Notch in Lung Cancer

  • Sara L. Sinicropi-Yao
  • Michael J. Koenig
  • David P. CarboneEmail author


Lung cancer is the deadliest malignancy in the world. The Notch signaling pathway plays an important role in both normal lung development and the pathobiology of lung cancer. By understanding the function of the Notch pathway in normal development, we can begin to appreciate the intricate role that it plays in lung cancer. The complexity of Notch signaling includes multiple Notch receptors and ligands, posttranslational modifications affecting Notch receptor function, and significant cross talk with other signaling pathways. Dysregulation of the Notch signaling pathway occurs in every type of lung cancer, but the specific role of the Notch pathway in the different subtypes of lung cancer is still unclear. There is evidence that Notch can act in a pro-tumorigenic manner under some circumstances and in an anti-tumorigenic manner under others. Notch can facilitate tumor growth and proliferation, apoptosis, cell differentiation, survival, immune response, angiogenesis, cancer stem cell biology, and chemoresistance. Understanding how Notch naturally usurps these mechanisms to promote or suppress tumors can provide new insights regarding therapeutic intervention while minimizing toxicity.


Lung cancer Notch signaling Cancer stem cell Tumor microenvironment Immune response Therapy 



We would like to thank Joseph Amann, Yung-Mae Yao, Susan Cole, and Rajeswara Arasada for the critical review of this manuscript. We would like to thank Mikhail Dikov for providing a schematic of Notch’s role in T cell maturation.


  1. 1.
    Radtke, F., Schweisguth, F., & Pear, W. (2005). The Notch ‘gospel’. EMBO Reports, 6(12), 1120–1125.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Gazave, E., et al. (2009). Origin and evolution of the Notch signalling pathway: An overview from eukaryotic genomes. BMC Evolutionary Biology, 9(1), 249.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Aster, J. C., Pear, W. S., & Blacklow, S. C. (2017). The varied roles of notch in cancer. Annual Review of Pathology: Mechanisms of Disease, 12, 245–275.CrossRefGoogle Scholar
  4. 4.
    Leiserson, M. D., et al. (2015). Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nature Genetics, 47(2), 106–114.PubMedCrossRefGoogle Scholar
  5. 5.
    George, J., et al. (2015). Comprehensive genomic profiles of small cell lung cancer. Nature, 524(7563), 47–53.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Westhoff, B., et al. (2009). Alterations of the Notch pathway in lung cancer. Proceedings of the National Academy of Sciences, 106(52), 22293–22298.CrossRefGoogle Scholar
  7. 7.
    Capaccione, K. M., & Pine, S. R. (2013). The Notch signaling pathway as a mediator of tumor survival. Carcinogenesis, 34(7), 1420–1430. p. bgt127.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Donnem, T., et al. (2010). Prognostic impact of Notch ligands and receptors in nonsmall cell lung cancer. Cancer, 116(24), 5676–5685.PubMedCrossRefGoogle Scholar
  9. 9.
    Baumgart, A., et al. (2015). Opposing role of Notch1 and Notch2 in a Kras G12D-driven murine non-small cell lung cancer model. Oncogene, 34(5), 578.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Licciulli, S., et al. (2013). Notch1 is required for Kras-induced lung adenocarcinoma and controls tumor cell survival via p53. Cancer Research, 73(19), 5974–5984.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Xu, X., et al. (2014). The cell of origin and subtype of K-Ras-induced lung tumors are modified by Notch and Sox2. Genes & Development, 28(17), 1929–1939.CrossRefGoogle Scholar
  12. 12.
    Duan, L., et al. (2006). Growth suppression induced by Notch1 activation involves Wnt—β-catenin down-regulation in human tongue carcinoma cells. Biology of the Cell, 98(8), 479–490.PubMedCrossRefGoogle Scholar
  13. 13.
    Radtke, F., Fasnacht, N., & MacDonald, H. R. (2010). Notch signaling in the immune system. Immunity, 32(1), 14–27.PubMedCrossRefGoogle Scholar
  14. 14.
    Nicolas, M., et al. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nature Genetics, 33(3), 416–421.CrossRefGoogle Scholar
  15. 15.
    Leong, K. G., & Karsan, A. (2006). Recent insights into the role of Notch signaling in tumorigenesis. Blood, 107(6), 2223–2233.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Espinoza, I., & Miele, L. (2013). Notch inhibitors for cancer treatment. Pharmacology & Therapeutics, 139(2), 95–110.CrossRefGoogle Scholar
  17. 17.
    Stanley, P., & Okajima, T. (2010). Chapter four-roles of glycosylation in Notch signaling. Current Topics in Developmental Biology, 92, 131–164.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shi, S., & Stanley, P. (2003). Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5234–5239.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Fernandez-Valdivia, R., et al. (2011). Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development, 138(10), 1925–1934.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Takeuchi, H., & Haltiwanger, R. S. (2014). Significance of glycosylation in Notch signaling. Biochemical and Biophysical Research Communications, 453(2), 235–242.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Andersson, E. R., & Lendahl, U. (2014). Therapeutic modulation of Notch signalling [mdash] are we there yet? Nature Reviews. Drug Discovery, 13(5), 357–378.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Le Bras, S., Loyer, N., & Le Borgne, R. (2011). The multiple facets of ubiquitination in the regulation of notch signaling pathway. Traffic, 12(2), 149–161.PubMedCrossRefGoogle Scholar
  23. 23.
