Advertisement

Structural Biology of Notch Signaling

  • Kelly L. Arnett
  • Tom C. M. Seegar
  • Stephen C. BlacklowEmail author
Chapter

Abstract

The conserved Notch signaling pathway plays a central role in development and adult tissue homeostasis. Notch signaling is initiated by binding to a transmembrane ligand. E3 ubiquitin ligase-mediated ligand endocytosis enables release of the negative regulatory region (NRR) of Notch from autoinhibition, which then allows metalloprotease cleavage within the NRR, followed by intramembrane cleavage by the γ-secretase complex. After release from the membrane, the Notch intracellular domain translocates to the nucleus to form a transcriptionally active complex and initiate transcription of Notch-responsive genes. Structural studies of Notch and Notch-associated molecules, which have advanced our understanding of each of these steps in the Notch signaling pathway, are reviewed here.

Keywords

Notch DSL Receptor signaling Protein biochemistry Structural biology Regulated intramembrane proteolysis Transcription 

Notes

Note added in proof

Since this chapter was written, a structure of a JAG1-Notch1 complex was reported (V.C. Luca et al., Science 10.1126/science.aaf9739;2017), the structure of an ADAM10 ectodomain was reported (T.C.M. Seegar et al., Cell 171, 1638–1648.e7;2017), and new structures of DLL4 and JAG2 isolated ligand fragments were reported (Suckling, R.J., et al. EMBO J 36(15): 2204–2215;2017).

References

  1. 1.
    Andrawes, M. B., Xu, X., Liu, H., Ficarro, S. B., Marto, J. A., Aster, J. C., & Blacklow, S. C. (2013). Intrinsic selectivity of Notch 1 for Delta-like 4 over Delta-like 1. The Journal of Biological Chemistry, 288, 25477–25489.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Arnett, K. L., Hass, M., Mcarthur, D. G., Ilagan, M. X. G., Aster, J. C., Kopan, R., & Blacklow, S. C. (2010). Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes. Nature Structural and Molecular Biology, 17, 1312–1317.PubMedCrossRefGoogle Scholar
  3. 3.
    Aste-Amézaga, M., Zhang, N., Lineberger, J. E., Arnold, B. A., Toner, T. J., Gu, M., Huang, L., Vitelli, S., Vo, K. T., Haytko, P., et al. (2010). Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS One, 5, e9094.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Aster, J. C., Xu, L., Karnell, F. G., Patriub, V., Pui, J. C., & Pear, W. S. (2000). Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1. Molecular and Cellular Biology, 20, 7505–7515.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bai, X.-C., Rajendra, E., Yang, G., Shi, Y., & Scheres, S. H. W. (2015). Sampling the conformational space of the catalytic subunit of human γ-secretase. eLife, 4, e11182.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bai, X.-C., Yan, C., Yang, G., Lu, P., Ma, D., Sun, L., Zhou, R., Scheres, S. H. W., & Shi, Y. (2015). An atomic structure of human γ-secretase. Nature, 525, 212–217.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bailey, A. M., & Posakony, J. W. (1995). Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes and Development, 9, 2609–2622.PubMedCrossRefGoogle Scholar
  8. 8.
    Blacklow, S. C. (2013). Refining a Jagged edge. Structure, 21, 2100–2101.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Blaumueller, C. M., Qi, H., Zagouras, P., & Artavanis-Tsakonas, S. (1997). Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell, 90, 281–291.PubMedCrossRefGoogle Scholar
  10. 10.
    Bolduc, D. M., Montagna, D. R., Gu, Y., Selkoe, D. J., & Wolfe, M. S. (2016). Nicastrin functions to sterically hinder γ-secretase-substrate interactions driven by substrate transmembrane domain. Proceedings of the National Academy of Sciences, 113, E509–E518.CrossRefGoogle Scholar
  11. 11.
    Borggrefe, T., & Oswald, F. (2009). The Notch signaling pathway: Transcriptional regulation at Notch target genes. Cellular and Molecular Life Sciences: CMLS, 66, 1631–1646.PubMedCrossRefGoogle Scholar
  12. 12.
    Bozkulak, E. C., & Weinmaster, G. (2009). Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Molecular and Cellular Biology, 29, 5679–5695.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Bray, S., & Furriols, M. (2001). Notch pathway: Making sense of suppressor of hairless. Current Biology, 11, R217–R221.PubMedCrossRefGoogle Scholar
  14. 14.
    Brou, C., Logeat, F., Gupta, N., Bessia, C., LeBail, O., Doedens, J. R., Cumano, A., Roux, P., Black, R. A., & Israël, A. (2000). A novel proteolytic cleavage involved in Notch signaling: The role of the disintegrin-metalloprotease TACE. Molecular Cell, 5, 207–216.PubMedCrossRefGoogle Scholar
  15. 15.
