Notch Ligands in Hematopoietic Stem Cell Production

  • Anna BigasEmail author
  • Cristina Ruiz-Herguido
  • Rosa Aligué
  • Lluís Espinosa


Hematopoietic transplantation has been a therapeutic option for leukemia patients for more than 50 years. Its possible applications have expanded in recent years with the success of gene therapy and gene-editing approaches that can now offer promising treatments for monogenic incurable diseases. Nowadays, the main limitation to apply this therapy is the availability of compatible donor stem cells and the complications of hematopoietic recovery, which could be attenuated by the recent breakthrough discoveries on the field of reprogramming. However, our knowledge how to produce hematopoietic stem cells is still limited to safely use this technology. In this review, we covered the key elements that should be considered for a better understanding of hematopoietic cell production in the embryo proper or from in vitro protocols and how Notch participates in this process.


Embryonic hematopoiesis HSC AGM Fetal liver Bone marrow ES cells 



Funding to AB is from the Worldwide Cancer Research (formerly AICR, 13-0064), Fundación AECC (Cancer infantil), Ministerio de Economía y Competitividad (SAF2013-40922-R and SAF2016-75613-R), Red Temática de Investigación Cooperativa en Cáncer (RD12/0036/0054), and Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2014SGR-124).


  1. 1.
    Acar, M., Kocherlakota, K. S., Murphy, M. M., Peyer, J. G., Oguro, H., Inra, C. N., Jaiyeola, C., Zhao, Z., Luby-Phelps, K., & Morrison, S. J. (2015). Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature, 526, 126–130.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ayllon, V., Bueno, C., Ramos-Mejia, V., Navarro-Montero, O., Prieto, C., Real, P. J., Romero, T., Garcia-Leon, M. J., Toribio, M. L., Bigas, A., & Menendez, P. (2015). The Notch ligand DLL4 specifically marks human hematoendothelial progenitors and regulates their hematopoietic fate. Leukemia, 29, 1741–1753.PubMedCrossRefGoogle Scholar
  3. 3.
    Batta, K., Florkowska, M., Kouskoff, V., & Lacaud, G. (2014). Direct reprogramming of murine fibroblasts to hematopoietic progenitor cells. Cell Reports, 9, 1871–1884.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Becker, A. J., Mc, C. E., & Till, J. E. (1963). Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature, 197, 452–454.PubMedCrossRefGoogle Scholar
  5. 5.
    Begg, S. K., Radley, J. M., Pollard, J. W., Chisholm, O. T., Stanley, E. R., & Bertoncello, I. (1993). Delayed hematopoietic development in osteopetrotic (op/op) mice. The Journal of Experimental Medicine, 177, 237–242.PubMedCrossRefGoogle Scholar
  6. 6.
    Bellavia, D., Campese, A. F., Alesse, E., Vacca, A., Felli, M. P., Balestri, A., Stoppacciaro, A., Tiveron, C., Tatangelo, L., Giovarelli, M., et al. (2000). Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in notch3 transgenic mice. The EMBO Journal, 19, 3337–3348.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bertrand, J. Y., Cisson, J. L., Stachura, D. L., & Traver, D. (2010). Notch signaling distinguishes 2 waves of definitive hematopoiesis in the zebrafish embryo. Blood, 115, 2777–2783.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bertrand, J. Y., Giroux, S., Golub, R., Klaine, M., Jalil, A., Boucontet, L., Godin, I., & Cumano, A. (2005). Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proceedings of the National Academy of Sciences of the United States of America, 102, 134–139.PubMedCrossRefGoogle Scholar
  9. 9.
    Bigas, A., & Espinosa, L. (2012). Hematopoietic stem cells: To be or Notch to be. Blood, 119, 3226–3235.PubMedCrossRefGoogle Scholar
  10. 10.