    O’Neil, J., et al. (2007). FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. The Journal of Experimental Medicine, 204(8), 1813–1824.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Matsuno, K., et al. (2002). Involvement of a proline-rich motif and RING-H2 finger of Deltex in the regulation of Notch signaling. Development, 129(4), 1049–1059.PubMedGoogle Scholar
  25. 25.
    Matsuno, K., et al. (1995). Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats. Development, 121(8), 2633–2644.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Espinosa, L., et al. (2003). Phosphorylation by glycogen synthase kinase-3β down-regulates Notch activity, a link for Notch and Wnt pathways. Journal of Biological Chemistry, 278(34), 32227–32235.PubMedCrossRefGoogle Scholar
  27. 27.
    McGill, M. A., & McGlade, C. J. (2003). Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. Journal of Biological Chemistry, 278(25), 23196–23203.PubMedCrossRefGoogle Scholar
  28. 28.
    Housden, B. E., et al. (2013). Transcriptional dynamics elicited by a short pulse of notch activation involves feed-forward regulation by E (spl)/Hes genes. PLoS Genetics, 9(1), e1003162.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lamar, E., et al. (2001). Nrarp is a novel intracellular component of the Notch signaling pathway. Genes & Development, 15(15), 1885–1899.CrossRefGoogle Scholar
  30. 30.
    Yi, F., Amarasinghe, B., & Dang, T. P. (2013). Manic fringe inhibits tumor growth by suppressing Notch3 degradation in lung cancer. American Journal of Cancer Research, 3(5), 490–499.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Tsao, P.-N., et al. (2008). γ-secretase activation of Notch signaling regulates the balance of proximal and distal fates in progenitor cells of the developing lung. Journal of Biological Chemistry, 283(43), 29532–29544.PubMedCrossRefGoogle Scholar
  32. 32.
    Kong, Y., et al. (2004). Functional diversity of notch family genes in fetal lung development. American Journal of Physiology-Lung Cellular and Molecular Physiology, 286(5), L1075–L1083.PubMedCrossRefGoogle Scholar
  33. 33.
    Morimoto, M., et al. (2010). Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. Journal of Cell Science, 123(2), 213–224.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Morimoto, M., et al. (2012). Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development (Cambridge, England), 139(23), 4365–4373.CrossRefGoogle Scholar
  35. 35.
    Ito, T., et al. (2000). Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development, 127(18), 3913–3921.PubMedGoogle Scholar
  36. 36.
    Zhang, S., et al. (2013). Jagged1 is the major regulator of notch-dependent cell fate in proximal airways. Developmental Dynamics, 242(6), 678–686.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Lafkas, D., et al. (2015). Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung. Nature, 528(7580), 127–131.Google Scholar
  38. 38.
    Chapman, G., et al. (2011). Notch inhibition by the ligand DELTA-LIKE 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Human Molecular Genetics, 20(5), 905–916.CrossRefGoogle Scholar
  39. 39.
    Serth, K., et al. (2015). O-fucosylation of DLL3 is required for its function during somitogenesis. PLoS One, 10(4), e0123776.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Henke, R. M., et al. (2009). Ascl1 and Neurog2 form novel complexes and regulate Delta-like3 (Dll3) expression in the neural tube. Developmental Biology, 328(2), 529–540.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Augustyn, A., et al. (2014). ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers. Proceedings of the National Academy of Sciences, 111(41), 14788–14793.CrossRefGoogle Scholar
  42. 42.
    Saunders, L. R., et al. (2015). A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Science Translational Medicine, 7(302), 302ra136.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Guseh, J. S., et al. (2009). Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development, 136(10), 1751–1759.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Xu, K., et al. (2010). Lunatic Fringe-mediated Notch signaling is required for lung alveogenesis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 298(1), L45–L56.PubMedCrossRefGoogle Scholar
  45. 45.
    Dang, T. P., et al. (2003). Constitutive activation of Notch3 inhibits terminal epithelial differentiation in lungs of transgenic mice. Oncogene, 22(13), 1988–1997.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Carraro, G., & Stripp, B. R. (2015). A new Notch for lung stem cells. Cell Stem Cell, 16(2), 107–109.PubMedCrossRefGoogle Scholar
  47. 47.
    Pardo-Saganta, A., et al. (2015). Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations. Cell Stem Cell, 16(2), 184–197.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Vaughan, A. E., et al. (2015). Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature, 517(7536), 621–625.PubMedCrossRefGoogle Scholar
  49. 49.
    Randell, S. H. (2006). Airway epithelial stem cells and the pathophysiology of chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 3(8), 718–725.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Rock, J. R., Randell, S. H., & Hogan, B. L. (2010). Airway basal stem cells: A perspective on their roles in epithelial homeostasis and remodeling. Disease Models & Mechanisms, 3(9–10), 545–556.CrossRefGoogle Scholar
  51. 51.
