Advertisement

Dual Function of Notch Signaling in Cancer: Oncogene and Tumor Suppressor

  • Ute KochEmail author
  • Freddy RadtkeEmail author
Chapter

Abstract

The Notch cascade is an evolutionarily conserved cell-to-cell signaling system that regulates many aspects of embryonic development. It regulates also self-renewal and differentiation processes as well as tissue homeostasis in several adult vertebrate organs. In the last 15 years, it has become evident that deregulated Notch signaling is associated with several human disorders, including cancer. Recently, large sequencing efforts of cancer genomes have uncovered both gain- and loss-of-function mutations in different genes involved in the Notch signaling cascade, indicating that Notch can be both oncogenic and tumor suppressive. For specific tumor types, results generated from experimental mouse models predicted and also validated such relationships, whereas for others, the conclusive findings were unanticipated. The oncogenic and tumor-suppressive functions of Notch appear to be context- and tissue-specific. In this review we will discuss the context-dependent and tissue-specific oncogenic and tumor-suppressive functions of Notch.

Keywords

Notch Cancer Oncogene Tumor Suppressor Mutations 

References

  1. 1.
    Agada, F. O., Patmore, H., Alhamarneh, O., Stafford, N. D., & Greenman, J. (2009). Genetic profile of head and neck squamous cell carcinoma: Clinical implications. The Journal of Laryngology and Otology, 123, 266–272.PubMedCrossRefGoogle Scholar
  2. 2.
    Agrawal, N., Frederick, M. J., Pickering, C. R., Bettegowda, C., Chang, K., Li, R. J., Fakhry, C., Xie, T. X., Zhang, J., Wang, J., Zhang, N., El-Naggar, A. K., Jasser, S. A., Weinstein, J. N., Trevino, L., Drummond, J. A., Muzny, D. M., Wu, Y., Wood, L. D., Hruban, R. H., Westra, W. H., Koch, W. M., Califano, J. A., Gibbs, R. A., Sidransky, D., Vogelstein, B., Velculescu, V. E., Papadopoulos, N., Wheeler, D. A., Kinzler, K. W., & Myers, J. N. (2011). Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science, 333, 1154–1157.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Agrawal, N., Jiao, Y., Bettegowda, C., Hutfless, S. M., Wang, Y., David, S., Cheng, Y., Twaddell, W. S., Latt, N. L., Shin, E. J., Wang, L. D., Wang, L., Yang, W., Velculescu, V. E., Vogelstein, B., Papadopoulos, N., Kinzler, K. W., & Meltzer, S. J. (2012). Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. Cancer Discovery, 2, 899–905.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Aster, J. C., Pear, W. S., & Blacklow, S. C. (2008). Notch signaling in leukemia. Annual Review of Pathology, 3, 587–613.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Balbas-Martinez, C., Sagrera, A., Carrillo-de-Santa-Pau, E., Earl, J., Marquez, M., Vazquez, M., Lapi, E., Castro-Giner, F., Beltran, S., Bayes, M., Carrato, A., Cigudosa, J. C., Dominguez, O., Gut, M., Herranz, J., Juanpere, N., Kogevinas, M., Langa, X., Lopez-Knowles, E., Lorente, J. A., Lloreta, J., Pisano, D. G., Richart, L., Rico, D., Salgado, R. N., Tardon, A., Chanock, S., Heath, S., Valencia, A., Losada, A., Gut, I., Malats, N., & Real, F. X. (2013). Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy. Nature Genetics, 45, 1464–1469.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7, 211–217.PubMedCrossRefGoogle Scholar
  7. 7.
    Balkwill, F. R., & Mantovani, A. (2012). Cancer-related inflammation: Common themes and therapeutic opportunities. Seminars in Cancer Biology, 22, 33–40.PubMedCrossRefGoogle Scholar
  8. 8.
    Baumgart, A., Mazur, P. K., Anton, M., Rudelius, M., Schwamborn, K., Feuchtinger, A., Behnke, K., Walch, A., Braren, R., Peschel, C., Duyster, J., Siveke, J. T., & Dechow, T. (2015). Opposing role of Notch1 and Notch2 in a Kras(G12D)-driven murine non-small cell lung cancer model. Oncogene, 34, 578–588.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Bignell, G. R., Warren, W., Seal, S., Takahashi, M., Rapley, E., Barfoot, R., Green, H., Brown, C., Biggs, P. J., Lakhani, S. R., Jones, C., Hansen, J., Blair, E., Hofmann, B., Siebert, R., Turner, G., Evans, D. G., Schrander-Stumpel, C., Beemer, F. A., van Den Ouweland, A., Halley, D., Delpech, B., Cleveland, M. G., Leigh, I., Leisti, J., & Rasmussen, S. (2000). Identification of the familial cylindromatosis tumour-suppressor gene. Nature Genetics, 25, 160–165.PubMedCrossRefGoogle Scholar
  10. 10.
    Brat, D. J., Verhaak, R. G., Aldape, K. D., Yung, W. K., Salama, S. R., Cooper, L. A., Rheinbay, E., Miller, C. R., Vitucci, M., Morozova, O., Robertson, A. G., Noushmehr, H., Laird, P. W., Cherniack, A. D., Akbani, R., Huse, J. T., Ciriello, G., Poisson, L. M., Barnholtz-Sloan, J. S., Berger, M. S., Brennan, C., Colen, R. R., Colman, H., Flanders, A. E., Giannini, C., Grifford, M., Iavarone, A., Jain, R., Joseph, I., Kim, J., Kasaian, K., Mikkelsen, T., Murray, B. A., O'Neill, B. P., Pachter, L., Parsons, D. W., Sougnez, C., Sulman, E. P., Vandenberg, S. R., Van Meir, E. G., von Deimling, A., Zhang, H., Crain, D., Lau, K., Mallery, D., Morris, S., Paulauskis, J., Penny, R., Shelton, T., Sherman, M., Yena, P., Black, A., Bowen, J., Dicostanzo, K., Gastier-Foster, J., Leraas, K. M., Lichtenberg, T. M., Pierson, C. R., Ramirez, N. C., Taylor, C., Weaver, S., Wise, L., Zmuda, E., Davidsen, T., Demchok, J. A., Eley, G., Ferguson, M. L., Hutter, C. M., Mills Shaw, K. R., Ozenberger, B. A., Sheth, M., Sofia, H. J., Tarnuzzer, R., Wang, Z., Yang, L., Zenklusen, J. C., Ayala, B., Baboud, J., Chudamani, S., Jensen, M. A., Liu, J., Pihl, T., Raman, R., Wan, Y., Wu, Y., Ally, A., Auman, J. T., Balasundaram, M., Balu, S., Baylin, S. B., Beroukhim, R., Bootwalla, M. S., Bowlby, R., Bristow, C. A., Brooks, D., Butterfield, Y., Carlsen, R., Carter, S., Chin, L., Chu, A., Chuah, E., Cibulskis, K., Clarke, A., Coetzee, S. G., Dhalla, N., Fennell, T., Fisher, S., Gabriel, S., Getz, G., Gibbs, R., Guin, R., Hadjipanayis, A., Hayes, D. N., Hinoue, T., Hoadley, K., Holt, R. A., Hoyle, A. P., Jefferys, S. R., Jones, S., Jones, C. D., Kucherlapati, R., Lai, P. H., Lander, E., Lee, S., Lichtenstein, L., Ma, Y., Maglinte, D. T., Mahadeshwar, H. S., Marra, M. A., Mayo, M., Meng, S., Meyerson, M. L., Mieczkowski, P. A., Moore, R. A., Mose, L. E., Mungall, A. J., Pantazi, A., Parfenov, M., Park, P. J., Parker, J. S., Perou, C. M., Protopopov, A., Ren, X., Roach, J., Sabedot, T. S., Schein, J., Schumacher, S. E., Seidman, J. G., Seth, S., Shen, H., Simons, J. V., Sipahimalani, P., Soloway, M. G., Song, X., Sun, H., Tabak, B., Tam, A., Tan, D., Tang, J., Thiessen, N., Triche, T., Jr., Van Den Berg, D. J., Veluvolu, U., Waring, S., Weisenberger, D. J., Wilkerson, M. D., Wong, T., Wu, J., Xi, L., Xu, A. W., Zack, T. I., Zhang, J., Aksoy, B. A., Arachchi, H., Benz, C., Bernard, B., Carlin, D., Cho, J., DiCara, D., Frazer, S., Fuller, G. N., Gao, J., Gehlenborg, N., Haussler, D., Heiman, D. I., Iype, L., Jacobsen, A., Ju, Z., Katzman, S., Kim, H., Knijnenburg, T., Kreisberg, R. B., Lawrence, M. S., Lee, W., Leinonen, K., Lin, P., Ling, S., Liu, W., Liu, Y., Lu, Y., Mills, G., Ng, S., Noble, M. S., Paull, E., Rao, A., Reynolds, S., Saksena, G., Sanborn, Z., Sander, C., Schultz, N., Senbabaoglu, Y., Shen, R., Shmulevich, I., Sinha, R., Stuart, J., Sumer, S. O., Sun, Y., Tasman, N., Taylor, B. S., Voet, D., Weinhold, N., Weinstein, J. N., Yang, D., Yoshihara, K., Zheng, S., Zhang, W., Zou, L., Abel, T., Sadeghi, S., Cohen, M. L., Eschbacher, J., Hattab, E. M., Raghunathan, A., Schniederjan, M. J., Aziz, D., Barnett, G., Barrett, W., Bigner, D. D., Boice, L., Brewer, C., Calatozzolo, C., Campos, B., Carlotti, C. G., Jr., Chan, T. A., Cuppini, L., Curley, E., Cuzzubbo, S., Devine, K., DiMeco, F., Duell, R., Elder, J. B., Fehrenbach, A., Finocchiaro, G., Friedman, W., Fulop, J., Gardner, J., Hermes, B., Herold-Mende, C., Jungk, C., Kendler, A., Lehman, N. L., Lipp, E., Liu, O., Mandt, R., McGraw, M., McLendon, R., McPherson, C., Neder, L., Nguyen, P., Noss, A., Nunziata, R., Ostrom, Q. T., Palmer, C., Perin, A., Pollo, B., Potapov, A., Potapova, O., Rathmell, W. K., Rotin, D., Scarpace, L., Schilero, C., Senecal, K., Shimmel, K., Shurkhay, V., Sifri, S., Singh, R., Sloan, A. E., Smolenski, K., Staugaitis, S. M., Steele, R., Thorne, L., Tirapelli, D. P., Unterberg, A., Vallurupalli, M., Wang, Y., Warnick, R., Williams, F., Wolinsky, Y., Bell, S., Rosenberg, M., Stewart, C., Huang, F., Grimsby, J. L., & Radenbaugh, A. J. (2015). Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. The New England Journal of Medicine, 372, 2481–2498.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bray, S. J. (2006). Notch signalling: A simple pathway becomes complex. Nature Reviews. Molecular Cell Biology, 7, 678–689.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Capobianco, A. J., Zagouras, P., Blaumueller, C. M., Artavanis-Tsakonas, S., & Bishop, J. M. (1997). Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Molecular and Cellular Biology, 17, 6265–6273.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chan, S. M., Weng, A. P., Tibshirani, R., Aster, J. C., & Utz, P. J. (2007). Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood, 110, 278–286.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Charles, N., Ozawa, T., Squatrito, M., Bleau, A. M., Brennan, C. W., Hambardzumyan, D., & Holland, E. C. (2010). Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell, 6, 141–152.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Chiang, M. Y., Xu, L., Shestova, O., Histen, G., L’Heureux, S., Romany, C., Childs, M. E., Gimotty, P. A., Aster, J. C., & Pear, W. S. (2008). Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras-initiated leukemia. The Journal of Clinical Investigation, 118, 3181–3194.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Chiang, M. Y., Xu, M. L., Histen, G., Shestova, O., Roy, M., Nam, Y., Blacklow, S. C., Sacks, D. B., Pear, W. S., & Aster, J. C. (2006). Identification of a conserved negative regulatory sequence that influences the leukemogenic activity of NOTCH1. Molecular and Cellular Biology, 26, 6261–6271.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Chu, Q., Orr, B. A., Semenkow, S., Bar, E. E., & Eberhart, C. G. (2013). Prolonged inhibition of glioblastoma xenograft initiation and clonogenic growth following in vivo Notch blockade. Clinical Cancer Research, 19, 3224–3233.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ciofani, M., & Zuniga-Pflucker, J. C. (2005). Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nature Immunology, 6, 881–888.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    India Project Team of the International Cancer Genome Consortium. (2013). Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nature Communications, 4, 2873.CrossRefGoogle Scholar
  20. 20.
    Czarnecki, D., Staples, M., Mar, A., Giles, G., & Meehan, C. (1994). Metastases from squamous cell carcinoma of the skin in southern Australia. Dermatology, 189, 52–54.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    D'Altri, T., Gonzalez, J., Aifantis, I., Espinosa, L., & Bigas, A. (2011). Hes1 expression and CYLD repression are essential events downstream of Notch1 in T-cell leukemia. Cell Cycle, 10, 1031–1036.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Davidson, M. R., Gazdar, A. F., & Clarke, B. E. (2013). The pivotal role of pathology in the management of lung cancer. Journal of Thoracic Disease, 5(Suppl 5), S463–S478.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Demehri, S., Turkoz, A., & Kopan, R. (2009). Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. Cancer Cell, 16, 55–66.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Di Ianni, M., Baldoni, S., Rosati, E., Ciurnelli, R., Cavalli, L., Martelli, M. F., Marconi, P., Screpanti, I., & Falzetti, F. (2009). A new genetic lesion in B-CLL: A NOTCH1 PEST domain mutation. British Journal of Haematology, 146, 689–691.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Di Piazza, M., Nowell, C. S., Koch, U., Durham, A. D., & Radtke, F. (2012). Loss of cutaneous TSLP-dependent immune responses skews the balance of inflammation from tumor protective to tumor promoting. Cancer Cell, 22, 479–493.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Dohda, T., Maljukova, A., Liu, L., Heyman, M., Grander, D., Brodin, D., Sangfelt, O., & Lendahl, U. (2007). Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines. Experimental Cell Research, 313, 3141–3152.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Dumortier, A., Durham, A. D., Di Piazza, M., Vauclair, S., Koch, U., Ferrand, G., Ferrero, I., Demehri, S., Song, L. L., Farr, A. G., Leonard, W. J., Kopan, R., Miele, L., Hohl, D., Finke, D., & Radtke, F. (2010). Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS One, 5, e9258.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Durinck, S., Ho, C., Wang, N. J., Liao, W., Jakkula, L. R., Collisson, E. A., Pons, J., Chan, S. W., Lam, E. T., Chu, C., Park, K., Hong, S. W., Hur, J. S., Huh, N., Neuhaus, I. M., Yu, S. S., Grekin, R. C., Mauro, T. M., Cleaver, J. E., Kwok, P. Y., LeBoit, P. E., Getz, G., Cibulskis, K., Aster, J. C., Huang, H., Purdom, E., Li, J., Bolund, L., Arron, S. T., Gray, J. W., Spellman, P. T., & Cho, R. J. (2011). Temporal dissection of tumorigenesis in primary cancers. Cancer Discovery, 1, 137–143.