Nano- and Microarchitecture of Biomaterial Surfaces

  • Vasif Hasirci
  • Nesrin Hasirci


Richard Feynman (winner of 1965 Nobel Prize in Physics) gave a talk at the American Physical Society meeting on December 29, 1959, titled “There’s Plenty of Room at the Bottom” at the California Institute of Technology (CalTech) upon which the whole discussion on the topic of nanotechnology started.


  1. 1.
  2. 2.
    Seghir R, Arscott S (2015) Controlled mud-crack patterning and self-organized cracking of polydimethylsiloxane elastomer surfaces. Sci Rep 5:14787.
  3. 3.
    Scanlon B (2012) Working from the bottom up. Innovation 10(5)Google Scholar
  4. 4.
    Kucukturhan A (2012) Investigation of PLGA Nanospheres as bioactive agent carriers for the treatment of skin diseases. MSc Thesis, Middle East Technical University, AnkaraGoogle Scholar
  5. 5.
    Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–115CrossRefGoogle Scholar
  6. 6.
    Oh KT, Yin H, Lee ES, Bae YH (2007) Polymeric Nanovehicles for anticancer drugs with triggering release mechanisms. J Mater Chem 17(38):3987–4001CrossRefGoogle Scholar
  7. 7.
    Kenar H (2009) 3D patterned cardiac tissue construct formation using biodegradable materials. PhD Thesis, Middle East Technical University, AnkaraGoogle Scholar
  8. 8.
    Yucel D (2009) PhD Thesis, Middle East Technical UniversityGoogle Scholar
  9. 9.
    Tsoi KM, Dai Q, Alman BA, Chan WC (2012) Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc Chem Res 46(3):662–671CrossRefGoogle Scholar
  10. 10.
    Curtis ASG, Gadegaard N, Dalby MJ, Riehle MO, Wilkinson CDW, Aitchison G (2004) Cells react to nanoscale order and symmetry in their surroundings. IEEE Trans Nanobiosci 3:61–65CrossRefGoogle Scholar
  11. 11.
    Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis ASG (2004) Changes in fibroblast morphology in response to nano-columns produced by colloidal lithography. Biomaterials 25:5415–5422CrossRefGoogle Scholar
  12. 12.
    Ainslie KM, Bachelder EM, Sharma G, Grimes C, Pishko MV (2007) Macrophage cell adhesion and inflammation cytokines on magnetostrictive nanowires. Nanotoxicology 1:279–290CrossRefGoogle Scholar
  13. 13.
    Lin H, Datar RH (2006) Medical applications of nanotechnology. Natl Med J India 19:27–32Google Scholar
  14. 14.
    Schindler M, Nur EKA, Ahmed I, Kamal J, Liu HY, Amor N, Ponery AS, Crockett DP, Grafe TH, Chung HY, Weik T, Jones E, Meiners S (2006) Living in three dimensions: 3D nanostructured environments for cell culture and regenerative medicine. Cell Biochem Biophys 45:215–227CrossRefGoogle Scholar
  15. 15.
    Hong S-H, Hwang J, Lee H (2009) Replication of cicada wing’s nano-patterns by hot embossing and UV nanoimprinting. Nanotechnology 20:385303CrossRefGoogle Scholar
  16. 16.
    Kim HN, Jiao A, Hwang NS, Kim MS, Kang DH, Kim D-H, Suh K-Y (2013) Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliv Rev 65:536–558CrossRefGoogle Scholar
  17. 17.
    Desai TA (2001) Micro- and nano structures for tissue engineering constructs. Med Eng Phys 22:595–606CrossRefGoogle Scholar
  18. 18.
    Skorb EV, Andreeva DV (2013) Surface nanoarchitecture for bio-applications: self-regulating intelligent interfaces. Adv Funct Mater 23:1–24CrossRefGoogle Scholar
  19. 19.
    Malmsten M (1998) Formation of adsorbed protein layers. J Colloid Interface Sci 207:186–199CrossRefGoogle Scholar
  20. 20.
    Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152CrossRefGoogle Scholar
  21. 21.
    Carter SB (1965) Principles of cell motility: the direction of cell movement and cancer invasion. Nature 208:1183–1187CrossRefGoogle Scholar
  22. 22.
    Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester JV, Bourne HR, Devreotes PN, McCaig CD, Penninger JM (2006) Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442:457–460CrossRefGoogle Scholar
  23. 23.
    Petrie RJ, Doyle AD, Yamada KM (2009) Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol 10:538–549CrossRefGoogle Scholar
  24. 24.
    Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr, Turner J, King JC, Lachlan-cope TA, Jones PD (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418:291CrossRefGoogle Scholar
  25. 25.
    Ozcelik H (2012) Interaction between micro And nano patterned polymeric surfaces and different cell types. PhD Thesis, Middle East Technical University, AnkaraGoogle Scholar
  26. 26.
    Falconnet D, Csucs G, Grandin HM, Textor M (2006) Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27:3044–3063CrossRefGoogle Scholar
  27. 27.
    Gates BD, Xu Q, Love JC, Wolfe DB, Whitesides GM (2004) Unconventional nanofabrication. Annu Rev Mater Res 34:339–372CrossRefGoogle Scholar
  28. 28.
    Adams TM, Layton RA (2010) Creating and transferring patterns—Photolithography. In: Introductory MEMS. Springer, New York, pp 65–94CrossRefGoogle Scholar
  29. 29.
    Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A, Couraud L, Launois H (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci 164:111–117CrossRefGoogle Scholar
  30. 30.
    Wnuk JD, Rosenberg SG, Gorham JM, van Dorp WF, Hagen CW, Fairbrother DH (2011) Electron beam deposition for nanofabrication: Insights from surface science. Surf Sci 605:257–266CrossRefGoogle Scholar
  31. 31.
    Romano-Rodríguez A, Hernández-Ramírez F (2007) Dual-beam focused ion beam (FIB): a prototyping tool for micro and nanofabrication. Microelectron Eng 84:789–792CrossRefGoogle Scholar
  32. 32.
    Wouters D, Schubert US (2004) Nanolithography and nanochemistry: probe-related patterning techniques and chemical modification for nanometer-sized devices. Angew Chemie 43:2480–2495CrossRefGoogle Scholar
  33. 33.
    Ginger DS, Zhang H, Mirkin CA (2004) The evolution of dip-pen nanolithography. Angew Chemie 43:30–45CrossRefGoogle Scholar
  34. 34.
    Salaita K, Wang Y, Mirkin CA (2007) Applications of dip-pen nanolithography. Nat Nanotechnol 2(3):145–155CrossRefGoogle Scholar
  35. 35.
    Rogers JA, Nuzzo RG (2005) Recent progress in soft lithography. Angew Chemie 8:50–56Google Scholar
  36. 36.
    Yang S-M, Jang SG, Choi D-G, Kim S, Yu HK (2006) Nanomachining by colloidal lithography. Small 2:458–475CrossRefGoogle Scholar
  37. 37.
    Xu C, Ohno K, Ladmiral V, Composto RJ (2008) Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers. Polymer 49:3568–3577CrossRefGoogle Scholar
  38. 38.
    Courtesy of Hasirci LabGoogle Scholar
  39. 39.
    Jackman RJ, Wilbur JL, Whitesides GM (1995) Fabrication of submicrometer features on curved substrates by microcontact printing. Science 269:664–666CrossRefGoogle Scholar
  40. 40.
    Liang L, Liu J, Windisch CF Jr, Exarhos GJ, Lin Y (2002) Direct assembly of large arrays of oriented conducting polymer nanowires. Angew Chemie 41:3665–3668CrossRefGoogle Scholar
  41. 41.
    Wu J, Mao Z, Han L, Xi J, Zhao Y, Gao C (2013) Directional migration of vascular smooth muscle cells guided by synergetic surface gradient and chemical pattern of poly(ethylene glycol) brushes. J Bioact Compat Polym 28:605–620CrossRefGoogle Scholar
  42. 42.
    Shekaran A, Garcia AJ (2011) Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering. Biochim Biophys Acta 1810:350–360CrossRefGoogle Scholar
  43. 43.
    Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302CrossRefGoogle Scholar
  44. 44.