    Shi, W., Chen, F., & Cardoso, W. V. (2009). Mechanisms of lung development: Contribution to adult lung disease and relevance to chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 6(7), 558–563.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Custodio, A., & Barriuso, J. (2014). What is the meaning of notch pathway and how can we selectively do the targeting? In Stem cells in Cancer: Should we believe or not? (pp. 23–65). Dordrecht: Springer.CrossRefGoogle Scholar
  53. 53.
    Dang, T. P., et al. (2000). Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. Journal of the National Cancer Institute, 92(16), 1355–1357.PubMedCrossRefGoogle Scholar
  54. 54.
    Sriuranpong, V., et al. (2001). Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Research, 61(7), 3200–3205.PubMedGoogle Scholar
  55. 55.
    Lim, J. S., et al. (2017). Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature, 545(7654), 360.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Allen, T. D., et al. (2011). Activated Notch1 induces lung adenomas in mice and cooperates with Myc in the generation of lung adenocarcinoma. Cancer Research, 71(18), 6010–6018.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kim, Y., et al. (2014). Integrative and comparative genomic analysis of lung squamous cell carcinomas in East Asian patients. Journal of Clinical Oncology, 32(2), 121–128.PubMedCrossRefGoogle Scholar
  58. 58.
    Brooks, Y. S., et al. (2014). Multifactorial ERβ and NOTCH1 control of squamous differentiation and cancer. The Journal of Clinical Investigation, 124(5), 2260.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hassan, W. A., et al. (2016). Evaluation of role of Notch3 signaling pathway in human lung cancer cells. Journal of Cancer Research and Clinical Oncology, 142(5), 981–993.PubMedCrossRefGoogle Scholar
  60. 60.
    Konishi, J., et al. (2007). γ-Secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Research, 67(17), 8051–8057.PubMedCrossRefGoogle Scholar
  61. 61.
    Haruki, N., et al. (2005). Dominant-negative Notch3 receptor inhibits mitogen-activated protein kinase pathway and the growth of human lung cancers. Cancer Research, 65(9), 3555–3561.PubMedCrossRefGoogle Scholar
  62. 62.
    Gordian, E., et al. (2017). Novel oncogenic function of Notch4 in Hispanic lung cancer. In AACR. Proceedings: AACR annual meeting 2017. Washington, DC.:
  63. 63.
    Cerami, E., et al. (2012). The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2, 401–404. PubMed: 22588877.CrossRefPubMedGoogle Scholar
  64. 64.
    Gao, J., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6(269), pl1.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ding, L., et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455(7216), 1069–1075.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Network, C. G. A. R. (2012). Comprehensive genomic characterization of squamous cell lung cancers. Nature, 489(7417), 519–525.CrossRefGoogle Scholar
  67. 67.
    Barse, L., & Bocchetta, M. (2015). Non-small-cell lung carcinoma: Role of the Notch signaling pathway. Lung Cancer (Auckl), 6, 43–53.Google Scholar
  68. 68.
    Society, A. C. Lung cancer (Non-Small Cell): What is non-small cell lung cancer. 2016 03/04/2015 12 January 2016]. Available from:
  69. 69.
    van Meerbeeck, J. P., Fennell, D. A., & De Ruysscher, D. K. (2011). Small-cell lung cancer. The Lancet, 378(9804), 1741–1755.CrossRefGoogle Scholar
  70. 70.
    Kunnimalaiyaan, M., & Chen, H. (2007). Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors. The Oncologist, 12(5), 535–542.PubMedCrossRefGoogle Scholar
  71. 71.
    Sriuranpong, V., et al. (2002). Notch signaling induces rapid degradation of achaete-scute homolog 1. Molecular and Cellular Biology, 22(9), 3129–3139.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Rudin, C. M., et al. (2012). Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nature Genetics, 44(10), 1111–1116.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Peifer, M., et al. (2012). Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genetics, 44(10), 1104–1110.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Wang, N. J., et al. (2011). Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proceedings of the National Academy of Sciences, 108(43), 17761–17766.CrossRefGoogle Scholar
  75. 75.
    Agrawal, N., et al. (2011). Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science, 333(6046), 1154–1157.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Stransky, N., et al. (2011). The mutational landscape of head and neck squamous cell carcinoma. Science, 333(6046), 1157–1160.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Guo, L., et al. (2015). Roles of NOTCH1 as a therapeutic target and a biomarker for lung cancer: Controversies and perspectives. Disease Markers, 2015, 520590.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Yuan, X., et al. (2015). Meta-analysis reveals the correlation of Notch signaling with non-small cell lung cancer progression and prognosis. Scientific Reports, 5, 10338.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Jiang, X., et al. (2007). Expression and significance of Notch1, Jagged1 and VEGF in human non-small cell lung cancer. Zhong nan da xue xue bao. Yi xue ban= Journal of Central South University. Medical Sciences, 32(6), 1031–1036.PubMedGoogle Scholar
  80. 80.
    Andersen, S., et al. (2011). Correlation and coexpression of HIFs and NOTCH markers in NSCLC. Anticancer Research, 31(5), 1603–1606.PubMedGoogle Scholar
  81. 81.
    Mariscal, J., et al. (2016). Molecular profiling of circulating tumour cells identifies notch1 as a principal regulator in advanced non-small cell lung cancer. Scientific Reports, 6, 37820.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Chen, C.-Y., et al. (2017). Expression of notch gene and its impact on survival of patients with resectable non-small cell lung cancer. Journal of Cancer, 8(7), 1292.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Sherry, S. T., et al. (2001). dbSNP: The NCBI database of genetic variation. Nucleic Acids Research, 29(1), 308–311.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Bollig-Fischer, A., et al. (2015). Racial diversity of actionable mutations in non–small cell lung cancer. Journal of Thoracic Oncology, 10(2), 250–255.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Lee, S. Y., et al. (2017). A functional polymorphism in DTX1 gene of notch pathway predicts the prognosis of surgically resected non-small cell lung cancer. AACR Proceedings: AACR annual meeting 2017; Washington, DC
  86. 86.
    Quan, X., et al. (2017). Single nucleotide polymorphism rs3124599 in Notch1 is associated with the risk of lung cancer in northeast Chinese non-smoking females. Oncotarget, 8(19), 31180.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Xu, K., Moghal, N., & Egan, S. E. (2012). Notch signaling in lung development and disease. In Notch signaling in embryology and Cancer (pp. 89–98). Springer, New York, NY.Google Scholar
  88. 88.
    Zheng, Y., et al. (2013). A rare population of CD24+ ITGB4+ Notch hi cells drives tumor propagation in NSCLC and requires Notch3 for self-renewal. Cancer Cell, 24(1), 59–74.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Arasada, R. R., et al. (2014). EGFR blockade enriches for lung cancer stem–like cells through Notch3-dependent signaling. Cancer Research, 74(19), 5572–5584.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Justilien, V., et al. (2012). Matrix metalloproteinase-10 is required for lung cancer stem cell maintenance, tumor initiation and metastatic potential. PLoS One, 7(4), e35040.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lefort, K., & Dotto, G. P. (2004). Notch signaling in the integrated control of keratinocyte growth/differentiation and tumor suppression. Seminars in Cancer Biology, 14 (5), 374–386. Academic Press.Google Scholar
  92. 92.
    Lowell, S., et al. (2000). Stimulation of human epidermal differentiation by Delta–Notch signalling at the boundaries of stem-cell clusters. Current Biology, 10(9), 491–500.PubMedCrossRefGoogle Scholar
  93. 93.
    Rangarajan, A., et al. (2001). Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. The EMBO Journal, 20(13), 3427–3436.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Li, L., Sheehan, C., & Ross, J. (2009). Notch signaling in non small cell lung cancers (NSCLC) is associated with squamous differentiation and favorable clinical outcome. Laboratory Investigation. Nature Publishing Group 75 varick st, 9TH FLR, New York, NY 10013-1917 USA.Google Scholar
  95. 95.
    Schwartz, A. G., et al. (2007). Reproductive factors, hormone use, estrogen receptor expression and risk of non–small-cell lung cancer in women. Journal of Clinical Oncology, 25(36), 5785–5792.PubMedCrossRefGoogle Scholar
  96. 96.
    Schwartz, A. G., et al. (2005). Nuclear estrogen receptor β in lung cancer: Expression and survival differences by sex. Clinical Cancer Research, 11(20), 7280–7287.PubMedCrossRefGoogle Scholar
  97. 97.
    Skov, B. G., Fischer, B. M., & Pappot, H. (2008). Oestrogen receptor β over expression in males with non-small cell lung cancer is associated with better survival. Lung Cancer, 59(1), 88–94.PubMedCrossRefGoogle Scholar
  98. 98.
    Zhang, M., et al. (2016). Does Notch play a tumor suppressor role across diverse squamous cell carcinomas? Cancer Medicine, 5(8), 2048–2060.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Wael, H., et al. (2014). Notch1 signaling controls cell proliferation, apoptosis and differentiation in lung carcinoma. Lung Cancer, 85(2), 131–140.CrossRefGoogle Scholar
  100. 100.
    Zheng, Q., et al. (2007). Notch signaling inhibits growth of the human lung adenocarcinoma cell line A549. Oncology Reports, 17(4), 847–852.PubMedGoogle Scholar
  101. 101.
    Baumgart, A., et al. (2010). ADAM17 regulates epidermal growth factor receptor expression through the activation of Notch1 in non–small cell lung cancer. Cancer Research, 70(13), 5368–5378.PubMedCrossRefGoogle Scholar
  102. 102.
    Meng, X., & Yu, J. (2012). Implementation of hypoxia measurement into lung cancer therapy. Lung Cancer, 75(2), 146–150.PubMedCrossRefGoogle Scholar
  103. 103.
    Graves, E. E., et al. (2010). Hypoxia in models of lung cancer: Implications for targeted therapeutics. Clinical Cancer Research, 16(19), 4843–4852.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Le, Q.-T., et al. (2006). An evaluation of tumor oxygenation and gene expression in patients with early stage non–small cell lung cancers. Clinical Cancer Research, 12(5), 1507–1514.PubMedCrossRefGoogle Scholar
  105. 105.
    Graves, E. E., Maity, A., & Le, Q.-T. (2010). The tumor microenvironment in non–small-cell lung cancer. Seminars in Radiation Oncology, 20(3), 156–163. WB Saunders.Google Scholar
  106. 106.
    Mees, G., et al. (2009). Molecular imaging of hypoxia with radiolabelled agents. European Journal of Nuclear Medicine and Molecular Imaging, 36(10), 1674–1686.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Vikram, D. S., Zweier, J. L., & Kuppusamy, P. (2007). Methods for noninvasive imaging of tissue hypoxia. Antioxidants & Redox Signaling, 9(10), 1745–1756.CrossRefGoogle Scholar
  108. 108.
    Chen, Y., et al. (2007). Oxygen concentration determines the biological effects of NOTCH-1 signaling in adenocarcinoma of the lung. Cancer Research, 67(17), 7954–7959.PubMedCrossRefGoogle Scholar
  109. 109.
    Gustafsson, M. V., et al. (2005). Hypoxia requires notch signaling to maintain the undifferentiated cell state. Developmental Cell, 9(5), 617–628.PubMedCrossRefGoogle Scholar
  110. 110.
    Eliasz, S., et al. (2010). Notch-1 stimulates survival of lung adenocarcinoma cells during hypoxia by activating the IGF-1R pathway. Oncogene, 29(17), 2488–2498.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Han, Y. H., et al. (2008). Antimycin A as a mitochondrial electron transport inhibitor prevents the growth of human lung cancer A549 cells. Oncology Reports, 20(3), 689–693.PubMedGoogle Scholar
  112. 112.
    Goodwin, J., et al. (2017). The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition. Nature Communications, 8, 15503.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Peiris-Pagès, M., et al. (2016). Cancer stem cell metabolism. Breast Cancer Research, 18(1), 55.PubMedCrossRefGoogle Scholar
  114. 114.
    Mazzone, M., et al. (2010). Dose-dependent induction of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells. Proceedings of the National Academy of Sciences, 107(11), 5012–5017.CrossRefGoogle Scholar
  115. 115.
    Miele, L., Golde, T., & Osborne, B. (2006). Notch signaling in cancer. Current Molecular Medicine, 6(8), 905–918.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Bachireddy, P., Rakhra, K., & Felsher, D. (2012). Immunology in the clinic review series; focus on cancer: Multiple roles for the immune system in oncogene addiction. Clinical & Experimental Immunology, 167(2), 188–194.CrossRefGoogle Scholar
  117. 117.
    Rakhra, K., et al. (2010). CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell, 18(5), 485–498.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Odunsi, K., & Old, L. J. (2007). Tumor infiltrating lymphocytes: Indicators of tumor-related immune responses. Cancer Immunity., 7(3).
  119. 119.
    Bailis, W., et al. (2013). Notch simultaneously orchestrates multiple helper T cell programs independently of cytokine signals. Immunity, 39(1), 148–159.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Xu, H., et al. (2012). Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nature Immunology, 13(7), 642–650.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Xu, J., et al. (2015). NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation. The Journal of Clinical Investigation, 125(4), 1579.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Sauma, D., et al. (2012). Notch signalling regulates cytokine production by CD8+ and CD4+ T cells. Scandinavian Journal of Immunology, 75(4), 389–400.CrossRefGoogle Scholar
  123. 123.
    Kassner, N., et al. (2010). Cutting edge: Plasmacytoid dendritic cells induce IL-10 production in T cells via the Delta-like-4/Notch axis. The Journal of Immunology, 184(2), 550–554.PubMedCrossRefGoogle Scholar
  124. 124.
    Yvon, E. S., et al. (2003). Overexpression of the Notch ligand, Jagged-1, induces alloantigen-specific human regulatory T cells. Blood, 102(10), 3815–3821.PubMedCrossRefGoogle Scholar
  125. 125.
    Delaney, C., et al. (2005). Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood, 106(8), 2693–2699.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Dorsch, M., et al. (2002). Ectopic expression of Delta4 impairs hematopoietic development and leads to lymphoproliferative disease. Blood, 100(6), 2046–2055.PubMedGoogle Scholar
  127. 127.
    Koch, U., et al. (2008). Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. The Journal of Experimental Medicine, 205(11), 2515–2523.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Huang, Y., et al. (2011). Resuscitating cancer immunosurveillance: Selective stimulation of DLL1-Notch signaling in T cells rescues T cell function and inhibits tumor growth. Cancer Research, 71(19), 6122–6131.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Shanker, A., et al. (2014). Cancer therapy by resuscitating Notch immune surveillance. Journal for Immunotherapy of Cancer, 2(Suppl 1), O1.PubMedCentralCrossRefPubMedGoogle Scholar
  130. 130.
    Ladi, E., et al. (2005). The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. The Journal of Cell Biology, 170(6), 983–992.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Amsen, D., Antov, A., & Flavell, R. A. (2009). The different faces of Notch in T-helper-cell differentiation. Nature Reviews. Immunology, 9(2), 116–124.PubMedCrossRefGoogle Scholar
  132. 132.
    Keerthivasan, S., Suleiman, R., Lawlor, R., Roderick, J., Bates, T., Minter, L., … & Miele, L. (2011). Notch signaling regulates mouse and human Th17 differentiation. The Journal of Immunology, 1003658.Google Scholar
  133. 133.
    Sierra, R. A., et al. (2014). Rescue of Notch 1 signaling in antigen-specific CD8+ T cells overcomes tumor-induced T cell suppression and enhances immunotherapy in cancer. Cancer Immunology Research, 2(8), 800–811.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Radtke, F., et al. (1999). Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity, 10(5), 547–558.CrossRefGoogle Scholar
  135. 135.
    Pear, W. S., et al. (1996). Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. The Journal of Experimental Medicine, 183(5), 2283–2291.CrossRefGoogle Scholar
  136. 136.
    Biktasova, A. K., et al. (2015). Multivalent forms of the Notch ligand DLL-1 enhance antitumor T cell immunity in lung cancer and improve efficacy of EGFR targeted therapy. Cancer Research: p. canres. 1154.2014.Google Scholar
  137. 137.
    Mathieu, M., et al. (2013). Notch signaling regulates PD-1 expression during CD8+ T-cell activation. Immunology and Cell Biology, 91(1), 82–88.PubMedCrossRefGoogle Scholar
  138. 138.
    Srivastava, M., et al. (2015). Dual targeting of delta-like ligand 4 (DLL4) and programmed death 1 (PD1) inhibits tumor growth and generates enhanced long-term immunological memory. Cancer Research, 75(15 Suppl), 255–255.CrossRefGoogle Scholar
  139. 139.
    Tran, I. T., et al. (2013). Blockade of individual Notch ligands and receptors controls graft-versus-host disease. The Journal of Clinical Investigation, 123(4), 1590–1604.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Fasnacht, N., et al. (2014). Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct Notch-regulated immune responses. Journal of Experimental Medicine, 211(11), 2265–2279.PubMedCrossRefGoogle Scholar
  141. 141.
    Rizzo, P., et al. (2008). Rational targeting of Notch signaling in cancer. Oncogene, 27(38), 5124–5131.PubMedCrossRefGoogle Scholar
  142. 142.
    Ranganathan, P., Weaver, K. L., & Capobianco, A. J. (2011). Notch signalling in solid tumours: A little bit of everything but not all the time. Nature Reviews Cancer, 11(5), 338–351.PubMedCrossRefGoogle Scholar
  143. 143.
    Paris, D., et al. (2005). Inhibition of angiogenesis and tumor growth by β and γ-secretase inhibitors. European Journal of Pharmacology, 514(1), 1–15.PubMedCrossRefGoogle Scholar
  144. 144.
    Maraver, A., et al. (2012). Therapeutic effect of γ-secretase inhibition in Kras G12V-driven non-small cell lung carcinoma by derepression of DUSP1 and inhibition of ERK. Cancer Cell, 22(2), 222–234.CrossRefGoogle Scholar
  145. 145.
    Hayashi, I., et al. (2012). Neutralization of the γ-secretase activity by monoclonal antibody against extracellular domain of nicastrin. Oncogene, 31(6), 787–798.PubMedCrossRefGoogle Scholar
  146. 146.
    Ridgway, J., et al. (2006). Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 444(7122), 1083–1087.CrossRefGoogle Scholar
  147. 147.
    Yan, M., et al. (2010). Chronic DLL4 blockade induces vascular neoplasms. Nature, 463(7282), E6–E7.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Wu, Y., et al. (2010). Therapeutic antibody targeting of individual Notch receptors. Nature, 464(7291), 1052–1057.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Nickoloff, B. J., Osborne, B. A., & Miele, L. (2003). Notch signaling as a therapeutic target in cancer: A new approach to the development of cell fate modifying agents. Oncogene, 22(42), 6598–6608.PubMedCrossRefGoogle Scholar
  150. 150.
    Kopan, R., & Ilagan, M. X. G. (2004). γ-secretase: Proteasome of the membrane? Nature Reviews Molecular Cell Biology, 5(6), 499–504.PubMedCrossRefGoogle Scholar
  151. 151.
    Maetzel, D., et al. (2009). Nuclear signalling by tumour-associated antigen EpCAM. Nature Cell Biology, 11(2), 162–171.PubMedCrossRefGoogle Scholar
  152. 152.
    Takebe, N., Nguyen, D., & Yang, S. X. (2014). Targeting notch signaling pathway in cancer: Clinical development advances and challenges. Pharmacology & Therapeutics, 141(2), 140–149.CrossRefGoogle Scholar
  153. 153.
    Konishi, J., et al. (2010). Notch3 cooperates with the EGFR pathway to modulate apoptosis through the induction of bim. Oncogene, 29(4), 589–596.PubMedCrossRefGoogle Scholar
  154. 154.
    Kaur, G., et al. (2016). Bromodomain and hedgehog pathway targets in small cell lung cancer. Cancer Letters, 371(2), 225–239.PubMedCrossRefGoogle Scholar
  155. 155.
    Ambrogio, C., et al. (2016). Combined inhibition of DDR1 and Notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma. Nature Medicine, 22(3), 270.PubMedCrossRefGoogle Scholar
  156. 156.
    Gold, K. A., et al. (2013). A phase I/II trial combining erlotinib with gamma secretase inhibitor RO4929097 in advanced non-small cell lung cancer (NSCLC). Journal of Clinical Oncology. American Society of Clinical Oncology 2318 MILL ROAD, STE 800, ALEXANDRIA, VA 22314 USA.Google Scholar
  157. 157.
    Luistro, L., et al. (2009). Preclinical profile of a potent γ-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties. Cancer Research, 69(19), 7672–7680.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    De Strooper, B., Iwatsubo, T., & Wolfe, M. S. (2012). Presenilins and γ-secretase: Structure, function, and role in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(1), a006304.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Yan, M. (2011). Therapeutic promise and challenges of targeting DLL4/NOTCH1. Vascular Cell, 3, 17.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Li, D., et al. (2014). The notch ligand JAGGED1 as a target for anti-tumor therapy. Frontiers in Oncology, 4, 254.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Alketbi, A., & Attoub, S. (2015). Notch signaling in cancer: Rationale and strategies for targeting. Current Cancer Drug Targets, 15(5), 364–374.PubMedCrossRefGoogle Scholar
  162. 162.
    Chiorean, E. G., et al. (2015). A phase I first-in-human study of enoticumab (REGN421), a fully human Delta-like ligand 4 (Dll4) monoclonal antibody in patients with advanced solid tumors. Clinical Cancer Research, 21(12), 2695–2703.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Brunner, A., et al. (2016). Effects of anti-DLL4 treatment on non-small cell lung cancer (NSCLC) human xenograft tumors. AACR. ( Proceedings: AACR 107th Annual Meeting 2016; April 16–20, 2016; New Orleans, LA.
  164. 164. (2015). Oncomed presents demcizumab data from phase 1B clinical trial in non-small cell lung cancer patients at the European lucg cancer conference. Available from:
  165. 165.
    Rudin, C. M., et al. (2017). Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: A first-in-human, first-in-class, open-label, phase 1 study. The Lancet Oncology, 18(1), 42–51.PubMedCrossRefGoogle Scholar
  166. 166.
    Gordon, W. R., et al. (2007). Structural basis for autoinhibition of Notch. Nature Structural & Molecular Biology, 14(4), 295–300.CrossRefGoogle Scholar
  167. 167.
    Li, K., et al. (2008). Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. Journal of Biological Chemistry, 283(12), 8046–8054.PubMedCrossRefGoogle Scholar
  168. 168.
    Aste-Amézaga, M., et al. (2010). Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS One, 5(2), e9094.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Daniel, D. B., Rudin, C. M., Hart, L., Spigel, D. R., Edelman, M. J., Goldschmidt, J., Bordoni, R., et al. (2017). 1530PDResults of a randomized, placebo-controlled, phase 2 study of tarextumab (TRXT, anti-Notch2/3) in combination with etoposide and platinum (EP) in patients (pts) with untreated extensive-stage small-cell lung cancer (ED-SCLC). Annals of Oncology, 28(suppl_5).Google Scholar
  170. 170.
    OncoMed Pharmaceuticals, I. (2017). OncoMed’s phase 2 trial of tarextumab in small cell lung cancer does not meet endpoints. In Company also announces discontinuation of brontictuzumab phase 1b study. OncoMed Pharmaceuticals, Inc: Online.Google Scholar
  171. 171.
    Chiang, A., Mclaughlin, J., Pietanza, M. C., Spira, A., Jotte, R., Gadgeel, S., Mita, A. et al. (2015). NOTCH3 protein expression and outcome in small cell lung Cancer (SCLC) and therapeutic targeting with Tarextumab (anti-NOTCH 2/3). Journal of Thoracic Oncology, 10(9), S361. New York, NY: Elsevier Science Inc.Google Scholar
  172. 172.
    Davis, S. L., et al. (2013). A first-in-human phase I study of the novel cancer stem cell (CSC) targeting antibody OMP-52M51 (anti-Notch1) administered intravenously to patients with certain advanced solid tumors. In Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics.Google Scholar
  173. 173.
    Liu, Z., et al. (2011). Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. The Journal of Clinical Investigation, 121(2), 800.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Pamela Munster, S. G. E., Patnaik, A., Shields, A., Tolcher, A. W., Davis, S. L., Heymach, J. V., Xu, L., Kapoun, A. M., Faoro, L., Dupont, J., & Ferrarotto, R. (2015). Safety and preliminary efficacy results of a first-in-human phase I study of the novel cancer stem cell (CSC) targeting antibody brontictuzumab (OMP-52M51, anti-Notch1) administered intravenously to patients with certain advanced solid tumors. [Poster] [cited 2018 January 24 2018]. Available from:
  175. 175.
    Geles, K. G., et al. (2015). Therapeutic targeting the NOTCH3 receptor with antibody drug conjugates. Cancer Research, 75(15 Suppl), 1697–1697.CrossRefGoogle Scholar
  176. 176.
    Mizugaki, H., et al. (2012). γ-Secretase inhibitor enhances antitumour effect of radiation in Notch-expressing lung cancer. British Journal of Cancer, 106(12), 1953–1959.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Ikezawa, Y., et al. (2017). Inhibition of Notch and HIF enhances the antitumor effect of radiation in Notch expressing lung cancer. International Journal of Clinical Oncology, 22(1), 59–69.PubMedCrossRefGoogle Scholar
  178. 178.
    Purow, B. W., et al. (2008). Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis, 29(5), 918–925.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Jin, S., et al. (2008). Notch signaling regulates platelet-derived growth factor receptor-β expression in vascular smooth muscle cells. Circulation Research, 102(12), 1483–1491.PubMedCrossRefGoogle Scholar
  180. 180.
    Yuan, X., et al. (2014). Notch signaling and EMT in non-small cell lung cancer: Biological significance and therapeutic application. Journal of Hematology & Oncology, 7(1), 87.CrossRefGoogle Scholar
  181. 181.
    Tammela, T., et al. (2008). Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature, 454(7204), 656–660.PubMedCrossRefGoogle Scholar
  182. 182.
    Funahashi, Y., et al. (2010). Notch regulates the angiogenic response via induction of VEGFR-1. Journal of Angiogenesis Research, 2(3), 2.Google Scholar
  183. 183.
    Espinosa, L., et al. (2002). p65-NFκB synergizes with Notch to activate transcription by triggering cytoplasmic translocation of the nuclear receptor corepressor N-CoR. Journal of Cell Science, 115(6), 1295–1303.PubMedGoogle Scholar
  184. 184.
    Wang, Z., et al. (2010). Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1806(2), 258–267.CrossRefGoogle Scholar
  185. 185.
    Mori, M., et al. (2015). Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors. Development, 142(2), 258–267.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Ranganathan, P., et al. (2011). Hierarchical phosphorylation within the ankyrin repeat domain defines a phosphoregulatory loop that regulates Notch transcriptional activity. Journal of Biological Chemistry, 286(33), 28844–28857.PubMedCrossRefGoogle Scholar
  187. 187.
    Alamgeer, M., et al. (2013). Cancer stem cells in lung cancer: Evidence and controversies. Respirology, 18(5), 757–764.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Leung, E. L.-H., et al. (2010). Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One, 5(11), e14062.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Eramo, A., et al. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death & Differentiation, 15(3), 504–514.CrossRefGoogle Scholar
  190. 190.
    Bertolini, G., et al. (2009). Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proceedings of the National Academy of Sciences, 106(38), 16281–16286.CrossRefGoogle Scholar
  191. 191.
    Chen, Y.-C., et al. (2008). Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One, 3(7), e2637.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Jiang, F., et al. (2009). Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Molecular Cancer Research, 7(3), 330–338.PubMedCrossRefGoogle Scholar
  193. 193.
    Shi, Y., et al. (2012). The side population in human lung cancer cell line NCI-H460 is enriched in stem-like cancer cells. PLoS One, 7(3), e33358.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Sullivan, J. P., et al. (2010). Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Research, 70(23), 9937–9948.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Okudela, K., et al. (2012). Expression of the potential cancer stem cell markers, CD133, CD44, ALDH1, and β-catenin, in primary lung adenocarcinoma—their prognostic significance. Pathology International, 62(12), 792–801.PubMedCrossRefGoogle Scholar
  196. 196.
    Wang, Z., et al. (2014). Notch signaling drives stemness and tumorigenicity of esophageal adenocarcinoma. Cancer Research, 74(21), 6364–6374.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Garcia-Heredia, J. M., et al. (2017). The cargo protein MAP17 (PDZK1IP1) regulates the cancer stem cell pool activating the Notch pathway by abducting NUMB. Clinical Cancer Research, 23(14), 3871–3883.PubMedCrossRefGoogle Scholar
  198. 198.
    Liu, Y.-P., et al. (2013). Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling. Cancer Research, 73(1), 406–416.PubMedCrossRefGoogle Scholar
  199. 199.
    Rosell, R., et al. (2017). OA10.03 YAP-NOTCH and STAT3 signaling rebound as a compensatory response to gefitinib or osimertinib treatment in EGFR mutant lung cancer. Journal of Thoracic Oncology, 12(1), S281–S282.CrossRefGoogle Scholar
  200. 200.
    Kelly, K., et al. (2008). Phase III trial of maintenance gefitinib or placebo after concurrent chemoradiotherapy and docetaxel consolidation in inoperable stage III non-small-cell lung cancer: SWOG S0023. Journal of Clinical Oncology, 26(15), 2450–2456.PubMedCrossRefGoogle Scholar
  201. 201.
    Goss, G. D., et al. (2010). A phase III randomized, double-blind, placebo-controlled trial of the epidermal growth factor receptor inhibitor gefitinb in completely resected stage IB-IIIA non-small cell lung cancer (NSCLC): NCIC CTG BR.19. Journal of Clinical Oncology, 28(18s), abstr LBA7005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sara L. Sinicropi-Yao
    • 1
  • Michael J. Koenig
    • 1
  • David P. Carbone
    • 1
    • 2
    • 3
    Email author
  1. 1.The Ohio State University Comprehensive Cancer CenterColumbusUSA
  2. 2.Department of Internal MedicineDivision of Medical OncologyColumbusUSA
  3. 3.The James Thoracic Oncology CenterColumbusUSA

Personalised recommendations