activity of a mixture of Chinese herbs (antitumor B) in mouse lung tumor models. Oncogene, 23, 3841–3850.PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Zheng, Y., et al. (2013). A rare population of CD24(+)ITGB4(+)Notch(hi) cells drives tumor propagation in NSCLC and requires Notch3 for self-renewal. Cancer Cell, 24, 59–74.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Arasada, R. R., Amann, J. M., Rahman, M. A., Huppert, S. S., & Carbone, D. P. (2014). EGFR blockade enriches for lung cancer stem-like cells through Notch3-dependent signaling. Cancer Research, 74, 5572–5584.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Ryan, D. P., Hong, T. S., & Bardeesy, N. (2014). Pancreatic adenocarcinoma. The New England Journal of Medicine, 371, 2140–2141.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    De La, O. J., et al. (2008). Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 105, 18907–18912.CrossRefGoogle Scholar
  219. 219.
    Maniati, E., et al. (2011). Crosstalk between the canonical NF-kappaB and Notch signaling pathways inhibits Ppargamma expression and promotes pancreatic cancer progression in mice. The Journal of Clinical Investigation, 121, 4685–4699.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Miyamoto, Y., et al. (2003). Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell, 3, 565–576.PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Mazur, P. K., et al. (2010). Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 107, 13438–13443.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Hanlon, L., et al. (2010). Notch1 functions as a tumor suppressor in a model of K-ras-induced pancreatic ductal adenocarcinoma. Cancer Research, 70, 4280–4286.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Avila, J. L., Troutman, S., Durham, A., & Kissil, J. L. (2012). Notch1 is not required for acinar-to-ductal metaplasia in a model of Kras-induced pancreatic ductal adenocarcinoma. PLoS One, 7, e52133.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Court, H., et al. (2013). Isoprenylcysteine carboxylmethyltransferase deficiency exacerbates KRAS-driven pancreatic neoplasia via Notch suppression. The Journal of Clinical Investigation, 123, 4681–4694.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Ischenko, I., Petrenko, O., & Hayman, M. J. (2014). Analysis of the tumor-initiating and metastatic capacity of PDX1-positive cells from the adult pancreas. Proceedings of the National Academy of Sciences of the United States of America, 111, 3466–3471.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Kopp, J. L., et al. (2012). Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell, 22, 737–750.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Habbe, N., et al. (2008). Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proceedings of the National Academy of Sciences of the United States of America, 105, 18913–18918.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Apelqvist, A., et al. (1999). Notch signalling controls pancreatic cell differentiation. Nature, 400, 877–881.PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Kopinke, D., et al. (2012). Ongoing Notch signaling maintains phenotypic fidelity in the adult exocrine pancreas. Developmental Biology, 362, 57–64.PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Murtaugh, L. C., Stanger, B. Z., Kwan, K. M., & Melton, D. A. (2003). Notch signaling controls multiple steps of pancreatic differentiation. Proceedings of the National Academy of Sciences of the United States of America, 100, 14920–14925.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Shih, H. P., et al. (2012). A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development, 139, 2488–2499.PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Svensson, P., Bergqvist, I., Norlin, S., & Edlund, H. (2009). MFng is dispensable for mouse pancreas development and function. Molecular and Cellular Biology, 29, 2129–2138.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Zhang, S., Chung, W. C., & Xu, K. (2015). Lunatic Fringe is a potent tumor suppressor in Kras-initiated pancreatic cancer. Oncogene.Google Scholar
  234. 234.
    Esni, F., et al. (2004). Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas. Development, 131, 4213–4224.PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    De Waele, E., Wauters, E., Ling, Z., & Bouwens, L. (2014). Conversion of human pancreatic acinar cells toward a ductal-mesenchymal phenotype and the role of transforming growth factor beta and activin signaling. Pancreas, 43, 1083–1092.PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Abel, E. V., et al. (2014). The Notch pathway is important in maintaining the cancer stem cell population in pancreatic cancer. PLoS One, 9, e91983.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Bailey, J. M., et al. (2014). DCLK1 marks a morphologically distinct subpopulation of cells with stem cell properties in preinvasive pancreatic cancer. Gastroenterology, 146, 245–256.PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Baumgart, A., et al. (2015). Opposing role of Notch1 and Notch2 in a Kras(G12D)-driven murine non-small cell lung cancer model. Oncogene, 34, 578–588.PubMedCrossRefPubMedCentralGoogle Scholar
  239. 239.
    Doucas, H., et al. (2008). Expression of nuclear Notch3 in pancreatic adenocarcinomas is associated with adverse clinical features, and correlates with the expression of STAT3 and phosphorylated Akt. Journal of Surgical Oncology, 97, 63–68.PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Mann, C. D., et al. (2012). Notch3 and HEY-1 as prognostic biomarkers in pancreatic adenocarcinoma. PLoS One, 7, e51119.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Vo, K., et al. (2011). Targeting notch pathway enhances rapamycin antitumor activity in pancreas cancers through PTEN phosphorylation. Molecular Cancer, 10, 138.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Lee, S. H., & Shen, M. M. (2015). Cell types of origin for prostate cancer. Current Opinion in Cell Biology, 37, 35–41.PubMedCrossRefPubMedCentralGoogle Scholar
  243. 243.
    Wu, X., et al. (2011). Differentiation of the ductal epithelium and smooth muscle in the prostate gland are regulated by the Notch/PTEN-dependent mechanism. Developmental Biology, 356, 337–349.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Valdez, J. M., et al. (2012). Notch and TGFbeta form a reciprocal positive regulatory loop that suppresses murine prostate basal stem/progenitor cell activity. Cell Stem Cell, 11, 676–688.PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Kwon, O. J., et al. (2014). Increased Notch signalling inhibits anoikis and stimulates proliferation of prostate luminal epithelial cells. Nature Communications, 5(4416), 4416.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Shou, J., Ross, S., Koeppen, H., de Sauvage, F. J., & Gao, W. Q. (2001). Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer Research, 61, 7291–7297.PubMedPubMedCentralGoogle Scholar
  247. 247.
    Santagata, S., et al. (2004). JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Research, 64, 6854–6857.PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Zhu, H., Zhou, X., Redfield, S., Lewin, J., & Miele, L. (2013). Elevated Jagged-1 and Notch-1 expression in high grade and metastatic prostate cancers. American Journal of Translational Research, 5, 368–378.PubMedPubMedCentralGoogle Scholar
  249. 249.
    Domingo-Domenech, J., et al. (2012). Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell, 22, 373–388.PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Danza, G., et al. (2013). Notch3 is activated by chronic hypoxia and contributes to the progression of human prostate cancer. International Journal of Cancer, 133, 2577–2586.PubMedPubMedCentralGoogle Scholar
  251. 251.
    Pedrosa, A. R., et al. (2015). Notch signaling dynamics in the adult healthy prostate and in prostatic tumor development. Prostate.Google Scholar
  252. 252.
    Wang, J., et al. (2014). Symmetrical and asymmetrical division analysis provides evidence for a hierarchy of prostate epithelial cell lineages. Nature Communications, 5, 4758.PubMedCrossRefPubMedCentralGoogle Scholar
  253. 253.
    Ousset, M., et al. (2012). Multipotent and unipotent progenitors contribute to prostate postnatal development. Nature Cell Biology, 14, 1131–1138.PubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Smith, B. A., et al. (2015). A basal stem cell signature identifies aggressive prostate cancer phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 112, E6544–E6552.PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Zhang, S., Chung, W. C., Wu, G., Egan, S. E., & Xu, K. (2014). Tumor-suppressive activity of Lunatic Fringe in prostate through differential modulation of Notch receptor activation. Neoplasia, 16, 158–167.PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Acar, M., et al. (2008). Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell, 132, 247–258.PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Fernandez-Valdivia, R., et al. (2011). Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development, 138, 1925–1934.PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Takeuchi, H., et al. (2011). Rumi functions as both a protein O-glucosyltransferase and a protein O-xylosyltransferase. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 108, pp. 16600–16605).Google Scholar
  259. 259.