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ellisen, L. W., Bird, J., West, D. C., Soreng, A. L., Reynolds, T. C., Smith, S. D., & Sklar, J. (1991). TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell, 66, 649–661.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Espinosa, L., Cathelin, S., D’Altri, T., Trimarchi, T., Statnikov, A., Guiu, J., Rodilla, V., Ingles-Esteve, J., Nomdedeu, J., Bellosillo, B., Besses, C., Abdel-Wahab, O., Kucine, N., Sun, S. C., Song, G., Mullighan, C. C., Levine, R. L., Rajewsky, K., Aifantis, I., & Bigas, A. (2010). The Notch/Hes1 pathway sustains NF-kappaB activation through CYLD repression in T cell leukemia. Cancer Cell, 18, 268–281.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Doody, R. S., Raman, R., Farlow, M., Iwatsubo, T., Vellas, B., Joffe, S., Kieburtz, K., He, F., Sun, X., Thomas, R. G., Aisen, P. S., Siemers, E., Sethuraman, G., Mohs, R., Semagacestat Study Group (2013). A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. The New England Journal of Medicine, 369(4), 341–350. https://doi.org/10.1056/NEJMoa1210951PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Fabbri, G., Rasi, S., Rossi, D., Trifonov, V., Khiabanian, H., Ma, J., Grunn, A., Fangazio, M., Capello, D., Monti, S., Cresta, S., Gargiulo, E., Forconi, F., Guarini, A., Arcaini, L., Paulli, M., Laurenti, L., Larocca, L. M., Marasca, R., Gattei, V., Oscier, D., Bertoni, F., Mullighan, C. G., Foa, R., Pasqualucci, L., Rabadan, R., Dalla-Favera, R., & Gaidano, G. (2011). Analysis of the chronic lymphocytic leukemia coding genome: Role of NOTCH1 mutational activation. The Journal of Experimental Medicine, 208, 1389–1401.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gallahan, D., Jhappan, C., Robinson, G., Hennighausen, L., Sharp, R., Kordon, E., Callahan, R., Merlino, G., & Smith, G. H. (1996). Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Research, 56, 1775–1785.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Gallahan, D., Kozak, C., & Callahan, R. (1987). A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome 17. Journal of Virology, 61, 218–220.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Gao, Y. B., Chen, Z. L., Li, J. G., Hu, X. D., Shi, X. J., Sun, Z. M., Zhang, F., Zhao, Z. R., Li, Z. T., Liu, Z. Y., Zhao, Y. D., Sun, J., Zhou, C. C., Yao, R., Wang, S. Y., Wang, P., Sun, N., Zhang, B. H., Dong, J. S., Yu, Y., Luo, M., Feng, X. L., Shi, S. S., Zhou, F., Tan, F. W., Qiu, B., Li, N., Shao, K., Zhang, L. J., Xue, Q., Gao, S. G., & He, J. (2014). Genetic landscape of esophageal squamous cell carcinoma. Nature Genetics, 46, 1097–1102.PubMedCrossRefGoogle Scholar
  36. 36.
    George, J., Lim, J. S., Jang, S. J., Cun, Y., Ozretic, L., Kong, G., Leenders, F., Lu, X., Fernandez-Cuesta, L., Bosco, G., Muller, C., Dahmen, I., Jahchan, N. S., Park, K. S., Yang, D., Karnezis, A. N., Vaka, D., Torres, A., Wang, M. S., Korbel, J. O., Menon, R., Chun, S. M., Kim, D., Wilkerson, M., Hayes, N., Engelmann, D., Putzer, B., Bos, M., Michels, S., Vlasic, I., Seidel, D., Pinther, B., Schaub, P., Becker, C., Altmuller, J., Yokota, J., Kohno, T., Iwakawa, R., Tsuta, K., Noguchi, M., Muley, T., Hoffmann, H., Schnabel, P. A., Petersen, I., Chen, Y., Soltermann, A., Tischler, V., Choi, C. M., Kim, Y. H., Massion, P. P., Zou, Y., Jovanovic, D., Kontic, M., Wright, G. M., Russell, P. A., Solomon, B., Koch, I., Lindner, M., Muscarella, L. A., la Torre, A., Field, J. K., Jakopovic, M., Knezevic, J., Castanos-Velez, E., Roz, L., Pastorino, U., Brustugun, O. T., Lund-Iversen, M., Thunnissen, E., Kohler, J., Schuler, M., Botling, J., Sandelin, M., Sanchez-Cespedes, M., Salvesen, H. B., Achter, V., Lang, U., Bogus, M., Schneider, P. M., Zander, T., Ansen, S., Hallek, M., Wolf, J., Vingron, M., Yatabe, Y., Travis, W. D., Nurnberg, P., Reinhardt, C., Perner, S., Heukamp, L., Buttner, R., Haas, S. A., Brambilla, E., Peifer, M., Sage, J., & Thomas, R. K. (2015). Comprehensive genomic profiles of small cell lung cancer. Nature, 524, 47–53.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Giachino, C., Boulay, J. L., Ivanek, R., Alvarado, A., Tostado, C., Lugert, S., Tchorz, J., Coban, M., Mariani, L., Bettler, B., Lathia, J., Frank, S., Pfister, S., Kool, M., & Taylor, V. (2015). A tumor suppressor function for Notch signaling in forebrain tumor subtypes. Cancer Cell, 28, 730–742.PubMedCrossRefGoogle Scholar
  38. 38.
    Gonzalez-Garcia, S., Garcia-Peydro, M., Martin-Gayo, E., Ballestar, E., Esteller, M., Bornstein, R., de la Pompa, J. L., Ferrando, A. A., & Toribio, M. L. (2009). CSL-MAML-dependent Notch1 signaling controls T lineage-specific IL-7R{alpha} gene expression in early human thymopoiesis and leukemia. The Journal of Experimental Medicine, 206, 779–791.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144, 646–674.CrossRefGoogle Scholar
  40. 40.
    Herranz, D., Ambesi-Impiombato, A., Palomero, T., Schnell, S. A., Belver, L., Wendorff, A. A., Xu, L., Castillo-Martin, M., Llobet-Navas, D., Cordon-Cardo, C., Clappier, E., Soulier, J., & Ferrando, A. A. (2014). A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nature Medicine, 20, 1130–1137.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Herranz, D., Ambesi-Impiombato, A., Sudderth, J., Sanchez-Martin, M., Belver, L., Tosello, V., Xu, L., Wendorff, A. A., Castillo, M., Haydu, J. E., Marquez, J., Mates, J. M., Kung, A. L., Rayport, S., Cordon-Cardo, C., DeBerardinis, R. J., & Ferrando, A. A. (2015). Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nature Medicine, 21, 1182–1189.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hozumi, K., Negishi, N., Suzuki, D., Abe, N., Sotomaru, Y., Tamaoki, N., Mailhos, C., Ish-Horowicz, D., Habu, S., & Owen, M. J. (2004). Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nature Immunology, 5, 638–644.PubMedCrossRefGoogle Scholar
  43. 43.
    Hu, B., Castillo, E., Harewood, L., Ostano, P., Reymond, A., Dummer, R., Raffoul, W., Hoetzenecker, W., Hofbauer, G. F., & Dotto, G. P. (2012). Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling. Cell, 149, 1207–1220.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Jhappan, C., Gallahan, D., Stahle, C., Chu, E., Smith, G. H., Merlino, G., & Callahan, R. (1992). Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes & Development, 6, 345–355.CrossRefGoogle Scholar
  45. 45.
    Joshi, I., Minter, L., Telfer, J., Demarest, R., Capobianco, A., Aster, J., Sicinski, P., Fauq, A., Golde, T., & Osborne, B. (2008). Notch signaling mediates G1/S cell cycle progression in T cells via cyclin D3 and its dependent kinases. Blood, 113(8), 1689–1698.PubMedCrossRefGoogle Scholar
  46. 46.
    Kiel, M. J., Velusamy, T., Betz, B. L., Zhao, L., Weigelin, H. G., Chiang, M. Y., Huebner-Chan, D. R., Bailey, N. G., Yang, D. T., Bhagat, G., Miranda, R. N., Bahler, D. W., Medeiros, L. J., Lim, M. S., & Elenitoba-Johnson, K. S. (2012). Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. The Journal of Experimental Medicine, 209, 1553–1565.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Klinakis, A., Szabolcs, M., Politi, K., Kiaris, H., Artavanis-Tsakonas, S., & Efstratiadis, A. (2006). Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 9262–9267.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Koch, U., Lehal, R., & Radtke, F. (2013). Stem cells living with a Notch. Development, 140, 689–704.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Koch, U., & Radtke, F. (2010). Notch signaling in solid tumors. Current Topics in Developmental Biology, 92, 411–455.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kopan, R., & Ilagan, M. X. G. (2009). The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell, 137, 216–233.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kridel, R., Meissner, B., Rogic, S., Boyle, M., Telenius, A., Woolcock, B., Gunawardana, J., Jenkins, C., Cochrane, C., Ben-Neriah, S., Tan, K., Morin, R. D., Opat, S., Sehn, L. H., Connors, J. M., Marra, M. A., Weng, A. P., Steidl, C., & Gascoyne, R. D. (2012). Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood, 119, 1963–1971.PubMedCrossRefGoogle Scholar
  52. 52.
    Lee, C. S., Bhaduri, A., Mah, A., Johnson, W. L., Ungewickell, A., Aros, C. J., Nguyen, C. B., Rios, E. J., Siprashvili, Z., Straight, A., Kim, J., Aasi, S. Z., & Khavari, P. A. (2014). Recurrent point mutations in the kinetochore gene KNSTRN in cutaneous squamous cell carcinoma. Nature Genetics, 46, 1060–1062.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lefort, K., Mandinova, A., Ostano, P., Kolev, V., Calpini, V., Kolfschoten, I., Devgan, V., Lieb, J., Raffoul, W., Hohl, D., Neel, V., Garlick, J., Chiorino, G., & Dotto, G. P. (2007). Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes & Development, 21, 562–577.CrossRefGoogle Scholar
  54. 54.
    Li, Y. Y., Hanna, G. J., Laga, A. C., Haddad, R. I., Lorch, J. H., & Hammerman, P. S. (2015). Genomic analysis of metastatic cutaneous squamous cell carcinoma. Clinical Cancer Research, 21, 1447–1456.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454, 436–444.PubMedCrossRefGoogle Scholar
  56. 56.
    Maraver, A., Fernandez-Marcos, P. J., Cash, T. P., Mendez-Pertuz, M., Duenas, M., Maietta, P., Martinelli, P., Munoz-Martin, M., Martinez-Fernandez, M., Canamero, M., Roncador, G., Martinez-Torrecuadrada, J. L., Grivas, D., de la Pompa, J. L., Valencia, A., Paramio, J. M., Real, F. X., & Serrano, M. (2015). NOTCH pathway inactivation promotes bladder cancer progression. The Journal of Clinical Investigation, 125, 824–830.PubMedCrossRefGoogle Scholar
  57. 57.
    Maraver, A., Fernandez-Marcos, P. J., Herranz, D., Canamero, M., Munoz-Martin, M., Gomez-Lopez, G., Mulero, F., Megias, D., Sanchez-Carbayo, M., Shen, J., Sanchez-Cespedes, M., Palomero, T., Ferrando, A., & Serrano, M. (2012). Therapeutic effect of gamma-secretase inhibition in KrasG12V-driven non-small cell lung carcinoma by derepression of DUSP1 and inhibition of ERK. Cancer Cell, 22, 222–234.PubMedCrossRefGoogle Scholar
  58. 58.
    Martincorena, I., Roshan, A., Gerstung, M., Ellis, P., Van Loo, P., McLaren, S., Wedge, D. C., Fullam, A., Alexandrov, L. B., Tubio, J. M., Stebbings, L., Menzies, A., Widaa, S., Stratton, M. R., Jones, P. H., & Campbell, P. J. (2015). Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science, 348, 880–886.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Medyouf, H., Gao, X., Armstrong, F., Gusscott, S., Liu, Q., Larson Gedman, A., Matherly, L. H., Schultz, K. R., Pflumio, F., You, M. J., & Weng, A. P. (2009). Acute T-cell leukemias remain dependent on Notch signaling despite PTEN and INK4A/ARF loss. Blood, 115(6), 1175–1184.PubMedCrossRefGoogle Scholar
  60. 60.
    Medyouf, H., Gusscott, S., Wang, H., Tseng, J. C., Wai, C., Nemirovsky, O., Trumpp, A., Pflumio, F., Carboni, J., Gottardis, M., Pollak, M., Kung, A. L., Aster, J. C., Holzenberger, M., & Weng, A. P. (2011). High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling. The Journal of Experimental Medicine, 208, 1809–1822.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Meuwissen, R., Linn, S. C., Linnoila, R. I., Zevenhoven, J., Mooi, W. J., & Berns, A. (2003). Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell, 4, 181–189.PubMedCrossRefGoogle Scholar
  62. 62.
    Nassar, D., Latil, M., Boeckx, B., Lambrechts, D., & Blanpain, C. (2015). Genomic landscape of carcinogen-induced and genetically induced mouse skin squamous cell carcinoma. Nature Medicine, 21, 946–954.PubMedCrossRefGoogle Scholar
  63. 63.
    Nicolas, M., Wolfer, A., Raj, K., Kummer, J. A., Mill, P., van Noort, M., Hui, C. C., Clevers, H., Dotto, G. P., & Radtke, F. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nature Genetics, 33, 416–421.PubMedCrossRefGoogle Scholar
  64. 64.
    Nik-Zainal, S., Van Loo, P., Wedge, D. C., Alexandrov, L. B., Greenman, C. D., Lau, K. W., Raine, K., Jones, D., Marshall, J., Ramakrishna, M., Shlien, A., Cooke, S. L., Hinton, J., Menzies, A., Stebbings, L. A., Leroy, C., Jia, M., Rance, R., Mudie, L. J., Gamble, S. J., Stephens, P. J., McLaren, S., Tarpey, P. S., Papaemmanuil, E., Davies, H. R., Varela, I., McBride, D. J., Bignell, G. R., Leung, K., Butler, A. P., Teague, J. W., Martin, S., Jonsson, G., Mariani, O., Boyault, S., Miron, P., Fatima, A., Langerod, A., Aparicio, S. A., Tutt, A., Sieuwerts, A. M., Borg, A., Thomas, G., Salomon, A. V., Richardson, A. L., Borresen-Dale, A. L., Futreal, P. A., Stratton, M. R., & Campbell, P. J. (2012). The life history of 21 breast cancers. Cell, 149, 994–1007.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ntziachristos, P., Lim, J. S., Sage, J., & Aifantis, I. (2014). From fly wings to targeted cancer therapies: A centennial for notch signaling. Cancer Cell, 25, 318–334.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Okuyama, R., Nguyen, B. C., Talora, C., Ogawa, E., Tommasi di Vignano, A., Lioumi, M., Chiorino, G., Tagami, H., Woo, M., & Dotto, G. P. (2004). High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism. Developmental Cell, 6, 551–562.PubMedCrossRefGoogle Scholar
  67. 67.
    Palomero, T., Lim, W. K., Odom, D. T., Sulis, M. L., Real, P. J., Margolin, A., Barnes, K. C., O'Neil, J., Neuberg, D., Weng, A. P., Aster, J. C., Sigaux, F., Soulier, J., Look, A. T., Young, R. A., Califano, A., & Ferrando, A. A. (2006). NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. PNAS, 103, 18261–18266.PubMedCrossRefGoogle Scholar
  68. 68.
    Palomero, T., Sulis, M. L., Cortina, M., Real, P. J., Barnes, K., Ciofani, M., Caparros, E., Buteau, J., Brown, K., Perkins, S. L., Bhagat, G., Agarwal, A. M., Basso, G., Castillo, M., Nagase, S., Cordon-Cardo, C., Parsons, R., Zuniga-Pflucker, J. C., Dominguez, M., & Ferrando, A. A. (2007). Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nature Medicine, 13, 1203–1210.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Parry, M., Rose-Zerilli, M. J., Ljungstrom, V., Gibson, J., Wang, J., Walewska, R., Parker, H., Parker, A., Davis, Z., Gardiner, A., McIver-Brown, N., Kalpadakis, C., Xochelli, A., Anagnostopoulos, A., Fazi, C., Gonzalez de Castro, D., Dearden, C., Pratt, G., Rosenquist, R., Ashton-Key, M., Forconi, F., Collins, A., Ghia, P., Matutes, E., Pangalis, G., Stamatopoulos, K., Oscier, D., & Strefford, J. C. (2015). Genetics and prognostication in splenic marginal zone lymphoma: Revelations from deep sequencing. Clinical Cancer Research, 21, 4174–4183.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Pear, W. S., Aster, J. C., Scott, M. L., Hasserjian, R. P., Soffer, B., Sklar, J., & Baltimore, D. (1996). Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. The Journal of Experimental Medicine, 183, 2283–2291.PubMedCrossRefGoogle Scholar
  71. 71.
    Pece, S., Serresi, M., Santolini, E., Capra, M., Hulleman, E., Galimberti, V., Zurrida, S., Maisonneuve, P., Viale, G., & Di Fiore, P. P. (2004). Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. The Journal of Cell Biology, 167, 215–221.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Peifer, M., Fernandez-Cuesta, L., Sos, M. L., George, J., Seidel, D., Kasper, L. H., Plenker, D., Leenders, F., Sun, R., Zander, T., Menon, R., Koker, M., Dahmen, I., Muller, C., Di Cerbo, V., Schildhaus, H. U., Altmuller, J., Baessmann, I., Becker, C., de Wilde, B., Vandesompele, J., Bohm, D., Ansen, S., Gabler, F., Wilkening, I., Heynck, S., Heuckmann, J. M., Lu, X., Carter, S. L., Cibulskis, K., Banerji, S., Getz, G., Park, K. S., Rauh, D., Grutter, C., Fischer, M., Pasqualucci, L., Wright, G., Wainer, Z., Russell, P., Petersen, I., Chen, Y., Stoelben, E., Ludwig, C., Schnabel, P., Hoffmann, H., Muley, T., Brockmann, M., Engel-Riedel, W., Muscarella, L. A., Fazio, V. M., Groen, H., Timens, W., Sietsma, H., Thunnissen, E., Smit, E., Heideman, D. A., Snijders, P. J., Cappuzzo, F., Ligorio, C., Damiani, S., Field, J., Solberg, S., Brustugun, O. T., Lund-Iversen, M., Sanger, J., Clement, J. H., Soltermann, A., Moch, H., Weder, W., Solomon, B., Soria, J. C., Validire, P., Besse, B., Brambilla, E., Brambilla, C., Lantuejoul, S., Lorimier, P., Schneider, P. M., Hallek, M., Pao, W., Meyerson, M., Sage, J., Shendure, J., Schneider, R., Buttner, R., Wolf, J., Nurnberg, P., Perner, S., Heukamp, L. C., Brindle, P. K., Haas, S., & Thomas, R. K. (2012). Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genetics, 44, 1104–1110.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Pickering, C. R., Zhou, J. H., Lee, J. J., Drummond, J. A., Peng, S. A., Saade, R. E., Tsai, K. Y., Curry, J. L., Tetzlaff, M. T., Lai, S. Y., Yu, J., Muzny, D. M., Doddapaneni, H., Shinbrot, E., Covington, K. R., Zhang, J., Seth, S., Caulin, C., Clayman, G. L., El-Naggar, A. K., Gibbs, R. A., Weber, R. S., Myers, J. N., Wheeler, D. A., & Frederick, M. J. (2014). Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clinical Cancer Research, 20, 6582–6592.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Porcu, M., Kleppe, M., Gianfelici, V., Geerdens, E., De Keersmaecker, K., Tartaglia, M., Foa, R., Soulier, J., Cauwelier, B., Uyttebroeck, A., Macintyre, E., Vandenberghe, P., Asnafi, V., & Cools, J. (2012). Mutation of the receptor tyrosine phosphatase PTPRC (CD45) in T-cell acute lymphoblastic leukemia. Blood, 119, 4476–4479.PubMedCrossRefGoogle Scholar
  75. 75.
    Proweller, A., Tu, L., Lepore, J. J., Cheng, L., Lu, M. M., Seykora, J., Millar, S. E., Pear, W. S., & Parmacek, M. S. (2006). Impaired notch signaling promotes de novo squamous cell carcinoma formation. Cancer Research, 66, 7438–7444.PubMedCrossRefGoogle Scholar
  76. 76.
    Puente, X. S., Bea, S., Valdes-Mas, R., Villamor, N., Gutierrez-Abril, J., Martin-Subero, J. I., Munar, M., Rubio-Perez, C., Jares, P., Aymerich, M., Baumann, T., Beekman, R., Belver, L., Carrio, A., Castellano, G., Clot, G., Colado, E., Colomer, D., Costa, D., Delgado, J., Enjuanes, A., Estivill, X., Ferrando, A. A., Gelpi, J. L., Gonzalez, B., Gonzalez, S., Gonzalez, M., Gut, M., Hernandez-Rivas, J. M., Lopez-Guerra, M., Martin-Garcia, D., Navarro, A., Nicolas, P., Orozco, M., Payer, A. R., Pinyol, M., Pisano, D. G., Puente, D. A., Queiros, A. C., Quesada, V., Romeo-Casabona, C. M., Royo, C., Royo, R., Rozman, M., Russinol, N., Salaverria, I., Stamatopoulos, K., Stunnenberg, H. G., Tamborero, D., Terol, M. J., Valencia, A., Lopez-Bigas, N., Torrents, D., Gut, I., Lopez-Guillermo, A., Lopez-Otin, C., & Campo, E. (2015). Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature, 526, 519–524.PubMedCrossRefGoogle Scholar
  77. 77.