    Cave, J. W., Loh, F., Surpris, J. W., Xia, L., & Caudy, M. A. (2005). A DNA transcription code for cell-specific gene activation by notch signaling. Current Biology, 15, 94–104.PubMedCrossRefGoogle Scholar
  16. 16.
    Chen, W., & Casey Corliss, D. (2004). Three modules of zebrafish Mind bomb work cooperatively to promote Delta ubiquitination and endocytosis. Developmental Biology, 267, 361–373.PubMedCrossRefGoogle Scholar
  17. 17.
    Chillakuri, C. R., Sheppard, D., Ilagan, M. X. G., Holt, L. R., Abbott, F., Liang, S., Kopan, R., Handford, P. A., & Lea, S. M. (2013). Structural analysis uncovers lipid-binding properties of Notch ligands. Cell Reports, 5, 861–867.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Choi, S. H., Wales, T. E., Nam, Y., O’Donovan, D. J., Sliz, P., Engen, J. R., & Blacklow, S. C. (2012). Conformational locking upon cooperative assembly of notch transcription complexes. Structure, 20, 340–349.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Coleman, M. L., McDonough, M. A., Hewitson, K. S., Coles, C., Mecinovic, J., Edelmann, M., Cook, K. M., Cockman, M. E., Lancaster, D. E., Kessler, B. M., et al. (2007). Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor. The Journal of Biological Chemistry, 282, 24027–24038.PubMedCrossRefGoogle Scholar
  20. 20.
    Collins, K. J., Yuan, Z., & Kovall, R. A. (2014). Structure and function of the CSL-KyoT2 corepressor complex: A negative regulator of Notch signaling. Structure, 22, 70–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Cordle, J., Johnson, S., Tay, J. Z. Y., Roversi, P., Wilkin, M. B., de Madrid, B. H., Shimizu, H., Jensen, S., Whiteman, P., Jin, B., et al. (2008). A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition. Nature Structural and Molecular Biology, 15, 849–857.PubMedCrossRefGoogle Scholar
  22. 22.
    Daskalaki, A., Shalaby, N. A., Kux, K., Tsoumpekos, G., Tsibidis, G. D., Muskavitch, M. A. T., & Delidakis, C. (2011). Distinct intracellular motifs of Delta mediate its ubiquitylation and activation by Mindbomb1 and Neuralized. The Journal of Cell Biology, 195, 1017–1031.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Deblandre, G. A., Lai, E. C., & Kintner, C. (2001). Xenopus neuralized is a ubiquitin ligase that interacts with XDelta1 and regulates Notch signaling. Developmental Cell, 1, 795–806.PubMedCrossRefGoogle Scholar
  24. 24.
    Del Bianco, C., Aster, J. C., & Blacklow, S. C. (2008). Mutational and energetic studies of Notch 1 transcription complexes. Journal of Molecular Biology, 376, 131–140.PubMedCrossRefGoogle Scholar
  25. 25.
    Düsterhöft, S., Jung, S., Hung, C.-W., Tholey, A., Sönnichsen, F. D., Grötzinger, J., & Lorenzen, I. (2013). Membrane-proximal domain of a disintegrin and metalloprotease-17 represents the putative molecular switch of its shedding activity operated by protein-disulfide isomerase. Journal of the American Chemical Society, 135, 5776–5781.PubMedCrossRefGoogle Scholar
  26. 26.
    Ehebauer, M. T., Chirgadze, D. Y., Hayward, P., Martinez-Arias, A., & Blundell, T. L. (2005). High-resolution crystal structure of the human Notch 1 ankyrin domain. The Biochemical Journal, 392, 13–20.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fedoroff, O. Y., Townson, S. A., Golovanov, A. P., Baron, M., & Avis, J. M. (2004). The structure and dynamics of tandem WW domains in a negative regulator of notch signaling, suppressor of deltex. The Journal of Biological Chemistry, 279, 34991–35000.PubMedCrossRefGoogle Scholar
  28. 28.
    Fehon, R. G., Kooh, P. J., Rebay, I., Regan, C. L., Xu, T., Muskavitch, M. A., & Artavanis-Tsakonas, S. (1990). Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell, 61, 523–534.PubMedCrossRefGoogle Scholar
  29. 29.
    Friedmann, D. R., & Kovall, R. A. (2010). Thermodynamic and structural insights into CSL-DNA complexes. Protein Science, 19, 34–46.PubMedGoogle Scholar
  30. 30.
    Friedmann, D. R., Wilson, J. J., & Kovall, R. A. (2008). RAM-induced allostery facilitates assembly of a notch pathway active transcription complex. The Journal of Biological Chemistry, 283, 14781–14791.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Fryer, C. J., Lamar, E., Turbachova, I., Kintner, C., & Jones, K. A. (2002). Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes and Development, 16, 1397–1411.PubMedCrossRefGoogle Scholar
  32. 32.
    Ge, C., & Stanley, P. (2008). The O-fucose glycan in the ligand-binding domain of Notch1 regulates embryogenesis and T cell development. Proceedings of the National Academy of Sciences of the United States of America, 105, 1539–1544.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Glomski, K., Monette, S., Manova, K., De Strooper, B., Saftig, P., & Blobel, C. P. (2011). Deletion of Adam10 in endothelial cells leads to defects in organ-specific vascular structures. Blood, 118, 1163–1174.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gordon, W. R., Roy, M., Vardar-Ulu, D., Garfinkel, M., Mansour, M. R., Aster, J. C., & Blacklow, S. C. (2009). Structure of the Notch1-negative regulatory region: Implications for normal activation and pathogenic signaling in T-ALL. Blood, 113, 4381–4390.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Gordon, W. R., Vardar-Ulu, D., Histen, G., Sanchez-Irizarry, C., Aster, J. C., & Blacklow, S. C. (2007). Structural basis for autoinhibition of Notch. Nature Structural and Molecular Biology, 14, 295–300.PubMedCrossRefGoogle Scholar
  36. 36.
    Gordon, W. R., Vardar-Ulu, D., L'heureux, S., Ashworth, T., Malecki, M. J., Sanchez-Irizarry, C., Mcarthur, D. G., Histen, G., Mitchell, J. L., Aster, J. C., et al. (2009). Effects of S1 cleavage on the structure, surface export, and signaling activity of human Notch1 and Notch2. PLoS One, 4, e6613.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gordon, W. R., Zimmerman, B., He, L., Miles, L. J., Huang, J., Tiyanont, K., Mcarthur, D. G., Aster, J. C., Perrimon, N., Loparo, J. J., et al. (2015). Mechanical allostery: Evidence for a force requirement in the proteolytic activation of Notch. Developmental Cell, 33, 729–736.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Greenwald, I., & Seydoux, G. (1990). Analysis of gain-of-function mutations of the lin-12 gene of Caenorhabditis elegans. Nature, 346, 197–199.PubMedCrossRefGoogle Scholar
  39. 39.
    Gupta, D., Beaufils, S., Vie, V., Paboeuf, G., Broadhurst, B., Schweisguth, F., L Blundell, T., & M Bolanos-Garcia, V. (2013). Crystal structure, biochemical and biophysical characterisation of NHR1 domain of E3 Ubiquitin ligase neutralized. Advances in Enzyme Research, 01, 61–75.CrossRefGoogle Scholar
  40. 40.
    Hambleton, S., Valeyev, N. V., Muranyi, A., Knott, V., Werner, J. M., McMichael, A. J., Handford, P. A., & Downing, A. K. (2004). Structural and functional properties of the human notch-1 ligand binding region. Structure, 12, 2173–2183.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    He, F., Saito, K., Kobayashi, N., Harada, T., Watanabe, S., Kigawa, T., Güntert, P., Ohara, O., Tanaka, A., Unzai, S., et al. (2009). Structural and functional characterization of the NHR1 domain of the Drosophila neuralized E3 ligase in the notch signaling pathway. Journal of Molecular Biology, 393, 478–495.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Heuss, S. F., Ndiaye-Lobry, D., Six, E. M., Israël, A., & Logeat, F. (2008). The intracellular region of Notch ligands Dll1 and Dll3 regulates their trafficking and signaling activity. Proceedings of the National Academy of Sciences of the United States of America, 105, 11212–11217.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Hiruma-Shimizu, K., Hosoguchi, K., Liu, Y., Fujitani, N., Ohta, T., Hinou, H., Matsushita, T., Shimizu, H., Feizi, T., & Nishimura, S.-i. (2010). Chemical synthesis, folding, and structural insights into O-fucosylated epidermal growth factor-like repeat 12 of mouse Notch-1 receptor. Journal of the American Chemical Society, 132, 14857–14865.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Hsieh, J. J., Zhou, S., Chen, L., Young, D. B., & Hayward, S. D. (1999). CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proceedings of the National Academy of Sciences of the United States of America, 96, 23–28.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Itoh, M., Kim, C.-H., Palardy, G., Oda, T., Jiang, Y.-J., Maust, D., Yeo, S.-Y., Lorick, K., Wright, G. J., Ariza-McNaughton, L., et al. (2003). Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Developmental Cell, 4, 67–82.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Janes, P. W., Saha, N., Barton, W. A., Kolev, M. V., Wimmer-Kleikamp, S. H., Nievergall, E., Blobel, C. P., Himanen, J.-P., Lackmann, M., & Nikolov, D. B. (2005). Adam meets Eph: An ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell, 123, 291–304.PubMedCrossRefGoogle Scholar
  47. 47.
    Jennings, M. D., Blankley, R. T., Baron, M., Golovanov, A. P., & Avis, J. M. (2007). Specificity and autoregulation of Notch binding by tandem WW domains in suppressor of Deltex. The Journal of Biological Chemistry, 282, 29032–29042.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Jinek, M., Chen, Y.-W., Clausen, H., Cohen, S. M., & Conti, E. (2006). Structural insights into the Notch-modifying glycosyltransferase Fringe. Nature Structural and Molecular Biology, 13, 945–946.PubMedCrossRefGoogle Scholar
  49. 49.
    Johnson, S. E., Ilagan, M. X. G., Kopan, R., & Barrick, D. (2010). Thermodynamic analysis of the CSL x Notch interaction: Distribution of binding energy of the Notch RAM region to the CSL beta-trefoil domain and the mode of competition with the viral transactivator EBNA2. Journal of Biological Chemistry, 285, 6681–6692.PubMedCrossRefGoogle Scholar
  50. 50.
    Jorissen, E., Prox, J., Bernreuther, C., Weber, S., Schwanbeck, R., Serneels, L., Snellinx, A., Craessaerts, K., Thathiah, A., Tesseur, I., et al. (2010). The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. The Journal of Neuroscience, 30, 4833–4844.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kao, H. Y., Ordentlich, P., Koyano-Nakagawa, N., Tang, Z., Downes, M., Kintner, C. R., Evans, R. M., & Kadesch, T. (1998). A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes and Development, 12, 2269–2277.PubMedCrossRefGoogle Scholar
  52. 52.
    Kershaw, N., Church, N., Griffin, M., Luo, C., Adams, T., & Burgess, A. (2015). Notch ligand Delta-like1: X-ray crystal structure and binding affinity. The Biochemical Journal, 468, 159–166.PubMedCrossRefGoogle Scholar
  53. 53.
    Koo, B.-K., Lim, H.-S., Song, R., Yoon, M.-J., Yoon, K.-J., Moon, J.-S., Kim, Y.-W., Kwon, M.-C., Yoo, K.-W., Kong, M.-P., et al. (2005). Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development, 132, 3459–3470.PubMedCrossRefGoogle Scholar
  54. 54.
    Koo, B.-K., Yoon, M.-J., Yoon, K.-J., Im, S.-K., Kim, Y.-Y., Kim, C.-H., Suh, P.-G., Jan, Y. N., & Kong, Y.-Y. (2007). An obligatory role of mind bomb-1 in notch signaling of mammalian development. PLoS One, 2, e1221.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kopan, R., & Ilagan, M. X. G. (2009). The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell, 137, 216–233.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kopan, R., Schroeter, E. H., Weintraub, H., & Nye, J. S. (1996). Signal transduction by activated mNotch: Importance of proteolytic processing and its regulation by the extracellular domain. Proceedings of the National Academy of Sciences of the United States of America, 93, 1683–1688.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kovall, R. A., & Hendrickson, W. A. (2004). Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. The EMBO Journal, 23, 3441–3451.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kuroda, K., Han, H., Tani, S., Tanigaki, K., Tun, T., Furukawa, T., Taniguchi, Y., Kurooka, H., Hamada, Y., Toyokuni, S., et al. (2003). Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity, 18, 301–312.PubMedCrossRefGoogle Scholar
  59. 59.
    Kurooka, H., Kuroda, K., & Honjo, T. (1998). Roles of the ankyrin repeats and C-terminal region of the mouse notch1 intracellular region. Nucleic Acids Research, 26, 5448–5455.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ladi, E., Nichols, J. T., Ge, W., Miyamoto, A., Yao, C., Yang, L.-T., Boulter, J., Sun, Y. E., Kintner, C., & Weinmaster, G. (2005). The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. The Journal of Cell Biology, 170, 983–992.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lafkas, D., Shelton, A., Chiu, C., de Leon Boenig, G., Chen, Y., Stawicki, S. S., Siltanen, C., Reichelt, M., Zhou, M., Wu, X., et al. (2015). Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung. Nature, 528, 127–131.PubMedGoogle Scholar
  62. 62.
    Lai, E. C., Deblandre, G. A., Kintner, C., & Rubin, G. M. (2001). Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Developmental Cell, 1, 783–794.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Lai, E. C., Roegiers, F., Qin, X., Jan, Y. N., & Rubin, G. M. (2005). The ubiquitin ligase Drosophila Mind bomb promotes notch signaling by regulating the localization and activity of Serrate and Delta. Development, 132, 2319–2332.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Lee, J. O., Yang, H., Georgescu, M. M., Di Cristofano, A., Maehama, T., Shi, Y., Dixon, J. E., Pandolfi, P., & Pavletich, N. P. (1999). Crystal structure of the PTEN tumor suppressor: Implications for its phosphoinositide phosphatase activity and membrane association. Cell, 99, 323–334.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Liefke, R., Oswald, F., Alvarado, C., Ferres-Marco, D., Mittler, G., Rodriguez, P., Dominguez, M., & Borggrefe, T. (2010). Histone demethylase KDM5A is an integral part of the core Notch-RBP-J repressor complex. Genes and Development, 24, 590–601.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Liu, H., Chi, A. W. S., Arnett, K. L., Chiang, M. Y., Xu, L., Shestova, O., Wang, H., Li, Y.-M., Bhandoola, A., Aster, J. C., et al. (2010). Notch dimerization is required for leukemogenesis and T-cell development. Genes and Development, 24, 2395–2407.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Liu, H., Shim, A., & He, X. (2009). Structural characterization of the ectodomain of a disintegrin and metalloproteinase-22 (ADAM22), a neural adhesion receptor instead of metalloproteinase: Insights on ADAM function. The Journal of Biological Chemistry, 284, 29077–29086.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Logeat, F., Bessia, C., Brou, C., LeBail, O., Jarriault, S., Seidah, N. G., & Israël, A. (1998). The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proceedings of the National Academy of Sciences of the United States of America, 95, 8108–8112.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Lu, P., Bai, X.-C., Ma, D., Xie, T., Yan, C., Sun, L., Yang, G., Zhao, Y., Zhou, R., Scheres, S. H. W., et al. (2014). Three-dimensional structure of human γ-secretase. Nature, 512, 166–170.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Lubman, O. Y., Ilagan, M. X. G., Kopan, R., & Barrick, D. (2007). Quantitative dissection of the Notch:CSL interaction: Insights into the Notch-mediated transcriptional switch. Journal of Molecular Biology, 365, 577–589.PubMedCrossRefGoogle Scholar
  71. 71.
    Lubman, O. Y., Kopan, R., Waksman, G., & Korolev, S. (2005). The crystal structure of a partial mouse Notch-1 ankyrin domain: Repeats 4 through 7 preserve an ankyrin fold. Protein Science, 14, 1274–1281.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Luca, V. C., Jude, K. M., Pierce, N. W., Nachury, M. V., Fischer, S., & Garcia, K. C. (2015). Structural biology. Structural basis for Notch1 engagement of Delta-like 4. Science (New York NY), 347, 847–853.CrossRefGoogle Scholar
  73. 73.
    Maier, D. (2006). Hairless: The ignored antagonist of the Notch signalling pathway. Hereditas, 143, 212–221.PubMedCrossRefGoogle Scholar
  74. 74.
    Maier, D., Kurth, P., Schulz, A., Russell, A., Yuan, Z., Gruber, K., Kovall, R. A., & Preiss, A. (2011). Structural and functional analysis of the repressor complex in the Notch signaling pathway of Drosophila melanogaster. Molecular Biology of the Cell, 22, 3242–3252.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Malecki, M. J., Sanchez-Irizarry, C., Mitchell, J. L., Histen, G., Xu, M. L., Aster, J. C., & Blacklow, S. C. (2006). Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Molecular and Cellular Biology, 26, 4642–4651.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Maskos, K., Fernandez-Catalan, C., Huber, R., Bourenkov, G. P., Bartunik, H., Ellestad, G. A., Reddy, P., Wolfson, M. F., Rauch, C. T., Castner, B. J., et al. (1998). Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proceedings of the National Academy of Sciences of the United States of America, 95, 3408–3412.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    McMillan, B. J., Schnute, B., Ohlenhard, N., Zimmerman, B., Miles, L., Beglova, N., Klein, T., & Blacklow, S. C. (2015). A tail of two sites: A bipartite mechanism for recognition of Notch ligands by mind bomb E3 ligases. Molecular Cell, 57, 912–924.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Mercher, T., Cornejo, M. G., Sears, C., Kindler, T., Moore, S. A., Maillard, I., Pear, W. S., Aster, J. C., & Gilliland, D. G. (2008). Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell, 3, 314–326.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Mumm, J. S., Schroeter, E. H., Saxena, M. T., Griesemer, A., Tian, X., Pan, D. J., Ray, W. J., & Kopan, R. (2000). A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Molecular Cell, 5, 197–206.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Musse, A. A., Meloty-Kapella, L., & Weinmaster, G. (2012). Notch ligand endocytosis: Mechanistic basis of signaling activity. Seminars in Cell and Developmental Biology., 23, 429.PubMedCrossRefGoogle Scholar
  81. 81.
    Nam, Y., Sliz, P., Pear, W. S., Aster, J. C., & Blacklow, S. C. (2007). Cooperative assembly of higher-order Notch complexes functions as a switch to induce transcription. Proceedings of the National Academy of Sciences of the United States of America, 104, 2103–2108.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Nam, Y., Sliz, P., Song, L., Aster, J. C., & Blacklow, S. C. (2006). Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell, 124, 973–983.PubMedCrossRefGoogle Scholar
  83. 83.
    Nellesen, D. T., Lai, E. C., & Posakony, J. W. (1999). Discrete enhancer elements mediate selective responsiveness of enhancer of split complex genes to common transcriptional activators. Developmental Biology, 213, 33–53.PubMedCrossRefGoogle Scholar
  84. 84.
    Nichols, J. T., Miyamoto, A., Olsen, S. L., D’Souza, B., Yao, C., & Weinmaster, G. (2007). DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur. The Journal of Cell Biology, 176, 445–458.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Okajima, T., & Irvine, K. D. (2002). Regulation of notch signaling by o-linked fucose. Cell, 111, 893–904.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Oswald, F., Kostezka, U., Astrahantseff, K., Bourteele, S., Dillinger, K., Zechner, U., Ludwig, L., Wilda, M., Hameister, H., Knöchel, W., et al. (2002). SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. The EMBO Journal, 21, 5417–5426.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Pan, D., & Rubin, G. M. (1997). Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell, 90, 271–280.PubMedCrossRefGoogle Scholar
  88. 88.
    Parks, A. L., Klueg, K. M., Stout, J. R., & Muskavitch, M. A. (2000). Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development, 127, 1373–1385.PubMedGoogle Scholar
  89. 89.
    Parks, A. L., Stout, J. R., Shepard, S. B., Klueg, K. M., Dos Santos, A. A., Parody, T. R., Vaskova, M., & Muskavitch, M. A. T. (2006). Structure-function analysis of delta trafficking, receptor binding and signaling in Drosophila. Genetics, 174, 1947–1961.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Petcherski, A. G., & Kimble, J. (2000). LAG-3 is a putative transcriptional activator in the C. Elegans Notch pathway. Nature, 405, 364–368.CrossRefGoogle Scholar
  91. 91.
    Pintar, A., Guarnaccia, C., Dhir, S., & Pongor, S. (2009). Exon 6 of human JAG1 encodes a conserved structural unit. BMC Structural Biology, 9, 43.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Qin, H., Wang, J., Liang, Y., Taniguchi, Y., Tanigaki, K., & Han, H. (2004). RING1 inhibits transactivation of RBP-J by Notch through interaction with LIM protein KyoT2. Nucleic Acids Research, 32, 1492–1501.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Rampal, R., Arboleda-Velasquez, J. F., Nita-Lazar, A., Kosik, K. S., & Haltiwanger, R. S. (2005). Highly conserved O-fucose sites have distinct effects on Notch1 function. The Journal of Biological Chemistry, 280, 32133–32140.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Rebay, I., Fleming, R. J., Fehon, R. G., Cherbas, L., Cherbas, P., & Artavanis-Tsakonas, S. (1991). Specific EGF repeats of Notch mediate interactions with Delta and Serrate: Implications for Notch as a multifunctional receptor. Cell, 67, 687–699.CrossRefGoogle Scholar
  95. 95.
    Sanchez-Irizarry, C., Carpenter, A. C., Weng, A. P., Pear, W. S., Aster, J. C., & Blacklow, S. C. (2004). Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Molecular and Cellular Biology, 24, 9265–9273.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Shah, S., Lee, S.-F., Tabuchi, K., Hao, Y.-H., Yu, C., LaPlant, Q., Ball, H., Dann, C. E., Südhof, T., & Yu, G. (2005). Nicastrin functions as a gamma-secretase-substrate receptor. Cell, 122, 435–447.PubMedCrossRefGoogle Scholar
  97. 97.
    Shao, L., Moloney, D. J., & Haltiwanger, R. (2003). Fringe modifies O-fucose on mouse Notch1 at epidermal growth factor-like repeats within the ligand-binding site and the Abruptex region. The Journal of Biological Chemistry, 278, 7775–7782.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Shergill, B., Meloty-Kapella, L., Musse, A. A., Weinmaster, G., & Botvinick, E. (2012). Optical tweezers studies on Notch: Single-molecule interaction strength is independent of ligand endocytosis. Developmental Cell, 22, 1313–1320.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Shi, S., & Stanley, P. (2003). Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 100, 5234–5239.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Shi, Y., Downes, M., Xie, W., Kao, H. Y., Ordentlich, P., Tsai, C. C., Hon, M., & Evans, R. M. (2001). Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes and Development, 15, 1140–1151.PubMedCrossRefGoogle Scholar
  101. 101.
    Shimizu, K., Chiba, S., Kumano, K., Hosoya, N., Takahashi, T., Kanda, Y., Hamada, Y., Yazaki, Y., & Hirai, H. (1999). Mouse Jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. The Journal of Biological Chemistry, 274, 32961–32969.PubMedCrossRefGoogle Scholar
  102. 102.