    Takeuchi, H., & Haltiwanger, R. S. (2013). Enzymatic analysis of the protein O-glycosyltransferase, Rumi, acting toward epidermal growth factor-like (EGF) repeats. Methods in Molecular Biology, 1022, 119–128.PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Haltom, A. R., et al. (2014). The protein O-glucosyltransferase Rumi modifies eyes shut to promote rhabdomere separation in Drosophila. PLoS Genetics, 10, e1004795.PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Ramkumar, N., et al. (2015). Protein O-Glucosyltransferase 1 (POGLUT1) Promotes Mouse Gastrulation through Modification of the Apical Polarity Protein CRUMBS2. PLoS Genetics, 11, e1005551.PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Sethi, M. K., et al. (2010). Identification of glycosyltransferase 8 family members as xylosyltransferases acting on O-glucosylated notch epidermal growth factor repeats. The Journal of Biological Chemistry, 285, 1582–1586.PubMedCrossRefPubMedCentralGoogle Scholar
  263. 263.
    Sethi, M. K., et al. (2012). Molecular cloning of a xylosyltransferase that transfers the second xylose to O-glucosylated epidermal growth factor repeats of notch. The Journal of Biological Chemistry, 287, 2739–2748.PubMedCrossRefPubMedCentralGoogle Scholar
  264. 264.
    Yu, H., et al. (2015). Notch-modifying xylosyltransferase structures support an SNi-like retaining mechanism. Nature Chemical Biology, 11, 847–854.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Lee, T. V., et al. (2013). Negative regulation of notch signaling by xylose. PLoS Genetics, 9, e1003547.PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Huppert, S. S. (2016). A faithful JAGGED1 haploinsufficiency mouse model of arteriohepatic dysplasia (Alagille syndrome) after all. Hepatology, 63, 365–367.PubMedCrossRefPubMedCentralGoogle Scholar
  267. 267.
    Thakurdas, S. M., et al. (2016). Jagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology, 63, 550–565.PubMedCrossRefPubMedCentralGoogle Scholar
  268. 268.
    Johansen, K. M., Fehon, R. G., & Artavanis-Tsakonas, S. (1989). The Notch gene product is a glycoprotein expressed on the cell surface of both epidermal and neuronal precursor cells during Drosophila development. The Journal of Cell Biology, 109, 2427–2440.PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    Dennis, J. W., Lau, K. S., Demetriou, M., & Nabi, I. R. (2009). Adaptive regulation at the cell surface by N-glycosylation. Traffic, 10, 1569–1578.PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    Stanley, P., & Okajima, T. (2010). Roles of glycosylation in Notch signaling. Current Topics in Developmental Biology, 92, 131–164.PubMedCrossRefPubMedCentralGoogle Scholar
  271. 271.
    Matsuura, A., et al. (2008). O-linked N-acetylglucosamine is present on the extracellular domain of notch receptors. The Journal of Biological Chemistry, 283, 35486–35495.PubMedCrossRefPubMedCentralGoogle Scholar
  272. 272.
    Takeuchi, H., & Haltiwanger, R. S. (2014). Significance of glycosylation in Notch signaling. Biochemical and Biophysical Research Communications, 453, 235–242.PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Tian, J., et al. (2010). Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling. American Journal of Human Genetics, 87, 768–778.PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Kiecker, C., & Lumsden, A. (2005). Compartments and their boundaries in vertebrate brain development. Nature Reviews. Neuroscience, 6, 553–564.PubMedCrossRefGoogle Scholar
  275. 275.
    Tossell, K., Kiecker, C., Wizenmann, A., Lang, E., & Irving, C. (2011). Notch signalling stabilises boundary formation at the midbrain-hindbrain organiser. Development, 138, 3745–3757.PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Cheng, Y. C., et al. (2004). Notch activation regulates the segregation and differentiation of rhombomere boundary cells in the zebrafish hindbrain. Developmental Cell, 6, 539–550.PubMedCrossRefGoogle Scholar
  277. 277.
    Zeltser, L. M., Larsen, C. W., & Lumsden, A. (2001). A new developmental compartment in the forebrain regulated by Lunatic fringe. Nature Neuroscience, 4, 683–684.PubMedCrossRefGoogle Scholar
  278. 278.
    Zhang, N., Martin, G. V., Kelley, M. W., & Gridley, T. (2000). A mutation in the Lunatic fringe gene suppresses the effects of a Jagged2 mutation on inner hair cell development in the cochlea. Current Biology, 10, 659–662.PubMedCrossRefGoogle Scholar
  279. 279.
    Hartman, B. H., Hayashi, T., Nelson, B. R., Bermingham-McDonogh, O., & Reh, T. A. (2007). Dll3 is expressed in developing hair cells in the mammalian cochlea. Developmental Dynamics, 236, 2875–2883.PubMedCrossRefGoogle Scholar
  280. 280.
    Nikolaou, N., et al. (2009). Lunatic fringe promotes the lateral inhibition of neurogenesis. Development, 136, 2523–2533.PubMedPubMedCentralCrossRefGoogle Scholar
  281. 281.
    Stacey, S. M., et al. (2010). Drosophila glial glutamate transporter Eaat1 is regulated by fringe-mediated notch signaling and is essential for larval locomotion. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30, 14446–14457.CrossRefGoogle Scholar
  282. 282.
    Benedito, R., & Hellstrom, M. (2013). Notch as a hub for signaling in angiogenesis. Experimental Cell Research, 319, 1281–1288.PubMedCrossRefPubMedCentralGoogle Scholar
  283. 283.
    Benedito, R., et al. (2009). The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell, 137, 1124–1135.PubMedCrossRefGoogle Scholar
  284. 284.
    Kofler, N. M., et al. (2011). Notch signaling in developmental and tumor angiogenesis. Genes & Cancer, 2, 1106–1116.CrossRefGoogle Scholar
  285. 285.
    Holderfield, M. T., et al. (2006). HESR1/CHF2 suppresses VEGFR2 transcription independent of binding to E-boxes. Biochemical and Biophysical Research Communications, 346, 637–648.PubMedCrossRefPubMedCentralGoogle Scholar
  286. 286.
    Taylor, K. L., Henderson, A. M., & Hughes, C. C. (2002). Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvascular Research, 64, 372–383.PubMedCrossRefPubMedCentralGoogle Scholar
  287. 287.
    Pedrosa, A. R., et al. (2015). Endothelial Jagged1 antagonizes Dll4 regulation of endothelial branching and promotes vascular maturation downstream of Dll4/Notch1. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 1134–1146.PubMedCrossRefPubMedCentralGoogle Scholar
  288. 288.
    Boareto, M., Jolly, M. K., Ben-Jacob, E., & Onuchic, J. N. (2015). Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision. Proceedings of the National Academy of Sciences of the United States of America, 112, E3836–E3844.PubMedPubMedCentralCrossRefGoogle Scholar
  289. 289.
    D’Amato, G., et al. (2016). Sequential Notch activation regulates ventricular chamber development. Nature Cell Biology, 18, 7–20.PubMedCrossRefPubMedCentralGoogle Scholar
  290. 290.
    Pedrosa, A. R., et al. (2015). Endothelial Jagged1 promotes solid tumor growth through both pro-angiogenic and angiocrine functions. Oncotarget, 6, 24404–24423.PubMedPubMedCentralCrossRefGoogle Scholar
  291. 291.
    Kangsamaksin, T., Tattersall, I. W., & Kitajewski, J. (2014). Notch functions in developmental and tumour angiogenesis by diverse mechanisms. Biochemical Society Transactions, 42, 1563–1568.PubMedCrossRefPubMedCentralGoogle Scholar
  292. 292.
    Espinoza, I., & Miele, L. (2013). Notch inhibitors for cancer treatment. Pharmacology & Therapeutics, 139, 95–110.CrossRefGoogle Scholar
  293. 293.
    Wu, Y., et al. (2010). Therapeutic antibody targeting of individual Notch receptors. Nature, 464, 1052–1057.PubMedPubMedCentralCrossRefGoogle Scholar
  294. 294.
    Ridgway, J., et al. (2006). Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 444, 1083–1087.PubMedCrossRefGoogle Scholar
  295. 295.
    Yan, M., et al. (2010). Chronic DLL4 blockade induces vascular neoplasms. Nature, 463, E6–E7.PubMedPubMedCentralCrossRefGoogle Scholar
  296. 296.
    Andersson, E. R., & Lendahl, U. (2014). Therapeutic modulation of Notch signalling--are we there yet? Nature Reviews. Drug Discovery, 13, 357–378.PubMedPubMedCentralCrossRefGoogle Scholar
  297. 297.
    May, W. A., et al. (1997). EWS/FLI1-induced manic fringe renders NIH 3T3 cells tumorigenic. Nature Genetics, 17, 495–497.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cancer Institute and Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJacksonUSA
  2. 2.Program in Cell Biology, The Hospital for Sick Children and Department of Molecular Genetics, University of TorontoTorontoCanada

Personalised recommendations