    Douglas SM, Marblestone AH, Teerapittayanon S, Vazquez A, Church GM, Shih WM (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37:5001–5006CrossRefGoogle Scholar
  45. 45.
    Hung AM, Noh H, Cha JN (2010) Recent advances in DNA-based directed assembly on surfaces. Nanoscale 2:2530–2537CrossRefGoogle Scholar
  46. 46.
    Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557CrossRefGoogle Scholar
  47. 47.
    Vainrub A, Pettitt BM (2011) Accurate prediction of binding thermodynamics for DNA on surfaces. J Phys Chem B 115:13300–13303CrossRefGoogle Scholar
  48. 48.
    Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11:3610–3618CrossRefGoogle Scholar
  49. 49.
    Schlapak R, Armitage D, Saucedo-Zeni N, Chrzanowski W, Hohage M, Caruana D, Howorka S (2009) Selective and tunable passivation of surfaces. Soft Matt 5:613–621CrossRefGoogle Scholar
  50. 50.
    Qamhieh K, Nylander T, Ainalem M-L (2009) Analytical model study of dendrimer/DNA complexes. Biomacromolecules 10:1720–1726CrossRefGoogle Scholar
  51. 51.
    Xu W, Wang J-G, Jacobsen MF, Mura M, Yu M, Kelly REA, Meng Q-Q, Laegsgaard E, Stensgaard I, Linderoth TR, Kjems J, Kantorovich LN, Gothelf KV, Besenbacher F (2010) Supramolecular porous network formed by molecular recognition between chemically modified nucleobases guanine and cytosine. Angew Chemie 49(49):9373–9377CrossRefGoogle Scholar
  52. 52.
    Bald I, Wang Y, Dong M, Rosen CB, Ravnsbaek JB, Zhuang G, Gothelf KV, Wang J, Besenbacher F (2011) Control of self-assembled 2D nanostructures by methylation of guanine. Small 7:939–949CrossRefGoogle Scholar
  53. 53.
    Qing G, Xiong H, Seela F, Sun T (2010) Spatially controlled DNA nanopatterns by ‘click’ chemistry using oligonucleotides with different anchoring sites. J Am Chem Soc 132:15228–15232CrossRefGoogle Scholar
  54. 54.
    Carneiro KMM, Aldaye FA, Sleiman HF (2010) Long-range assembly of DNA into nanofibers and highly ordered networks using a block copolymer approach. J Am Chem Soc 132:679–685CrossRefGoogle Scholar
  55. 55.
    Ricoult SG, Thompson-Steckel G, Correia JP, Kennedy TE, Juncker D (2014) Tuning cell surface affinity to direct cell specific responses to patterned proteins. Biomaterials 35:727–736CrossRefGoogle Scholar
  56. 56.
    Wang L, Liu L, Li X, Magome N, Agladze K, Chen Y (2013) Multi-electrode monitoring of guided excitation in patterned cardiomyocytes. Microelectron Eng 111:267–271CrossRefGoogle Scholar
  57. 57.
    Meng F, Hlady V, Tresco PA (2012) Inducing alignment in astrocyte tissue constructs by surface ligands patterned on biomaterials. Biomaterials 33:1323–1335CrossRefGoogle Scholar
  58. 58.
    Miller DC, Haberstroh KM, Webster TJ (2005) Mechanism(s) of increased vascular cell adhesion on nanostructured poly(lactic-co-glycolic acid) films. J Biomed Mater Res A 73:476–484CrossRefGoogle Scholar
  59. 59.
    Cousins BG, Doherty PJ, Williams RL, Fink J, Garvey MJ (2004) The effect of silica nanoparticulate coatings on cellular response. J Mater Sci Mater Med 15:355–359CrossRefGoogle Scholar
  60. 60.
    Rice JM, Hunt JA, Gallagher JA, Hanarp P, Sutherland DS, Gold J (2003) Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro. Biomaterials 24:4799–4818CrossRefGoogle Scholar
  61. 61.
    Fan YW, Cui FZ, Hou SP, Xu QY, Chen LN, Lee I-S (2002) Culture of neural cells on silicon wafers with nano-scale surface topograph. J Neurosci Methods 120:17–23CrossRefGoogle Scholar
  62. 62.
    Buttiglieri S, Pasqui D, Migliori M, Johnstone H, Affrossman S, Sereni L, Wratten ML, Barbucci R, Tetta C, Camussi G (2003) Endothelization and adherence of leucocytes to nanostructured surfaces. Biomaterials 24:2731–2738CrossRefGoogle Scholar
  63. 63.
    Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18:1573–1583CrossRefGoogle Scholar
  64. 64.
    den Braber ET, de Ruijter JE, Ginsel LA, von Recum AF, Jansen JA (1996) Quantitative analysis of fibroblast morphology on microgrooved surfaces with various groove and ridge dimensions. Biomaterials 17:2037–2044CrossRefGoogle Scholar
  65. 65.
    Dormann A, Meisner S, Verin N, Wenk Lang A (2004) Self-expanding metal stents for gastroduodenal malignancies: systematic review of their clinical effectiveness. Endoscopy 36:543–550CrossRefGoogle Scholar
  66. 66.
    Togawa O, Kawabe T, Isayama H, Nakai Y, Sasaki T, Arizumi T, Matsubara S, Ito Y, Yamamoto N, Sasahira N, Hirano K, Tsujino T, Toda N, Tada M, Yoshida H, Omata M (2008) Management of occluded uncovered metallic stents in patients with malignant distal biliary obstructions using covered metallic stents. J Clin Gastroenterol 42:546–549CrossRefGoogle Scholar
  67. 67.
    Refai AK, Textor M, Brunette DM, Waterfield JD (2004) Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J Biomed Mater Res A 70:194–205CrossRefGoogle Scholar
  68. 68.
    Sun T, Tan H, Han D, Fu Q, Jiang L (2005) No platelet can adhere--largely improved blood compatibility on nanostructured superhydrophobic surfaces. Small 1:959–963CrossRefGoogle Scholar
  69. 69.
    Choi C-H, Hagvall SH, Wu BM, Dunn JCY, Beygui RE, Kim C-JCJ (2007) Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials 28:1672–1679CrossRefGoogle Scholar
  70. 70.
    Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis ASG (2005) Morphological and microarray analysis of human fibroblasts cultured on nanocolumns produced by colloidal lithography. Eur Cell Mater 9:1–8CrossRefGoogle Scholar
  71. 71.
    Lee J, Chu BH, Chen K-H, Ren F, Lele TP (2009) Randomly oriented, upright SiO2 coated nanorods for reduced adhesion of mammalian cells. Biomaterials 30:4488–4493CrossRefGoogle Scholar
  72. 72.
    Lovmand J, Justesen J, Foss M, Lauridsen RH, Lovmand M, Modin C, Besenbacher F, Pedersen FS, Duch M (2009) The use of combinatorial topographical libraries for the screening of enhanced osteogenic expression and mineralization. Biomaterials 30:2015–2022CrossRefGoogle Scholar
  73. 73.
    Riehle MO, Dalby MJ, Johnstone H, MacIntosh A, Affrossman S (2003) Cell behaviour of rat calvaria bone cells on surfaces with random nanometric features. Mater Sci Eng C 23:337–340CrossRefGoogle Scholar
  74. 74.
    Lim JY, Hansen JC, Siedlecki CA, Runt J, Donahue HJ (2005) Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces. J R Soc Interface 2:97–108CrossRefGoogle Scholar
  75. 75.
    Yang J-Y, Ting Y-C, Lai J-Y, Liu H-L, Fang H-W, Tsai W-B (2009) Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions. J Biomed Mater Res A 90:629–640CrossRefGoogle Scholar
  76. 76.
    Sjöström T, Dalby MJ, Hart A, Tare R, Oreffo ROC, Su B (2009) Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells. Acta Biomater 5:1433–14341CrossRefGoogle Scholar
  77. 77.
    Park J, Bauer S, Schlegel KA, Neukam FW, von der Mark K, Schmuki P (2009) TiO2 nanotube surfaces: 15 nm--an optimal length scale of surface topography for cell adhesion and differentiation. Small 5:666–671CrossRefGoogle Scholar
  78. 78.