    Puente, X. S., Pinyol, M., Quesada, V., Conde, L., Ordonez, G. R., Villamor, N., Escaramis, G., Jares, P., Bea, S., Gonzalez-Diaz, M., Bassaganyas, L., Baumann, T., Juan, M., Lopez-Guerra, M., Colomer, D., Tubio, J. M., Lopez, C., Navarro, A., Tornador, C., Aymerich, M., Rozman, M., Hernandez, J. M., Puente, D. A., Freije, J. M., Velasco, G., Gutierrez-Fernandez, A., Costa, D., Carrio, A., Guijarro, S., Enjuanes, A., Hernandez, L., Yague, J., Nicolas, P., Romeo-Casabona, C. M., Himmelbauer, H., Castillo, E., Dohm, J. C., de Sanjose, S., Piris, M. A., de Alava, E., San Miguel, J., Royo, R., Gelpi, J. L., Torrents, D., Orozco, M., Pisano, D. G., Valencia, A., Guigo, R., Bayes, M., Heath, S., Gut, M., Klatt, P., Marshall, J., Raine, K., Stebbings, L. A., Futreal, P. A., Stratton, M. R., Campbell, P. J., Gut, I., Lopez-Guillermo, A., Estivill, X., Montserrat, E., Lopez-Otin, C., & Campo, E. (2011). Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature, 475, 101–105.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Pui, J. C., Allman, D., Xu, L., DeRocco, S., Karnell, F. G., Bakkour, S., Lee, J. Y., Kadesch, T., Hardy, R. R., Aster, J. C., & Pear, W. S. (1999). Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity, 11, 299–308.PubMedCrossRefGoogle Scholar
  79. 79.
    Rampias, T., Vgenopoulou, P., Avgeris, M., Polyzos, A., Stravodimos, K., Valavanis, C., Scorilas, A., & Klinakis, A. (2014). A new tumor suppressor role for the Notch pathway in bladder cancer. Nature Medicine, 20, 1199–1205.PubMedCrossRefGoogle Scholar
  80. 80.
    Ranganathan, P., Weaver, K. L., & Capobianco, A. J. (2011). Notch signalling in solid tumours: A little bit of everything but not all the time. Nature Reviews. Cancer, 11, 338–351.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Rangarajan, A., Talora, C., Okuyama, R., Nicolas, M., Mammucari, C., Oh, H., Aster, J. C., Krishna, S., Metzger, D., Chambon, P., Miele, L., Aguet, M., Radtke, F., & Dotto, G. P. (2001). Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. The EMBO Journal, 20, 3427–3436.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Rao, S. S., O’Neil, J., Liberator, C. D., Hardwick, J. S., Dai, X., Zhang, T., Tyminski, E., Yuan, J., Kohl, N. E., Richon, V. M., Van der Ploeg, L. H., Carroll, P. M., Draetta, G. F., Look, A. T., Strack, P. R., & Winter, C. G. (2009). Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells. Cancer Research, 69, 3060–3068.PubMedCrossRefGoogle Scholar
  83. 83.
    Rebay, I., Fehon, R. G., & Artavanis-Tsakonas, S. (1993). Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell, 74, 319–329.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Reedijk, M., Odorcic, S., Chang, L., Zhang, H., Miller, N., McCready, D. R., Lockwood, G., & Egan, S. E. (2005). High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Research, 65, 8530–8537.CrossRefGoogle Scholar
  85. 85.
    Reedijk, M., Pinnaduwage, D., Dickson, B. C., Mulligan, A. M., Zhang, H., Bull, S. B., O'Malley, F. P., Egan, S. E., & Andrulis, I. L. (2008). JAG1 expression is associated with a basal phenotype and recurrence in lymph node-negative breast cancer. Breast Cancer Research and Treatment, 111, 439–448.CrossRefGoogle Scholar
  86. 86.
    Reynolds, T. C., Smith, S. D., & Sklar, J. (1987). Analysis of DNA surrounding the breakpoints of chromosomal translocations involving the beta T cell receptor gene in human lymphoblastic neoplasms. Cell, 50, 107–117.PubMedCrossRefGoogle Scholar
  87. 87.
    Robinson, D. R., Kalyana-Sundaram, S., Wu, Y. M., Shankar, S., Cao, X., Ateeq, B., Asangani, I. A., Iyer, M., Maher, C. A., Grasso, C. S., Lonigro, R. J., Quist, M., Siddiqui, J., Mehra, R., Jing, X., Giordano, T. J., Sabel, M. S., Kleer, C. G., Palanisamy, N., Natrajan, R., Lambros, M. B., Reis-Filho, J. S., Kumar-Sinha, C., & Chinnaiyan, A. M. (2011). Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nature Medicine, 17, 1646–1651.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Rossi, D., Trifonov, V., Fangazio, M., Bruscaggin, A., Rasi, S., Spina, V., Monti, S., Vaisitti, T., Arruga, F., Fama, R., Ciardullo, C., Greco, M., Cresta, S., Piranda, D., Holmes, A., Fabbri, G., Messina, M., Rinaldi, A., Wang, J., Agostinelli, C., Piccaluga, P. P., Lucioni, M., Tabbo, F., Serra, R., Franceschetti, S., Deambrogi, C., Daniele, G., Gattei, V., Marasca, R., Facchetti, F., Arcaini, L., Inghirami, G., Bertoni, F., Pileri, S. A., Deaglio, S., Foa, R., Dalla-Favera, R., Pasqualucci, L., Rabadan, R., & Gaidano, G. (2012). The coding genome of splenic marginal zone lymphoma: Activation of NOTCH2 and other pathways regulating marginal zone development. The Journal of Experimental Medicine, 209, 1537–1551.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Rudin, C. M., Durinck, S., Stawiski, E. W., Poirier, J. T., Modrusan, Z., Shames, D. S., Bergbower, E. A., Guan, Y., Shin, J., Guillory, J., Rivers, C. S., Foo, C. K., Bhatt, D., Stinson, J., Gnad, F., Haverty, P. M., Gentleman, R., Chaudhuri, S., Janakiraman, V., Jaiswal, B. S., Parikh, C., Yuan, W., Zhang, Z., Koeppen, H., Wu, T. D., Stern, H. M., Yauch, R. L., Huffman, K. E., Paskulin, D. D., Illei, P. B., Varella-Garcia, M., Gazdar, A. F., de Sauvage, F. J., Bourgon, R., Minna, J. D., Brock, M. V., & Seshagiri, S. (2012). Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nature Genetics, 44, 1111–1116.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Saito, T., Chiba, S., Ichikawa, M., Kunisato, A., Asai, T., Shimizu, K., Yamaguchi, T., Yamamoto, G., Seo, S., Kumano, K., Nakagami-Yamaguchi, E., Hamada, Y., Aizawa, S., & Hirai, H. (2003). Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity, 18, 675–685.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Sarmento, L. M., Huang, H., Limon, A., Gordon, W., Fernandes, J., Tavares, M. J., Miele, L., Cardoso, A. A., Classon, M., & Carlesso, N. (2005). Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation. The Journal of Experimental Medicine, 202, 157–168.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Schaffer, B. E., Park, K. S., Yiu, G., Conklin, J. F., Lin, C., Burkhart, D. L., Karnezis, A. N., Sweet-Cordero, E. A., & Sage, J. (2010). Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Research, 70, 3877–3883.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Schnell, S. A., Ambesi-Impiombato, A., Sanchez-Martin, M., Belver, L., Xu, L., Qin, Y., Kageyama, R., & Ferrando, A. A. (2015). Therapeutic targeting of HES1 transcriptional programs in T-ALL. Blood, 125, 2806–2814.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Sharma, V. M., Calvo, J. A., Draheim, K. M., Cunningham, L. A., Hermance, N., Beverly, L., Krishnamoorthy, V., Bhasin, M., Capobianco, A. J., & Kelliher, M. A. (2006). Notch1 contributes to mouse T-Cell leukemia by directly inducing the expression of c-myc. Molecular and Cellular Biology, 26, 8022–8031.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Shin, H. M., Minter, L. M., Cho, O. H., Gottipati, S., Fauq, A. H., Golde, T. E., Sonenshein, G. E., & Osborne, B. A. (2006). Notch1 augments NF-kappaB activity by facilitating its nuclear retention. The EMBO Journal, 25, 129–138.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Shochat, C., Tal, N., Bandapalli, O. R., Palmi, C., Ganmore, I., te Kronnie, G., Cario, G., Cazzaniga, G., Kulozik, A. E., Stanulla, M., Schrappe, M., Biondi, A., Basso, G., Bercovich, D., Muckenthaler, M. U., & Izraeli, S. (2011). Gain-of-function mutations in interleukin-7 receptor-alpha (IL7R) in childhood acute lymphoblastic leukemias. The Journal of Experimental Medicine, 208, 901–908.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Sicinska, E., Aifantis, I., Le Cam, L., Swat, W., Borowski, C., Yu, Q., Ferrando, A. A., Levin, S. D., Geng, Y., von Boehmer, H., & Sicinski, P. (2003). Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell, 4, 451–461.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Simoes, B. M., O’Brien, C. S., Eyre, R., Silva, A., Yu, L., Sarmiento-Castro, A., Alferez, D. G., Spence, K., Santiago-Gomez, A., Chemi, F., Acar, A., Gandhi, A., Howell, A., Brennan, K., Ryden, L., Catalano, S., Ando, S., Gee, J., Ucar, A., Sims, A. H., Marangoni, E., Farnie, G., Landberg, G., Howell, S. J., & Clarke, R. B. (2015). Anti-estrogen resistance in human breast tumors is driven by JAG1-NOTCH4-Dependent cancer stem cell activity. Cell Reports, 12, 1968–1977.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., Mandelker, D., Leary, R. J., Ptak, J., Silliman, N., Szabo, S., Buckhaults, P., Farrell, C., Meeh, P., Markowitz, S. D., Willis, J., Dawson, D., Willson, J. K., Gazdar, A. F., Hartigan, J., Wu, L., Liu, C., Parmigiani, G., Park, B. H., Bachman, K. E., Papadopoulos, N., Vogelstein, B., Kinzler, K. W., & Velculescu, V. E. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314, 268–274.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Solinas, G., Marchesi, F., Garlanda, C., Mantovani, A., & Allavena, P. (2010). Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Reviews, 29, 243–248.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Song, Y., Li, L., Ou, Y., Gao, Z., Li, E., Li, X., Zhang, W., Wang, J., Xu, L., Zhou, Y., Ma, X., Liu, L., Zhao, Z., Huang, X., Fan, J., Dong, L., Chen, G., Ma, L., Yang, J., Chen, L., He, M., Li, M., Zhuang, X., Huang, K., Qiu, K., Yin, G., Guo, G., Feng, Q., Chen, P., Wu, Z., Wu, J., Zhao, J., Luo, L., Fu, M., Xu, B., Chen, B., Li, Y., Tong, T., Wang, M., Liu, Z., Lin, D., Zhang, X., Yang, H., & Zhan, Q. (2014). Identification of genomic alterations in oesophageal squamous cell cancer. Nature, 509, 91–95.CrossRefGoogle Scholar
  102. 102.
    South, A. P., Purdie, K. J., Watt, S. A., Haldenby, S., den Breems, N. Y., Dimon, M., Arron, S. T., Kluk, M. J., Aster, J. C., McHugh, A., Xue, D. J., Dayal, J. H., Robinson, K. S., Rizvi, S. M., Proby, C. M., Harwood, C. A., & Leigh, I. M. (2014). NOTCH1 mutations occur early during cutaneous squamous cell carcinogenesis. The Journal of Investigative Dermatology, 134, 2630–2638.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Sportoletti, P., Baldoni, S., Cavalli, L., Del Papa, B., Bonifacio, E., Ciurnelli, R., Bell, A. S., Di Tommaso, A., Rosati, E., Crescenzi, B., Mecucci, C., Screpanti, I., Marconi, P., Martelli, M. F., Di Ianni, M., & Falzetti, F. (2010). NOTCH1 PEST domain mutation is an adverse prognostic factor in B-CLL. British Journal of Haematology, 151, 404–406.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Sriuranpong, V., Borges, M. W., Ravi, R. K., Arnold, D. R., Nelkin, B. D., Baylin, S. B., & Ball, D. W. (2001). Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Research, 61, 3200–3205.PubMedGoogle Scholar
  105. 105.
    Sriuranpong, V., Borges, M. W., Strock, C. L., Nakakura, E. K., Watkins, D. N., Blaumueller, C. M., Nelkin, B. D., & Ball, D. W. (2002). Notch signaling induces rapid degradation of achaete-scute homolog 1. Molecular and Cellular Biology, 22, 3129–3139.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Stransky, N., Egloff, A. M., Tward, A. D., Kostic, A. D., Cibulskis, K., Sivachenko, A., Kryukov, G. V., Lawrence, M. S., Sougnez, C., McKenna, A., Shefler, E., Ramos, A. H., Stojanov, P., Carter, S. L., Voet, D., Cortes, M. L., Auclair, D., Berger, M. F., Saksena, G., Guiducci, C., Onofrio, R. C., Parkin, M., Romkes, M., Weissfeld, J. L., Seethala, R. R., Wang, L., Rangel-Escareno, C., Fernandez-Lopez, J. C., Hidalgo-Miranda, A., Melendez-Zajgla, J., Winckler, W., Ardlie, K., Gabriel, S. B., Meyerson, M., Lander, E. S., Getz, G., Golub, T. R., Garraway, L. A., & Grandis, J. R. (2011). The mutational landscape of head and neck squamous cell carcinoma. Science, 333, 1157–1160.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Thelu, J., Rossio, P., & Favier, B. (2002). Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatology, 2, 7.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Thomas, M., Calamito, M., Srivastava, B., Maillard, I., Pear, W. S., & Allman, D. (2007). Notch activity synergizes with B-cell-receptor and CD40 signaling to enhance B-cell activation. Blood, 109, 3342–3350.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Uyttendaele, H., Marazzi, G., Wu, G., Yan, Q., Sassoon, D., & Kitajewski, J. (1996). Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development, 122, 2251–2259.PubMedGoogle Scholar
  110. 110.
    Vilimas, T., Mascarenhas, J., Palomero, T., Mandal, M., Buonamici, S., Meng, F., Thompson, B., Spaulding, C., Macaroun, S., Alegre, M. L., Kee, B. L., Ferrando, A., Miele, L., & Aifantis, I. (2007). Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nature Medicine, 13, 70–77.PubMedCrossRefGoogle Scholar
  111. 111.
    Wael, H., Yoshida, R., Kudoh, S., Hasegawa, K., Niimori-Kita, K., & Ito, T. (2014). Notch1 signaling controls cell proliferation, apoptosis and differentiation in lung carcinoma. Lung Cancer, 85, 131–140.PubMedCrossRefGoogle Scholar
  112. 112.
    Wang, H., Zang, C., Taing, L., Arnett, K. L., Wong, Y. J., Pear, W. S., Blacklow, S. C., Liu, X. S., & Aster, J. C. (2014). NOTCH1-RBPJ complexes drive target gene expression through dynamic interactions with superenhancers. Proceedings of the National Academy of Sciences of the United States of America, 111, 705–710.PubMedCrossRefGoogle Scholar
  113. 113.
    Wang, N. J., Sanborn, Z., Arnett, K. L., Bayston, L. J., Liao, W., Proby, C. M., Leigh, I. M., Collisson, E. A., Gordon, P. B., Jakkula, L., Pennypacker, S., Zou, Y., Sharma, M., North, J. P., Vemula, S. S., Mauro, T. M., Neuhaus, I. M., Leboit, P. E., Hur, J. S., Park, K., Huh, N., Kwok, P. Y., Arron, S. T., Massion, P. P., Bale, A. E., Haussler, D., Cleaver, J. E., Gray, J. W., Spellman, P. T., South, A. P., Aster, J. C., Blacklow, S. C., & Cho, R. J. (2011). Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 108, 17761–17766.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Ward, P. S., & Thompson, C. B. (2012). Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 21, 297–308.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Wendorff, A. A., Koch, U., Wunderlich, F. T., Wirth, S., Dubey, C., Bruning, J. C., MacDonald, H. R., & Radtke, F. (2010). Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation. Immunity, 33, 671–684.PubMedCrossRefGoogle Scholar
  116. 116.
    Weng, A. P., Ferrando, A. A., Lee, W., Morris, J. P. T., Silverman, L. B., Sanchez-Irizarry, C., Blacklow, S. C., Look, A. T., & Aster, J. C. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306, 269–271.PubMedCrossRefGoogle Scholar
  117. 117.
    Weng, A. P., Millholland, J. M., Yashiro-Ohtani, Y., Arcangeli, M. L., Lau, A., Wai, C., Del Bianco, C., Rodriguez, C. G., Sai, H., Tobias, J., Li, Y., Wolfe, M. S., Shachaf, C., Felsher, D., Blacklow, S. C., Pear, W. S., & Aster, J. C. (2006). c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes & Development, 20, 2096–2109.CrossRefGoogle Scholar
  118. 118.
    Westhoff, B., Colaluca, I. N., D'Ario, G., Donzelli, M., Tosoni, D., Volorio, S., Pelosi, G., Spaggiari, L., Mazzarol, G., Viale, G., Pece, S., & Di Fiore, P. P. (2009). Alterations of the Notch pathway in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 106, 22293–22298.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    White, A. C., Tran, K., Khuu, J., Dang, C., Cui, Y., Binder, S. W., & Lowry, W. E. (2011). Defining the origins of Ras/p53-mediated squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 108, 7425–7430.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., Shen, D., Boca, S. M., Barber, T., Ptak, J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky, V., Nikolskaya, T., Nikolsky, Y., Karchin, R., Wilson, P. A., Kaminker, J. S., Zhang, Z., Croshaw, R., Willis, J., Dawson, D., Shipitsin, M., Willson, J. K., Sukumar, S., Polyak, K., Park, B. H., Pethiyagoda, C. L., Pant, P. V., Ballinger, D. G., Sparks, A. B., Hartigan, J., Smith, D. R., Suh, E., Papadopoulos, N., Buckhaults, P., Markowitz, S. D., Parmigiani, G., Kinzler, K. W., Velculescu, V. E., & Vogelstein, B. (2007). The genomic landscapes of human breast and colorectal cancers. Science, 318, 1108–1113.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Xu, A., Lei, L., & Irvine, K. D. (2005). Regions of Drosophila Notch that contribute to ligand binding and the modulatory influence of Fringe. The Journal of Biological Chemistry, 280, 30158–30165.PubMedCrossRefGoogle Scholar
  122. 122.
    Yan, W., Wistuba, I. I., Emmert-Buck, M. R., & Erickson, H. S. (2011). Squamous cell carcinoma - similarities and differences among anatomical sites. American Journal of Cancer Research, 1, 275–300.PubMedCrossRefGoogle Scholar
  123. 123.
    Yashiro-Ohtani, Y., Wang, H., Zang, C., Arnett, K. L., Bailis, W., Ho, Y., Knoechel, B., Lanauze, C., Louis, L., Forsyth, K. S., Chen, S., Chung, Y., Schug, J., Blobel, G. A., Liebhaber, S. A., Bernstein, B. E., Blacklow, S. C., Liu, X. S., Aster, J. C., & Pear, W. S. (2014). Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia. Proceedings of the National Academy of Sciences of the United States of America, 111, E4946–E4953.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Yatim, A., Benne, C., Sobhian, B., Laurent-Chabalier, S., Deas, O., Judde, J. G., Lelievre, J. D., Levy, Y., & Benkirane, M. (2012). NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function. Molecular Cell, 48, 445–458.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Zenatti, P. P., Ribeiro, D., Li, W., Zuurbier, L., Silva, M. C., Paganin, M., Tritapoe, J., Hixon, J. A., Silveira, A. B., Cardoso, B. A., Sarmento, L. M., Correia, N., Toribio, M. L., Kobarg, J., Horstmann, M., Pieters, R., Brandalise, S. R., Ferrando, A. A., Meijerink, J. P., Durum, S. K., Yunes, J. A., & Barata, J. T. (2011). Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nature Genetics, 43, 932–939.PubMedCrossRefGoogle Scholar
  126. 126.
    Zender, S., Nickeleit, I., Wuestefeld, T., Sorensen, I., Dauch, D., Bozko, P., El-Khatib, M., Geffers, R., Bektas, H., Manns, M. P., Gossler, A., Wilkens, L., Plentz, R., Zender, L., & Malek, N. P. (2013). A critical role for notch signaling in the formation of cholangiocellular carcinomas. Cancer Cell, 23, 784–795.PubMedCrossRefGoogle Scholar
  127. 127.
    Zenz, T., Mertens, D., Kuppers, R., Dohner, H., & Stilgenbauer, S. (2010). From pathogenesis to treatment of chronic lymphocytic leukaemia. Nature Reviews. Cancer, 10, 37–50.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Zhang, J., Ding, L., Holmfeldt, L., Wu, G., Heatley, S. L., Payne-Turner, D., Easton, J., Chen, X., Wang, J., Rusch, M., Lu, C., Chen, S. C., Wei, L., Collins-Underwood, J. R., Ma, J., Roberts, K. G., Pounds, S. B., Ulyanov, A., Becksfort, J., Gupta, P., Huether, R., Kriwacki, R. W., Parker, M., McGoldrick, D. J., Zhao, D., Alford, D., Espy, S., Bobba, K. C., Song, G., Pei, D., Cheng, C., Roberts, S., Barbato, M. I., Campana, D., Coustan-Smith, E., Shurtleff, S. A., Raimondi, S. C., Kleppe, M., Cools, J., Shimano, K. A., Hermiston, M. L., Doulatov, S., Eppert, K., Laurenti, E., Notta, F., Dick, J. E., Basso, G., Hunger, S. P., Loh, M. L., Devidas, M., Wood, B., Winter, S., Dunsmore, K. P., Fulton, R. S., Fulton, L. L., Hong, X., Harris, C. C., Dooling, D. J., Ochoa, K., Johnson, K. J., Obenauer, J. C., Evans, W. E., Pui, C. H., Naeve, C. W., Ley, T. J., Mardis, E. R., Wilson, R. K., Downing, J. R., & Mullighan, C. G. (2012). The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature, 481, 157–163.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Zweidler-McKay, P. A., He, Y., Xu, L., Rodriguez, C. G., Karnell, F. G., Carpenter, A. C., Aster, J. C., Allman, D., & Pear, W. S. (2005). Notch signaling is a potent inducer of growth arrest and apoptosis in a wide range of B-cell malignancies. Blood, 106, 3898–3906.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC)LausanneSwitzerland

Personalised recommendations