    Shin, O.-H., Lu, J., Rhee, J.-S., Tomchick, D. R., Pang, Z. P., Wojcik, S. M., Camacho-Perez, M., Brose, N., Machius, M., Rizo, J., et al. (2010). Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis. Nature Structural and Molecular Biology, 17, 280–288.PubMedCrossRefGoogle Scholar
  103. 103.
    Sotillos, S., Roch, F., & Campuzano, S. (1997). The metalloprotease-disintegrin Kuzbanian participates in Notch activation during growth and patterning of Drosophila imaginal discs. Development, 124, 4769–4779.PubMedGoogle Scholar
  104. 104.
    Sun, L., Li, X., & Shi, Y. (2016). Structural biology of intramembrane proteases: Mechanistic insights from rhomboid and S2P to γ-secretase. Current Opinion in Structural Biology, 37, 97–107.PubMedCrossRefGoogle Scholar
  105. 105.
    Sun, L., Zhao, L., Yang, G., Yan, C., Zhou, R., Zhou, X., Xie, T., Zhao, Y., Wu, S., Li, X., et al. (2015). Structural basis of human γ-secretase assembly. Proceedings of the National Academy of Sciences, 112, 6003–6008.CrossRefGoogle Scholar
  106. 106.
    Sun, X., & Artavanis-Tsakonas, S. (1996). The intracellular deletions of Delta and Serrate define dominant negative forms of the Drosophila Notch ligands. Development, 122, 2465–2474.PubMedGoogle Scholar
  107. 107.
    Tamura, K., Taniguchi, Y., Minoguchi, S., Sakai, T., Tun, T., Furukawa, T., & Honjo, T. (1995). Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Current Biology, 5, 1416–1423.PubMedCrossRefGoogle Scholar
  108. 108.
    Taniguchi, Y., Furukawa, T., Tun, T., Han, H., & Honjo, T. (1998). LIM protein KyoT2 negatively regulates transcription by association with the RBP-J DNA-binding protein. Molecular and Cellular Biology, 18, 644–654.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Taylor, P., Takeuchi, H., Sheppard, D., Chillakuri, C., Lea, S. M., Haltiwanger, R. S., & Handford, P. A. (2014). Fringe-mediated extension of O-linked fucose in the ligand-binding region of Notch1 increases binding to mammalian notch ligands. Proceedings of the National Academy of Sciences, 111, 7290–7295.CrossRefGoogle Scholar
  110. 110.
    Tiyanont, K., Wales, T. E., Aste-Amézaga, M., Aster, J. C., Engen, J. R., & Blacklow, S. C. (2011). Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure, 19, 546–554.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Tiyanont, K., Wales, T. E., Siebel, C. W., Engen, J. R., & Blacklow, S. C. (2013). Insights into Notch3 activation and inhibition mediated by antibodies directed against its negative regulatory region. Journal of Molecular Biology, 425, 3192–3204.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Vardar, D., North, C. L., Sanchez-Irizarry, C., Aster, J. C., & Blacklow, S. C. (2003). Nuclear magnetic resonance structure of a prototype Lin12-Notch repeat module from human Notch1. Biochemistry, 42, 7061–7067.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Wallberg, A. E., Pedersen, K., Lendahl, U., & Roeder, R. G. (2002). p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro. Molecular and Cellular Biology, 22, 7812–7819.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Wang, J., Brunkan, A. L., Hecimovic, S., Walker, E., & Goate, A. (2004). Conserved “PAL” sequence in presenilins is essential for gamma-secretase activity, but not required for formation or stabilization of gamma-secretase complexes. Neurobiology of Disease, 15, 654–666.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Weber, S., Niessen, M. T., Prox, J., Lüllmann-Rauch, R., Schmitz, A., Schwanbeck, R., Blobel, C. P., Jorissen, E., De Strooper, B., Niessen, C. M., et al. (2011). The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling. Development, 138, 495–505.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Weisshuhn, P. C., Sheppard, D., Taylor, P., Whiteman, P., Lea, S. M., Handford, P. A., & Redfield, C. (2016). Non-linear and flexible regions of the human Notch1 extracellular domain revealed by high-resolution structural studies. Structure, 24, 555–566.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Weng, A. P., Nam, Y., Wolfe, M. S., Pear, W. S., Griffin, J. D., Blacklow, S. C., & Aster, J. C. (2003). Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Molecular and Cellular Biology, 23, 655–664.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Whiteman, P., de Madrid, B. H., Taylor, P., Li, D., Heslop, R., Viticheep, N., Tan, J. Z., Shimizu, H., Callaghan, J., Masiero, M., et al. (2013). Molecular basis for Jagged-1/Serrate ligand recognition by the Notch receptor. Journal of Biological Chemistry, 288, 7305–7312.PubMedCrossRefGoogle Scholar
  119. 119.
    Wilson, J. J., & Kovall, R. A. (2006). Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell, 124, 985–996.PubMedCrossRefGoogle Scholar
  120. 120.
    Wisniewska, M., Goettig, P., Maskos, K., Belouski, E., Winters, D., Hecht, R., Black, R., & Bode, W. (2008). Structural determinants of the ADAM inhibition by TIMP-3: Crystal structure of the TACE-N-TIMP-3 complex. Journal of Molecular Biology, 381, 1307–1319.PubMedCrossRefGoogle Scholar
  121. 121.
    Wu, L., Aster, J. C., Blacklow, S. C., Lake, R., Artavanis-Tsakonas, S., & Griffin, J. D. (2000). MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nature Genetics, 26, 484–489.PubMedCrossRefGoogle Scholar
  122. 122.
    Wu, L., Sun, T., Kobayashi, K., Gao, P., & Griffin, J. D. (2002). Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Molecular and Cellular Biology, 22, 7688–7700.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Wu, Y., Cain-Hom, C., Choy, L., Hagenbeek, T. J., de Leon, G. P., Chen, Y., Finkle, D., Venook, R., Wu, X., Ridgway, J., et al. (2010). Therapeutic antibody targeting of individual Notch receptors. Nature, 464, 1052–1057.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Xie, T., Yan, C., Zhou, R., Zhao, Y., Sun, L., Yang, G., Lu, P., Ma, D., & Shi, Y. (2014). Crystal structure of the γ-secretase component nicastrin. Proceedings of the National Academy of Sciences, 111, 13349–13354.CrossRefGoogle Scholar
  125. 125.
    Xu, A., Haines, N., Dlugosz, M., Rana, N. A., Takeuchi, H., Haltiwanger, R. S., & Irvine, K. D. (2007). In vitro reconstitution of the modulation of Drosophila Notch-ligand binding by Fringe. The Journal of Biological Chemistry, 282, 35153–35162.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Xu, A., Lei, L., & Irvine, K. D. (2005). Regions of Drosophila Notch that contribute to ligand binding and the modulatory influence of Fringe. The Journal of Biological Chemistry, 280, 30158–30165.PubMedCrossRefGoogle Scholar
  127. 127.
    Xu, X., Choi, S. H., Hu, T., Tiyanont, K., Habets, R., Groot, A. J., Vooijs, M., Aster, J. C., Chopra, R., Fryer, C., et al. (2015). Insights into autoregulation of Notch3 from structural and functional studies of its negative regulatory region. Structure, 23, 1227–1235.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Yu, H., Takeuchi, M., LeBarron, J., Kantharia, J., London, E., Bakker, H., Haltiwanger, R. S., Li, H., & Takeuchi, H. (2015). Notch-modifying xylosyltransferase structures support an SNi-like retaining mechanism. Nature Chemical Biology, 11, 847–854.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Yuan, Z., Praxenthaler, H., Tabaja, N., Torella, R., Preiss, A., Maier, D., & Kovall, R. (2016). Structure-function of the Su(H)-Hairless repressor complex, the major antagonist of Notch signaling in D. melanogaster. PLoS Biology, 14, e1002509.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Zhang, X., Sullivan, E., Scimeca, M., Wu, X., Li, Y.-M., & Sisodia, S. S. (2016). Evidence that the “Lid” domain of nicastrin is not essential for regulating γ-secretase activity. Journal of Biological Chemistry, 291, 6748–6753.PubMedCrossRefGoogle Scholar
  131. 131.
    Zhang, Y., Sandy, A. R., Wang, J., Radojcic, V., Shan, G. T., Tran, I. T., Friedman, A., Kato, K., He, S., Cui, S., et al. (2011). Notch signaling is a critical regulator of allogeneic CD4+ T-cell responses mediating graft-versus-host disease. Blood, 117, 299–308.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Zhou, S., Fujimuro, M., Hsieh, J. J., Chen, L., Miyamoto, A., Weinmaster, G., & Hayward, S. D. (2000). SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC to facilitate NotchIC function. Molecular and Cellular Biology, 20, 2400–2410.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Zweifel, M. E., Leahy, D. J., & Barrick, D. (2005). Structure and Notch receptor binding of the tandem WWE domain of Deltex. Structure, 13, 1599–1611.PubMedCrossRefGoogle Scholar
  134. 134.
    Zweifel, M. E., Leahy, D. J., Hughson, F. M., & Barrick, D. (2003). Structure and stability of the ankyrin domain of the Drosophila Notch receptor. Protein Science, 12, 2622–2632.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kelly L. Arnett
    • 1
    • 2
  • Tom C. M. Seegar
    • 1
    • 2
  • Stephen C. Blacklow
    • 1
    • 2
    Email author
  1. 1.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA
  2. 2.Department of Cancer BiologyDana Farber Cancer InstituteBostonUSA

Personalised recommendations