    Boisset, J. C., Clapes, T., Klaus, A., Papazian, N., Onderwater, J., Mommaas-Kienhuis, M., Cupedo, T., & Robin, C. (2015). Progressive maturation toward hematopoietic stem cells in the mouse embryo aorta. Blood, 125, 465–469.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bowie, M. B., Kent, D. G., Dykstra, B., McKnight, K. D., McCaffrey, L., Hoodless, P. A., & Eaves, C. J. (2007). Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proceedings of the National Academy of Sciences of the United States of America, 104, 5878–5882.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bruns, I., Lucas, D., Pinho, S., Ahmed, J., Lambert, M. P., Kunisaki, Y., Scheiermann, C., Schiff, L., Poncz, M., Bergman, A., & Frenette, P. S. (2014). Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nature Medicine, 20, 1315–1320.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Buonamici, S., Trimarchi, T., Ruocco, M. G., Reavie, L., Cathelin, S., Mar, B. G., Klinakis, A., Lukyanov, Y., Tseng, J. C., Sen, F., et al. (2009). CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature, 459, 1000–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Burns, C. E., Traver, D., Mayhall, E., Shepard, J. L., & Zon, L. I. (2005). Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes & Development, 19, 2331–2342.CrossRefGoogle Scholar
  15. 15.
    Calvi, L. M., Adams, G. B., Weibrecht, K. W., Weber, J. M., Olson, D. P., Knight, M. C., Martin, R. P., Schipani, E., Divieti, P., Bringhurst, F. R., et al. (2003). Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425, 841–846.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Charbord, P., Pouget, C., Binder, H., Dumont, F., Stik, G., Levy, P., Allain, F., Marchal, C., Richter, J., Uzan, B., et al. (2014). A systems biology approach for defining the molecular framework of the hematopoietic stem cell niche. Cell Stem Cell, 15, 376–391.PubMedCrossRefGoogle Scholar
  17. 17.
    Chen, M. J., Li, Y., De Obaldia, M. E., Yang, Q., Yzaguirre, A. D., Yamada-Inagawa, T., Vink, C. S., Bhandoola, A., Dzierzak, E., & Speck, N. A. (2011). Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells. Cell Stem Cell, 9, 541–552.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Coumailleau, F., Furthauer, M., Knoblich, J. A., & Gonzalez-Gaitan, M. (2009). Directional Delta and Notch trafficking in Sara endosomes during asymmetric cell division. Nature, 458, 1051–1055.PubMedCrossRefGoogle Scholar
  19. 19.
    Dahlberg, A., Delaney, C., & Bernstein, I. D. (2011). Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood, 117, 6083–6090.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Delaney, C., Heimfeld, S., Brashem-Stein, C., Voorhies, H., Manger, R. L., & Bernstein, I. D. (2010). Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nature Medicine, 16, 232–236.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ditadi, A., Sturgeon, C. M., Tober, J., Awong, G., Kennedy, M., Yzaguirre, A. D., Azzola, L., Ng, E. S., Stanley, E. G., French, D. L., et al. (2015). Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages. Nature Cell Biology, 17, 580–591.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Dzierzak, E., & Speck, N. A. (2008). Of lineage and legacy: The development of mammalian hematopoietic stem cells. Nature Immunology, 9, 129–136.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ellisen, L. W., Bird, J., West, D. C., Soreng, A. L., Reynolds, T. C., Smith, S. D., & Sklar, J. (1991). TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell, 66, 649–661.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Espinosa, L., Cathelin, S., D’Altri, T., Trimarchi, T., Statnikov, A., Guiu, J., Rodilla, V., Ingles-Esteve, J., Nomdedeu, J., Bellosillo, B., et al. (2010). The Notch/Hes1 pathway sustains NF-kappaB activation through CYLD repression in T cell leukemia. Cancer Cell, 18, 268–281.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.PubMedCrossRefGoogle Scholar
  26. 26.
    Ferrando, A. (2010). NOTCH mutations as prognostic markers in T-ALL. Leukemia, 24, 2003–2004.PubMedCrossRefGoogle Scholar
  27. 27.
    Ferrebee, J. W., Lochte, H. L., Jr., Jaretzki, A., 3rd, Sahler, O. D., & Thomas, E. D. (1958). Successful marrow homograft in the dog after radiation. Surgery, 43, 516–520.PubMedGoogle Scholar
  28. 28.
    Fitch, S. R., Kimber, G. M., Wilson, N. K., Parker, A., Mirshekar-Syahkal, B., Gottgens, B., Medvinsky, A., Dzierzak, E., & Ottersbach, K. (2012). Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell Stem Cell, 11, 554–566.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Fleming, R. J., Gu, Y., & Hukriede, N. A. (1997). Serrate-mediated activation of Notch is specifically blocked by the product of the gene fringe in the dorsal compartment of the Drosophila wing imaginal disc. Development, 124, 2973–2981.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Gama-Norton, L., Ferrando, E., Ruiz-Herguido, C., Liu, Z., Guiu, J., Islam, A. B., Lee, S. U., Yan, M., Guidos, C. J., Lopez-Bigas, N., et al. (2015). Notch signal strength controls cell fate in the haemogenic endothelium. Nature Communications, 6, 8510.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Gekas, C., Dieterlen-Lievre, F., Orkin, S. H., & Mikkola, H. K. (2005). The placenta is a niche for hematopoietic stem cells. Developmental Cell, 8, 365–375.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Gerhardt, D. M., Pajcini, K. V., D’Altri, T., Tu, L., Jain, R., Xu, L., Chen, M. J., Rentschler, S., Shestova, O., Wertheim, G. B., et al. (2014). The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells. Genes & Development, 28, 576–593.CrossRefGoogle Scholar
  33. 33.
    Gonzalez-Garcia, S., Garcia-Peydro, M., Martin-Gayo, E., Ballestar, E., Esteller, M., Bornstein, R., de la Pompa, J. L., Ferrando, A. A., & Toribio, M. L. (2009). CSL-MAML-dependent Notch1 signaling controls T lineage-specific IL-7R{alpha} gene expression in early human thymopoiesis and leukemia. The Journal of Experimental Medicine, 206, 779–791.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Guiu, J., Bergen, D. J., De Pater, E., Islam, A. B., Ayllon, V., Gama-Norton, L., Ruiz-Herguido, C., Gonzalez, J., Lopez-Bigas, N., Menendez, P., et al. (2014). Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence. The Journal of Experimental Medicine, 211, 2411–2423.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Guiu, J., Shimizu, R., D’Altri, T., Fraser, S. T., Hatakeyama, J., Bresnick, E. H., Kageyama, R., Dzierzak, E., Yamamoto, M., Espinosa, L., & Bigas, A. (2013). Hes repressors are essential regulators of hematopoietic stem cell development downstream of Notch signaling. The Journal of Experimental Medicine, 210, 71–84.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hadland, B. K., Huppert, S. S., Kanungo, J., Xue, Y., Jiang, R., Gridley, T., Conlon, R. A., Cheng, A. M., Kopan, R., & Longmore, G. D. (2004). A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood, 104, 3097–3105.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hadland, B. K., Varnum-Finney, B., Poulos, M. G., Moon, R. T., Butler, J. M., Rafii, S., & Bernstein, I. D. (2015). Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros-derived hematopoietic stem cells. The Journal of Clinical Investigation, 125, 2032–2045.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ivanovs, A., Rybtsov, S., Anderson, R. A., Turner, M. L., & Medvinsky, A. (2014). Identification of the niche and phenotype of the first human hematopoietic stem cells. Stem Cell Reports, 2, 449–456.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ivanovs, A., Rybtsov, S., Welch, L., Anderson, R. A., Turner, M. L., & Medvinsky, A. (2011). Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. The Journal of Experimental Medicine, 208, 2417–2427.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Katayama, Y., Battista, M., Kao, W. M., Hidalgo, A., Peired, A. J., Thomas, S. A., & Frenette, P. S. (2006). Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell, 124, 407–421.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Kent, D. G., Copley, M. R., Benz, C., Wohrer, S., Dykstra, B. J., Ma, E., Cheyne, J., Zhao, Y., Bowie, M. B., Zhao, Y., et al. (2009). Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood, 113, 6342–6350.PubMedCrossRefGoogle Scholar
  42. 42.
    Kiel, M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C., & Morrison, S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.PubMedCrossRefGoogle Scholar
  43. 43.
    Kim, J. H., Thimmulappa, R. K., Kumar, V., Cui, W., Kumar, S., Kombairaju, P., Zhang, H., Margolick, J., Matsui, W., Macvittie, T., et al. (2014). NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation. The Journal of Clinical Investigation, 124, 730–741.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Klinakis, A., Lobry, C., Abdel-Wahab, O., Oh, P., Haeno, H., Buonamici, S., van De Walle, I., Cathelin, S., Trimarchi, T., Araldi, E., et al. (2011). A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature, 473, 230–233.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kressmann, S., Campos, C., Castanon, I., Furthauer, M., & Gonzalez-Gaitan, M. (2015). Directional Notch trafficking in Sara endosomes during asymmetric cell division in the spinal cord. Nature Cell Biology, 17, 333–339.PubMedCrossRefGoogle Scholar
  46. 46.
    Kumano, K., Chiba, S., Kunisato, A., Sata, M., Saito, T., Nakagami-Yamaguchi, E., Yamaguchi, T., Masuda, S., Shimizu, K., Takahashi, T., et al. (2003). Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity, 18, 699–711.PubMedCrossRefGoogle Scholar
  47. 47.
    Kunisaki, Y., Bruns, I., Scheiermann, C., Ahmed, J., Pinho, S., Zhang, D., Mizoguchi, T., Wei, Q., Lucas, D., Ito, K., et al. (2013). Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 502, 637–643.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    LeBon, L., Lee, T. V., Sprinzak, D., Jafar-Nejad, H., & Elowitz, M. B. (2014). Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states. eLife, 3, e02950.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lis, R., Karrasch, C. C., Poulos, M. G., Kunar, B., Redmond, D., Duran, J. G. B., Badwe, C. R., Schachterle, W., Ginsberg, M., Xiang, J., et al. (2017). Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature, 545, 439–445.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Liu, Z., Brunskill, E., Boyle, S., Chen, S., Turkoz, M., Guo, Y., Grant, R., & Kopan, R. (2015). Second-generation Notch1 activity-trap mouse line (N1IP::CreHI) provides a more comprehensive map of cells experiencing Notch1 activity. Development, 142, 1193–1202.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lizama, C. O., Hawkins, J. S., Schmitt, C. E., Bos, F. L., Zape, J. P., Cautivo, K. M., Borges Pinto, H., Rhyner, A. M., Yu, H., Donohoe, M. E., et al. (2015). Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition. Nature Communications, 6, 7739.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lo Celso, C., Fleming, H. E., Wu, J. W., Zhao, C. X., Miake-Lye, S., Fujisaki, J., Cote, D., Rowe, D. W., Lin, C. P., & Scadden, D. T. (2009). Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature, 457, 92–96.PubMedCrossRefGoogle Scholar
  53. 53.
    Maillard, I., Koch, U., Dumortier, A., Shestova, O., Xu, L., Sai, H., Pross, S. E., Aster, J. C., Bhandoola, A., Radtke, F., & Pear, W. S. (2008). Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell, 2, 356–366.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Mancini, S. J., Mantei, N., Dumortier, A., Suter, U., MacDonald, H. R., & Radtke, F. (2005). Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood, 105, 2340–2342.PubMedCrossRefGoogle Scholar
  55. 55.
    McGarvey, A. C., Rybtsov, S., Souilhol, C., Tamagno, S., Rice, R., Hills, D., Godwin, D., Rice, D., Tomlinson, S. R., & Medvinsky, A. (2017). A molecular roadmap of the AGM region reveals BMPER as a novel regulator of HSC maturation. The Journal of Experimental Medicine, 214, 3731–3751.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    McKinney-Freeman, S., Cahan, P., Li, H., Lacadie, S. A., Huang, H. T., Curran, M., Loewer, S., Naveiras, O., Kathrein, K. L., Konantz, M., et al. (2012). The transcriptional landscape of hematopoietic stem cell ontogeny. Cell Stem Cell, 11, 701–714.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Medvinsky, A., & Dzierzak, E. (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell, 86, 897–906.PubMedCrossRefGoogle Scholar
  58. 58.
    Mendez-Ferrer, S., Michurina, T. V., Ferraro, F., Mazloom, A. R., Macarthur, B. D., Lira, S. A., Scadden, D. T., Ma’ayan, A., Enikolopov, G. N., & Frenette, P. S. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466, 829–834.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Mercher, T., Cornejo, M. G., Sears, C., Kindler, T., Moore, S. A., Maillard, I., Pear, W. S., Aster, J. C., & Gilliland, D. G. (2008). Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell, 3, 314–326.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Nostro, M. C., Cheng, X., Keller, G. M., & Gadue, P. (2008). Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell, 2, 60–71.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Oh, P., Lobry, C., Gao, J., Tikhonova, A., Loizou, E., Manent, J., van Handel, B., Ibrahim, S., Greve, J., Mikkola, H., et al. (2013). In vivo mapping of notch pathway activity in normal and stress hematopoiesis. Cell Stem Cell, 13, 190–204.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Oostendorp, R. A., Harvey, K., & Dzierzak, E. A. (2005). Generation of murine stromal cell lines: Models for the microenvironment of the embryonic mouse aorta-gonads-mesonephros region. Methods in Molecular Biology, 290, 163–172.PubMedGoogle Scholar
  63. 63.
    Ottersbach, K., & Dzierzak, E. (2005). The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Developmental Cell, 8, 377–387.PubMedCrossRefGoogle Scholar
  64. 64.
    Palomero, T., Sulis, M. L., Cortina, M., Real, P. J., Barnes, K., Ciofani, M., Caparros, E., Buteau, J., Brown, K., Perkins, S. L., et al. (2007). Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nature Medicine, 13, 1203–1210.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Pear, W. S., Aster, J. C., Scott, M. L., Hasserjian, R. P., Soffer, B., Sklar, J., & Baltimore, D. (1996). Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated notch alleles. The Journal of Experimental Medicine, 183, 2283–2291.PubMedCrossRefGoogle Scholar
  66. 66.
    Pelullo, M., Quaranta, R., Talora, C., Checquolo, S., Cialfi, S., Felli, M. P., te Kronnie, G., Borga, C., Besharat, Z. M., Palermo, R., et al. (2014). Notch3/Jagged1 circuitry reinforces notch signaling and sustains T-ALL. Neoplasia, 16, 1007–1017.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Pereira, C. F., Chang, B., Qiu, J., Niu, X., Papatsenko, D., Hendry, C. E., Clark, N. R., Nomura-Kitabayashi, A., Kovacic, J. C., Ma’ayan, A., et al. (2013). Induction of a hemogenic program in mouse fibroblasts. Cell Stem Cell, 13, 205–218.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Pouget, C., Gautier, R., Teillet, M. A., & Jaffredo, T. (2006). Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development, 133, 1013–1022.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Pouget, C., Pottin, K., & Jaffredo, T. (2008). Sclerotomal origin of vascular smooth muscle cells and pericytes in the embryo. Developmental Biology, 315, 437–447.PubMedCrossRefGoogle Scholar
  70. 70.
    Radtke, F., Wilson, A., Stark, G., Bauer, M., van Meerwijk, J., MacDonald, H. R., & Aguet, M. (1999). Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity, 10, 547–558.PubMedCrossRefGoogle Scholar
  71. 71.
    Rhodes, K. E., Gekas, C., Wang, Y., Lux, C. T., Francis, C. S., Chan, D. N., Conway, S., Orkin, S. H., Yoder, M. C., & Mikkola, H. K. (2008). The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell, 2, 252–263.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Robert-Moreno, A., Espinosa, L., de la Pompa, J. L., & Bigas, A. (2005). RBPjkappa-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development, 132, 1117–1126.PubMedCrossRefGoogle Scholar
  73. 73.
    Robert-Moreno, A., Espinosa, L., Sanchez, M. J., de la Pompa, J. L., & Bigas, A. (2007). The notch pathway positively regulates programmed cell death during erythroid differentiation. Leukemia, 21, 1496–1503.PubMedCrossRefGoogle Scholar
  74. 74.
    Robert-Moreno, A., Guiu, J., Ruiz-Herguido, C., Lopez, M. E., Ingles-Esteve, J., Riera, L., Tipping, A., Enver, T., Dzierzak, E., Gridley, T., et al. (2008). Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1. The EMBO Journal, 27, 1886–1895.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Robin, C., Bollerot, K., Mendes, S., Haak, E., Crisan, M., Cerisoli, F., Lauw, I., Kaimakis, P., Jorna, R., Vermeulen, M., et al. (2009). Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell, 5, 385–395.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ruiz-Herguido, C., Guiu, J., D’Altri, T., Ingles-Esteve, J., Dzierzak, E., Espinosa, L., & Bigas, A. (2012). Hematopoietic stem cell development requires transient Wnt/beta-catenin activity. The Journal of Experimental Medicine, 209, 1457–1468.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sandler, V. M., Lis, R., Liu, Y., Kedem, A., James, D., Elemento, O., Butler, J. M., Scandura, J. M., & Rafii, S. (2014). Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature, 511, 312–318.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Shawber, C. J., & Kitajewski, J. (2004). Notch function in the vasculature: Insights from zebrafish, mouse and man. BioEssays, 26, 225–234.PubMedCrossRefGoogle Scholar
  79. 79.
    Souilhol, C., Lendinez, J. G., Rybtsov, S., Murphy, F., Wilson, H., Hills, D., Batsivari, A., Binagui-Casas, A., McGarvey, A. C., MacDonald, H. R., et al. (2016). Developing HSCs become Notch independent by the end of maturation in the AGM region. Blood, 128, 1567–1577.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Sturgeon, C. M., Ditadi, A., Awong, G., Kennedy, M., & Keller, G. (2014). Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nature Biotechnology, 32, 554–561.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Sugimura, R., Jha, D. K., Han, A., Soria-Valles, C., da Rocha, E. L., Lu, Y. F., Goettel, J. A., Serrao, E., Rowe, R. G., Malleshaiah, M., et al. (2017). Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature, 545, 432–438.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.PubMedCrossRefGoogle Scholar
  83. 83.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.PubMedCrossRefGoogle Scholar
  84. 84.
    Tran, I. T., Sandy, A. R., Carulli, A. J., Ebens, C., Chung, J., Shan, G. T., Radojcic, V., Friedman, A., Gridley, T., Shelton, A., et al. (2013). Blockade of individual Notch ligands and receptors controls graft-versus-host disease. The Journal of Clinical Investigation, 123, 1590–1604.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Travnickova, J., Tran Chau, V., Julien, E., Mateos-Langerak, J., Gonzalez, C., Lelievre, E., Lutfalla, G., Tavian, M., & Kissa, K. (2015). Primitive macrophages control HSPC mobilization and definitive haematopoiesis. Nature Communications, 6, 6227.PubMedCrossRefGoogle Scholar
  86. 86.
    Van de Walle, I., Waegemans, E., De Medts, J., De Smet, G., De Smedt, M., Snauwaert, S., Vandekerckhove, B., Kerre, T., Leclercq, G., Plum, J., et al. (2013). Specific Notch receptor-ligand interactions control human TCR-alphabeta/gammadelta development by inducing differential Notch signal strength. The Journal of Experimental Medicine, 210, 683–697.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Varnum-Finney, B., Brashem-Stein, C., & Bernstein, I. D. (2003). Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood, 101, 1784–1789.PubMedCrossRefGoogle Scholar
  88. 88.
    Varnum-Finney, B., Halasz, L. M., Sun, M., Gridley, T., Radtke, F., & Bernstein, I. D. (2011). Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. The Journal of Clinical Investigation, 121, 1207–1216.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Varnum-Finney, B., Xu, L., Brashem-Stein, C., Nourigat, C., Flowers, D., Bakkour, S., Pear, W. S., & Bernstein, I. D. (2000). Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive notch1 signaling. Nature Medicine, 6, 1278–1281.PubMedCrossRefGoogle Scholar
  90. 90.
    Walker, L., Carlson, A., Tan-Pertel, H. T., Weinmaster, G., & Gasson, J. (2001). The notch receptor and its ligands are selectively expressed during hematopoietic development in the mouse. Stem Cells, 19, 543–552.PubMedCrossRefGoogle Scholar
  91. 91.
    Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., Ebina, W., Mandal, P. K., Smith, Z. D., Meissner, A., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7, 618–630.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Wasteson, P., Johansson, B. R., Jukkola, T., Breuer, S., Akyurek, L. M., Partanen, J., & Lindahl, P. (2008). Developmental origin of smooth muscle cells in the descending aorta in mice. Development, 135, 1823–1832.PubMedCrossRefGoogle Scholar
  93. 93.
    Wendorff, A. A., Koch, U., Wunderlich, F. T., Wirth, S., Dubey, C., Bruning, J. C., MacDonald, H. R., & Radtke, F. (2010). Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation. Immunity, 33, 671–684.PubMedCrossRefGoogle Scholar
  94. 94.
    Weng, A. P., Ferrando, A. A., Lee, W., Morris, J. P. T., Silverman, L. B., Sanchez-Irizarry, C., Blacklow, S. C., Look, A. T., & Aster, J. C. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306, 269–271.PubMedCrossRefGoogle Scholar
  95. 95.
    Weng, A. P., Millholland, J. M., Yashiro-Ohtani, Y., Arcangeli, M. L., Lau, A., Wai, C., Del Bianco, C., Rodriguez, C. G., Sai, H., Tobias, J., et al. (2006). c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes & Development, 20, 2096–2109.CrossRefGoogle Scholar
  96. 96.
    Wiegreffe, C., Christ, B., Huang, R., & Scaal, M. (2007). Sclerotomal origin of smooth muscle cells in the wall of the avian dorsal aorta. Developmental Dynamics, 236, 2578–2585.PubMedCrossRefGoogle Scholar
  97. 97.
    Wynn, T. A., Chawla, A., & Pollard, J. W. (2013). Macrophage biology in development, homeostasis and disease. Nature, 496, 445–455.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Yang, L. T., Nichols, J. T., Yao, C., Manilay, J. O., Robey, E. A., & Weinmaster, G. (2005). Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Molecular Biology of the Cell, 16, 927–942.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Yao, D., Huang, Y., Huang, X., Wang, W., Yan, Q., Wei, L., Xin, W., Gerson, S., Stanley, P., Lowe, J. B., & Zhou, L. (2011). Protein O-fucosyltransferase 1 (Pofut1) regulates lymphoid and myeloid homeostasis through modulation of notch receptor ligand interactions. Blood, 117, 5652–5662.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W. G., Ross, J., Haug, J., Johnson, T., Feng, J. Q., et al. (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425, 836–841.PubMedCrossRefGoogle Scholar
  101. 101.
    Zhang, P., He, Q., Chen, D., Liu, W., Wang, L., Zhang, C., Ma, D., Li, W., Liu, B., & Liu, F. (2015). G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition. Cell Research, 25, 1093–1107.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Zhang, Y., Sandy, A. R., Wang, J., Radojcic, V., Shan, G. T., Tran, I. T., Friedman, A., Kato, K., He, S., Cui, S., et al. (2011). Notch signaling is a critical regulator of allogeneic CD4+ T-cell responses mediating graft-versus-host disease. Blood, 117, 299–308.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Zhou, B. O., Ding, L., & Morrison, S. J. (2015). Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1. eLife, 4, e05521.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zovein, A. C., Hofmann, J. J., Lynch, M., French, W. J., Turlo, K. A., Yang, Y., Becker, M. S., Zanetta, L., Dejana, E., Gasson, J. C., et al. (2008). Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell, 3, 625–636.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anna Bigas
    • 1
    Email author
  • Cristina Ruiz-Herguido
    • 1
  • Rosa Aligué
    • 2
  • Lluís Espinosa
    • 1
  1. 1.Program in Cancer Research, CIBERONC, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM)BarcelonaSpain
  2. 2.Department of Cell BiologyCIBERONC, Facultat de Medicina. Universitat de BarcelonaBarcelonaSpain

Personalised recommendations