    Park JK, Kim Y-J, Yeom J, Jeon JH, Yi G-C, Je JH, Hahn SK (2010) The topographic effect of zinc oxide nanoflowers on osteoblast growth and osseointegration. Adv Mater 22:4857–4861CrossRefGoogle Scholar
  79. 79.
    Ertorer E, Vasefi F, Keshwah J, Najiminaini M, Halfpap C, Langbein U, Carson JJL, Hamilton DW, Mittler S (2013) Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies. J Biomed Opt 18:035002CrossRefGoogle Scholar
  80. 80.
    Biggs MJP, Richards RG, Gadegaard N, Wilkinson CDW, Dalby MJ (2007) The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading. J Mater Sci Mater Med 18:399–404CrossRefGoogle Scholar
  81. 81.
    Dalby MJ, Gadegaard N, Riehle MO, Wilkinson CDW, Curtis ASG (2004) Investigating filopodia sensing using arrays of defined nano-pits down to 35 nm diameter in size. Int J Biochem Cell Biol 36:2005–2015CrossRefGoogle Scholar
  82. 82.
    Dalby MJ, Gadegaard N, Wilkinson CDW (2008) The response of fibroblasts to hexagonal nanotopography fabricated by electron beam lithography. J Biomed Mater Res A 84:973–979CrossRefGoogle Scholar
  83. 83.
    Dalby MJ, McCloy D, Robertson M, Agheli H, Sutherland D, Affrossman S, Oreffo ROC (2006) Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials 27:2980–2987CrossRefGoogle Scholar
  84. 84.
    Dalby MJ, Riehle MO, Johnstone HJH, Affrossman S, Curtis ASG (2003) Nonadhesive nanotopography: fibroblast response to poly(n –butyl methacrylate)– poly(styrene) demixed surface features. J Biomed Mater Res A 67:1025–1032CrossRefGoogle Scholar
  85. 85.
    Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New YorkGoogle Scholar
  86. 86.
    Lord MS, Cousins BG, Doherty PJ, Whitelock JM, Simmons A, Williams RL, Milthorpe BK (2006) The effect of silica nanoparticulate coatings on serum protein adsorption and cellular response. Biomaterials 27:4856–4862CrossRefGoogle Scholar
  87. 87.
    Hsu S-H, Tang C-M, Lin C-C (2004) Biocompatibility of poly(ɛ-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation. Biomaterials 25:5593–5601CrossRefGoogle Scholar
  88. 88.
    Lord MS, Foss M, Besenbacher F (2010) Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 5:66–78CrossRefGoogle Scholar
  89. 89.
    Teixeira AI, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF (2003) Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci 116:1881–1892CrossRefGoogle Scholar
  90. 90.
  91. 91.
    Wójciak-Stothard B, Curtis A, Monaghan W, MacDonald K, Wilkinson C (1996) Guidance and activation of murine macrophages by nanometric scale topography. Exp Cell Res 223:426–435CrossRefGoogle Scholar
  92. 92.
    Aydin E, Planell JA, Hasirci V (2011) Hydroxyapatite nanorod-reinforced biodegradable poly(L-lactic acid) composites for bone plate applications. J Mater Sci 22:2413–2427Google Scholar
  93. 93.
    Hasirci V, Pepe-Mooney B (2012) Understanding the cell behavior on nano-/micro-patterned surfaces. Nanomedicine (Lond) 7(9):1375–1389CrossRefGoogle Scholar
  94. 94.
    Wang X, Wang Y-Y, Gu Z-Z, Huang N-P (2011) Fabrication of nanostructured polymeric films and their geometric effects on cell growth. In: 2011 4th International conference on biomedical engineering and informatics, pp. 1228–1231Google Scholar
  95. 95.
    McConnachie LA, Botta D, White CC, Weldy CS, Wilkerson HW, Yu J et al (2013) The Glutathione Synthesis Gene Gclm Modulates Amphiphilic Polymer-Coated CdSe/ZnS Quantum Dot–Induced Lung Inflammation in Mice. PLoS One 8(5):e64165CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vasif Hasirci
    • 1
  • Nesrin Hasirci
    • 2
  1. 1.BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, and Department of Biological SciencesMiddle East Technical UniversityAnkaraTurkey
  2. 2.BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, and Department of ChemistryMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations