Building Blocks of the Human Body

  • Vasif Hasirci
  • Nesrin Hasirci


The human body can be considered to be a combination of very complex groups of systems which function smoothly. When this organization is examined from the constituent molecules upward toward the systems, the lowest layer is amino acids, nucleotides, saccharides, and lipids. Upon their combination, proteins and enzymes, polynucleotides, polysaccharides, and lipoid structures are formed. These, in return, form the cells, tissues, organs, organ systems, and finally, the living organism, the human body.


  1. 1.
    Courtesy: National Human Genome Research InstituteGoogle Scholar
  2. 2.
    Huan J, Prins J, Wang W (2006) Local structure comparison of proteins. Adv Comput 68:177–251CrossRefGoogle Scholar
  3. 3.
    Köksal M, Zimmer I, Schnitzler JP, Christianson DW (2010) Structure of isoprene synthase illuminates the chemical mechanism of teragram atmospheric carbon emission. J Mol Biol 402(2):363–373CrossRefGoogle Scholar
  4. 4.
    Meylan S, Vimont U, Incerti S, Clairand I, Villagrasa C (2016) Geant4-DNA simulations using complex DNA geometries generated by the DnaFabric tool. Comput Phys Commun 204:159–169CrossRefGoogle Scholar
  5. 5.
    von der Haar T (2012) Mathematical and computational modelling of ribosomal movement and protein synthesis: an overview. Comput Struct Biotechnol J 1(1):1–7CrossRefGoogle Scholar
  6. 6.
    Nap RJ, Szleifer I (2008) Structure and interactions of aggrecans: statistical thermodynamic approach. Biophys J 95(10):4570–4583CrossRefGoogle Scholar
  7. 7.
    Fletcher A (2013) The cell membrane and receptors. Anaesth Intens Care Med 14(9):417–421CrossRefGoogle Scholar
  8. 8.
    Pike LJ (2003) Lipid rafts bringing order to chaos. J Lipid Res 44:655–667CrossRefGoogle Scholar
  9. 9.
    Bolboaca, S., & Jantschi, L. (2009) Amino acids sequence analysis on collagen. Bull Univ Agric Sci Vet Med Cluj Napoca 64(1–2)Google Scholar
  10. 10.
    Sherman VR, Yang W, Meyers MA (2015) The materials science of collagen. J Mech Behav Biomed Mater 52:22–50CrossRefGoogle Scholar
  11. 11.
    Gorgieva S, Kokol V (2011) Collagen- vs. gelatine-based biomaterials and their biocompatibility: review and perspectives. In: Pignatello R (ed) Biomaterials applications for nanomedicine. ISBN: 978-953-307-661-4. InTechGoogle Scholar
  12. 12.
    Wang M, Liu X, Lyu Z, Gu H, Li D, Chen H (2017) Glycosaminoglycans (GAGs) and GAG mimetics regulate the behavior of stem cell differentiation. Colloids Surf B: Biointerfaces 150:175–182CrossRefGoogle Scholar
  13. 13.
    Sze JH, Brownlie JC, Love CA (2016) Biotechnological production of hyaluronic acid: a mini review. 3 Biotech 6(1):67CrossRefGoogle Scholar
  14. 14.
    Kujawa MJ, Caplan AI (1986) Hyaluronic acid bonded to cell-culture surfaces stimulates chondrogenesis in stage 24 limb mesenchyme cell cultures. Dev Biol 114(2):504–518CrossRefGoogle Scholar
  15. 15.
    Deed R, Rooney P, Kumar P, Norton JD, Smith J, Freemont AJ, Kumar S (1997) Early-response gene signalling is induced by angiogenic oligosaccharides of hyaluronan in endothelial cells. Inhibition by non-angiogenic, high-molecular-weight hyaluronan. Int J Cancer 71(2):251–256CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vasif Hasirci
    • 1
  • Nesrin Hasirci
    • 2
  1. 1.BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, and Department of Biological SciencesMiddle East Technical UniversityAnkaraTurkey
  2. 2.BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, and Department of ChemistryMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations