Advertisement

Contrast Agents in Cardiovascular Magnetic Resonance Imaging

  • David J. Murphy
  • Raymond Y. KwongEmail author
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Magnetic resonance imaging (MRI) is a powerful noninvasive cardiovascular imaging modality providing excellent soft tissue contrast. Tissue contrast can be further enhanced by the use of contrast agents, enhancing MRI’s diagnostic capabilities. Paramagnetic metals are ideal MRI contrast agents, with the lanthanide metal gadolinium preeminent in clinical cardiovascular MRI. Gadolinium-based contrast agents (GBCAs) increase image signal intensity by shortening T1 relaxation time, improving image contrast. GBCAs consist of free gadolinium ion, which is attached to a chelator to reduce toxicity. There are currently nine approved GBCAs, which can be categorized as linear or macrocyclic, depending on the chemical structure of the chelate. GBCA administration can be associated with adverse effects such as allergic-like reactions, nephrogenic systemic fibrosis, and neuronal deposition. There are non-gadolinium-based contrast agents with potential cardiovascular MRI applications, such as the iron-based agent ferumoxytol and manganese-based contrast agents.

Keywords

Magnetic resonance imaging Magnetic resonance angiography Cardiac magnetic resonance Gadolinium Gadolinium-based contrast agents Nephrogenic systemic fibrosis Anaphylaxis 

References

  1. 1.
    Damadian R, Goldsmith M, Minkoff L. NMR in cancer: XVI. FONAR image of the live human body. Physiol Chem Phys. 1977;9(1):97–100, 108.PubMedGoogle Scholar
  2. 2.
    Shokrollahi H. Contrast agents for MRI. Mater Sci Eng C Mater Biol Appl. 2013;33(8):4485–97.PubMedCrossRefGoogle Scholar
  3. 3.
    Bottrill M, Kwok L, Long NJ. Lanthanides in magnetic resonance imaging. Chem Soc Rev. 2006;35(6):557–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Brady TJ, Goldman MR, Pykett IL, Buonanno FS, Kistler JP, Newhouse JH, et al. Proton nuclear magnetic resonance imaging of regionally ischemic canine hearts: effect of paramagnetic proton signal enhancement. Radiology. 1982;44(2):343–7.CrossRefGoogle Scholar
  5. 5.
    Young IR, Clarke GJ, Bailes DR, Pennock JM, Doyle FH, Bydder GM. Enhancement of relaxation rate with paramagnetic contrast agents in NMR imaging. J Comput Tomogr. 1981;5(6):543–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Weinmann HJ, Brasch RC, Press WR, Wesbey GE. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol. 1984;142(3):619–24.CrossRefGoogle Scholar
  7. 7.
    Laniado M, Weinmann HJ, Schörner W, Felix R, Speck U. First use of GdDTPA/dimeglumine in man. Physiol Chem Phys Med NMR. 1984;16(2):157–65.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Lohrke J, Frenzel T, Endrikat J, Alves FC, Grist TM, Law M, et al. 25 years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther. 2016;33(1):1–28.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sherry AD, Caravan P, Lenkinski RE. Primer on gadolinium chemistry. J Magn Reson Imaging. 2009;30(6):1240–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Port M, Idée J-M, Medina C, Robic C, Sabatou M, Corot C. Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review. Biometals. 2008;21(4):469–90.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Oksendal AN, Hals PA. Biodistribution and toxicity of MR imaging contrast media. J Magn Reson Imaging. 1993;3(1):157–65.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann H-J. Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Investig Radiol. 2008;43(12):817–28.CrossRefGoogle Scholar
  13. 13.
    Hao D, Ai T, Goerner F, Hu X, Runge VM, Tweedle M. MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging. 2012;36(5):1060–71.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Laurent S, Elst LV, Muller RN. Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Media Mol Imaging. 2006;1(3):128–37.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Tweedle MF, Hagan JJ, Kumar K, Mantha S, Chang CA. Reaction of gadolinium chelates with endogenously available ions. Magn Reson Imaging. 1991;9(3):409–15.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Schmitt-Willich H. Stability of linear and macrocyclic gadolinium based contrast agents. Br J Radiol. 2007;80(955):581–2.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Runge VM, Dickey KM, Williams NM, Peng X. Local tissue toxicity in response to extravascular extravasation of magnetic resonance contrast media. Investig Radiol. 2002;37(7):393–8.CrossRefGoogle Scholar
  18. 18.
    Rose TA, Choi JW. Intravenous imaging contrast media complications: the basics that every clinician needs to know. Am J Med. 2015;128(9):943–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Aime S, Caravan P. Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J Magn Reson Imaging. 2009;30(6):1259–67.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Seale MK, Catalano OA, Saini S, Hahn PF, Sahani DV. Hepatobiliary-specific MR contrast agents: role in imaging the liver and biliary tree. Radiographics. 2009;29(6):1725–48.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Tombach B, Bremer C, Reimer P, Schaefer RM, Ebert W, Geens V, et al. Pharmacokinetics of 1M gadobutrol in patients with chronic renal failure. Investig Radiol. 2000;35(1):35–40.CrossRefGoogle Scholar
  22. 22.
    Schuhmann-Giampieri G, Krestin G. Pharmacokinetics of Gd-DTPA in patients with chronic renal failure. Investig Radiol. 1991;26(11):975–9.CrossRefGoogle Scholar
  23. 23.
    de Haën C, Cabrini M, Akhnana L, Ratti D, Calabi L, Gozzini L. Gadobenate dimeglumine 0.5 M solution for injection (MultiHance) pharmaceutical formulation and physicochemical properties of a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr. 1999;23(Suppl 1):S161–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Huppertz A, Balzer T, Blakeborough A, Breuer J, Giovagnoni A, Heinz-Peer G, et al. Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology. 2004;230(1):266–75.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Caravan P, Cloutier NJ, Greenfield MT, McDermid SA, Dunham SU, Bulte JWM, et al. The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc. 2002;124(12):3152–62.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Lauffer RB, Parmelee DJ, Dunham SU, Ouellet HS, Dolan RP, Witte S, et al. MS-325: albumin-targeted contrast agent for MR angiography. Radiology. 1998;2:529–38.CrossRefGoogle Scholar
  27. 27.
    Grist TM, Korosec FR, Peters DC, Witte S, Walovitch RC, Dolan RP, et al. Steady-state and dynamic MR angiography with MS-325: initial experience in humans. Radiology. 1998;207(2):539–44.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Parmelee DJ, Walovitch RC, Ouellet HS, Lauffer RB. Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging. Investig Radiol. 1997;32(12):741–7.CrossRefGoogle Scholar
  29. 29.
    Sabach AS, Bruno M, Kim D, Mulholland T, Lee L, Kaura S, et al. Gadofosveset trisodium: abdominal and peripheral vascular applications. Am J Roentgenol. 2013;200(6):1378–86.CrossRefGoogle Scholar
  30. 30.
    Spanakis M, Marias K. In silico evaluation of gadofosveset pharmacokinetics in different population groups using the Simcyp simulator platform. In Silico Pharmacol. 2014 Dec;2(1):1–9.CrossRefGoogle Scholar
  31. 31.
    Caravan P, Comuzzi C, Crooks W, McMurry TJ, Choppin GR, Woulfe SR. Thermodynamic stability and kinetic inertness of MS-325, a new blood pool agent for magnetic resonance imaging. Inorg Chem. 2001;40(9):2170–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Wendland MF, Saeed M, Masui T, Derugin N, Higgins CB. First pass of an MR susceptibility contrast agent through normal and ischemic heart: gradient-recalled echo-planar imaging. J Magn Reson Imaging. 1993;3(5):755–60.PubMedCrossRefGoogle Scholar
  33. 33.
    Sakuma H, O’Sullivan M, Lucas J, Wendland MF, Saeed M, Dulce MC, et al. Effect of magnetic susceptibility contrast medium on myocardial signal intensity with fast gradient-recalled echo and spin-echo MR imaging: initial experience in humans. Radiology. 1994;190(1):161–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Dumas S, Jacques V, Sun W-C, Troughton JS, Welch JT, Chasse JM, et al. High relaxivity magnetic resonance imaging contrast agents. Part 1. Impact of single donor atom substitution on relaxivity of serum albumin-bound gadolinium complexes. Investig Radiol. 2010;45(10):600–12.CrossRefGoogle Scholar
  35. 35.
    Varga-Szemes A, Kiss P, Rab A, Suranyi P, Lenkey Z, Simor T, et al. In vitro Longitudinal Relaxivity Profile of Gd(ABE-DTTA), an investigational magnetic resonance imaging contrast agent. Radiographics. 2016;11(2):e0149260.Google Scholar
  36. 36.
    Brockow K, Ring J. Anaphylaxis to radiographic contrast media. Curr Opin Allergy Clin Immunol. 2011;11(4):326–31.PubMedCrossRefGoogle Scholar
  37. 37.
    American College of Radiology (ACR). ACR Committee on Drugs and Contrast Media. ACR Manual on Contrast Media Version 10.1 2015. Available from: http://www.acr.org/~/media/37D84428BF1D4E1B9A3A2918DA9E27A3.pdf. Last accessed 26 Feb 2017.
  38. 38.
    Prince MR, Zhang H, Zou Z, Staron RB, Brill PW. Incidence of immediate gadolinium contrast media reactions. Am J Roentgenol. 2011;196(2):W138–43.CrossRefGoogle Scholar
  39. 39.
    Dillman JR, Ellis JH, Cohan RH, Strouse PJ, Jan SC. Frequency and severity of acute allergic-like reactions to gadolinium-containing i.v. contrast media in children and adults. Am J Roentgenol. 2007;189(6):1533–8.CrossRefGoogle Scholar
  40. 40.
    Aran S, Shaqdan KW, Abujudeh HH. Adverse allergic reactions to linear ionic gadolinium-based contrast agents: experience with 194, 400 injections. Clin Radiol. 2015;70(5):466–75.PubMedCrossRefGoogle Scholar
  41. 41.
    Bruder O, Schneider S, Pilz G, van Rossum AC, Schwitter J, Nothnagel D, et al. Update on acute adverse reactions to gadolinium based contrast agents in cardiovascular MR. large multi-national and multi-ethnical population experience with 37788 patients from the EuroCMR registry. J Cardiovasc Magn Reson. 2015;17:58.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Palkowitsch PK, Bostelmann S, Lengsfeld P. Safety and tolerability of iopromide intravascular use: a pooled analysis of three non-interventional studies in 132,012 patients. Acta Radiol. 2014;55(6):707–14.PubMedCrossRefGoogle Scholar
  43. 43.
    Raisch DW, Garg V, Arabyat R, Shen X, Edwards BJ, Miller FH, et al. Anaphylaxis associated with gadolinium-based contrast agents: data from the Food and Drug Administration’s adverse event reporting system and review of case reports in the literature. Expert Opin Drug Saf. 2014;13(1):15–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Beckett KR, Moriarity AK, Langer JM. Safe use of contrast media: what the radiologist needs to know. Radiographics. 2015;35(6):1738–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Jung J-W, Kang H-R, Kim M-H, Lee W, Min K-U, Han M-H, et al. Immediate hypersensitivity reaction to gadolinium-based MR contrast media. Radiology. 2012;264(2):414–22.CrossRefGoogle Scholar
  46. 46.
    The Royal College of Radiologists. Standards for intravascular contrast agent administration to adult patients. 3rd ed. London: Royal College of Radiologists; 2015. p. 1–22. Available from: https://www.rcr.ac.uk/sites/default/files/Intravasc_contrast_web.pdf. Last accessed 26 Feb 2017.
  47. 47.
    Jingu A, Fukuda J, Taketomi-Takahashi A, Tsushima Y. Breakthrough reactions of iodinated and gadolinium contrast media after oral steroid premedication protocol. BMC Med Imaging. 2014;14:34.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kribben A, Witzke O, Hillen U, Barkhausen J, Daul AE, Erbel R. Nephrogenic systemic fibrosis: pathogenesis, diagnosis, and therapy. J Am Coll Cardiol. 2009;53(18):1621–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Thomsen HS. Nephrogenic systemic fibrosis: a serious adverse reaction to gadolinium – 1997–2006–2016. Part 1. Acta Radiol. 2016;57(5):515–20.PubMedCrossRefGoogle Scholar
  50. 50.
    Girardi M, Kay J, Elston DM, Leboit PE, Abu-Alfa A, Cowper SE. Nephrogenic systemic fibrosis: clinicopathological definition and workup recommendations. J Am Acad Dermatol. 2011;65(6):1095–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Grobner T. Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21(4):1104–8.CrossRefGoogle Scholar
  52. 52.
    U.S. Food and Drug Administration. A Public Health Advisory. Gadolinium-containing contrast agents for magnetic resonance imaging (MRI). 2006. Available from: http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/DrugSafetyInformationforHeathcareProfessionals/PublicHealthAdvisories/ucm053112.htm. Last accessed 26 Feb 2017.
  53. 53.
    European Medicines Agency. Vasovist and nephrogenic systemic fibrosis (NSF). 2009. Available from: http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2009/11/news_detail_000418.jsp&mid=WC0b01ac058004d5c1. Last accessed 26 Feb 2017.
  54. 54.
    Abujudeh HH, Kaewlai R, Kagan A, Chibnik LB, Nazarian RM, High WA, et al. Nephrogenic systemic fibrosis after gadopentetate dimeglumine exposure: case series of 36 patients. Radiology. 2009;253(1):81–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Larson KN, Gagnon AL, Darling MD, Patterson JW, Cropley TG. Nephrogenic systemic fibrosis manifesting a decade after exposure to gadolinium. JAMA Dermatol. 2015;151(10):1117–20.PubMedCrossRefGoogle Scholar
  56. 56.
    Daftari Besheli L, Aran S, Shaqdan K, Kay J, Abujudeh H. Current status of nephrogenic systemic fibrosis. Clin Radiol. 2014;69(7):661–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Rydahl C, Thomsen HS, Marckmann P. High prevalence of nephrogenic systemic fibrosis in chronic renal failure patients exposed to gadodiamide, a gadolinium-containing magnetic resonance contrast agent. Investig Radiol. 2008;43(2):141–4.CrossRefGoogle Scholar
  58. 58.
    Shabana WM, Cohan RH, Ellis JH, Hussain HK, Francis IR, Su LD, et al. Nephrogenic systemic fibrosis: a report of 29 cases. Am J Roentgenol. 2008 Mar;190(3):736–41.CrossRefGoogle Scholar
  59. 59.
    Edwards BJ, Laumann AE, Nardone B, Miller FH, Restaino J, Raisch DW, et al. Advancing pharmacovigilance through academic-legal collaboration: the case of gadolinium-based contrast agents and nephrogenic systemic fibrosis-a research on adverse drug events and reports (RADAR) report. Br J Radiol. 2014;87(1042):20140307.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Thomsen HS, Marckmann P. Extracellular Gd-CA: differences in prevalence of NSF. Eur J Radiol. 2008;66(2):180–3.PubMedCrossRefGoogle Scholar
  61. 61.
    Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA. Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. Am J Roentgenol. 2007;188(2):586–92.CrossRefGoogle Scholar
  62. 62.
    Swaminathan S, Horn TD, Pellowski D, Abul-Ezz S, Bornhorst JA, Viswamitra S, et al. Nephrogenic systemic fibrosis, gadolinium, and iron mobilization. N Engl J Med. 2007;357(7):720–2.PubMedCrossRefGoogle Scholar
  63. 63.
    Kimura J, Ishiguchi T, Matsuda J, Ohno R, Nakamura A, Kamei S, et al. Human comparative study of zinc and copper excretion via urine after administration of magnetic resonance imaging contrast agents. Radiat Med. 2005;23(5):322–6.PubMedGoogle Scholar
  64. 64.
    High WA, Ayers RA, Chandler J, Zito G, Cowper SE. Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol. 2007;56(1):21–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals. 2016;29(3):365–76.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Cuffy MC, Singh M, Formica R, Simmons E, Abu Alfa AK, Carlson K, et al. Renal transplantation for nephrogenic systemic fibrosis: a case report and review of the literature. Nephrol Dial Transplant. 2011;26(3):1099–101.PubMedCrossRefGoogle Scholar
  67. 67.
    Thomsen HS. Nephrogenic systemic fibrosis: a serious adverse reaction to gadolinium – 1997–2006–2016. Part 2. Acta Radiol. 2016;57(6):643–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Reilly RF. Risk for nephrogenic systemic fibrosis with gadoteridol (ProHance) in patients who are on long-term hemodialysis. Am Heart J. 2008;3(3):747–51.Google Scholar
  69. 69.
    Amet S, Launay-Vacher V, Clément O, Frances C, Tricotel A, Stengel B, et al. Incidence of nephrogenic systemic fibrosis in patients undergoing dialysis after contrast-enhanced magnetic resonance imaging with gadolinium-based contrast agents: the prospective Fibrose Nephrogénique Systémique study. Investig Radiol. 2014;49(2):109–15.CrossRefGoogle Scholar
  70. 70.
    Khawaja AZ, Cassidy DB, Shakarchi Al J, McGrogan DG, Inston NG, Jones RG. Revisiting the risks of MRI with gadolinium based contrast agents-review of literature and guidelines. Insights Imaging. 2015;6(5):553–8.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    European Society of Urogenital Radiology (ESUR). ESUR Contrast Media Safety Committee. ESUR Guidelines on Contrast Media 9.0. 2014. Available from: http://www.esur.org/esur-guidelines/. Last accessed 26 Feb 2017.
  72. 72.
    McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275(3):772–82.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Stojanov DA, Aracki-Trenkic A, Vojinovic S, Benedeto-Stojanov D, Ljubisavljevic S. Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol. 2016;26(3):807–15.PubMedCrossRefGoogle Scholar
  74. 74.
    Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-based contrast agent accumulation and toxicity: an update. Am J Neuroradiol. 2016;37(7):1192–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Kanda T, Osawa M, Oba H, Toyoda K, Kotoku J, Haruyama T, et al. High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology. 2015;275(3):803–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Robert P, Lehericy S, Grand S, Violas X, Fretellier N, Idée J-M, et al. T1-weighted Hypersignal in the deep cerebellar nuclei after repeated administrations of gadolinium-based contrast agents in healthy rats: difference between linear and macrocyclic agents. Investig Radiol. 2015;50(8):473–80.CrossRefGoogle Scholar
  77. 77.
    Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, et al. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Investig Radiol. 2016;51(7):447–53.CrossRefGoogle Scholar
  78. 78.
    Roberts DR, Lindhorst SM, Welsh CT, Maravilla KR, Herring MN, Braun KA, et al. High levels of gadolinium deposition in the skin of a patient with normal renal function. Investig Radiol. 2016;51(5):280–9.Google Scholar
  79. 79.
    Darrah TH, Prutsman-Pfeiffer JJ, Poreda RJ, Ellen Campbell M, Hauschka PV, Hannigan RE. Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics. 2009;1(6):479–88.PubMedCrossRefGoogle Scholar
  80. 80.
    Food and Drug Administration (FDA). FDA Drug Safety Communication (2015) FDA evaluating the risk of brain deposits with repeated use of gadolinium-based contrast agents for magnetic resonance imaging (MRI). Available from: http://www.fda.gov/Drugs/DrugSafety/ucm455386.htm. Last accessed 26 Feb 2017.
  81. 81.
    Brody AS, Sorette MP, Gooding CA, Listerud J, Clark MR, Mentzer WC, et al. AUR memorial Award. Induced alignment of flowing sickle erythrocytes in a magnetic field. A preliminary report. Investig Radiol. 1985;20(6):560–6.CrossRefGoogle Scholar
  82. 82.
    Dillman JR, Ellis JH, Cohan RH, Caoili EM, Hussain HK, Campbell AD, et al. Safety of gadolinium-based contrast material in sickle cell disease. J Magn Reson Imaging. 2011;34(4):917–20.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Hatje V, Bruland KW, Flegal AR. Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in San Francisco Bay over a 20 year record. Environ Sci Technol. 2016;50(8):4159–68.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Rabiet M, Brissaud F, Seidel JL, Pistre S, Elbaz-Poulichet F. Positive gadolinium anomalies in wastewater treatment plant effluents and aquatic environment in the Hérault watershed (South France). Chemosphere. 2009;75(8):1057–64.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Kulaksız S, Bau M. Rare earth elements in the Rhine River, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environ Int. 2011;37(5):973–9.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Telgmann L, Wehe CA, Birka M, Künnemeyer J, Nowak S, Sperling M, et al. Speciation and isotope dilution analysis of gadolinium-based contrast agents in wastewater. Environ Sci Technol. 2012;46(21):11929–36.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Bietenbeck M, Florian A, Sechtem U, Yilmaz A. The diagnostic value of iron oxide nanoparticles for imaging of myocardial inflammation – quo vadis? J Cardiovasc Magn Reson. 2015;17:54.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Prince MR, Zhang HL, Chabra SG, Jacobs P, Wang Y. A pilot investigation of new superparamagnetic iron oxide (ferumoxytol) as a contrast agent for cardiovascular MRI. J Xray Sci Technol. 2003;11(4):231–40.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Lu M, Cohen MH, Rieves D, Pazdur R. FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010;85(5):315–9.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Hope MD, Hope TA, Zhu C, Faraji F, Haraldsson H, Ordovas KG, et al. Vascular imaging with Ferumoxytol as a contrast agent. Am J Roentgenol. 2015;205(3):W366–73.CrossRefGoogle Scholar
  91. 91.
    Gkagkanasiou M, Ploussi A, Gazouli M, Efstathopoulos EP. USPIO-enhanced MRI neuroimaging: a review. J Neuroimaging. 2016;26(2):161–8.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Vasanawala SS, Nguyen K-L, Hope MD, Bridges MD, Hope TA, Reeder SB, et al. Safety and technique of ferumoxytol administration for MRI. Magn Reson Med. 2016;75(5):2107–11.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Food and Drug Administration (FDA). FDA Drug Safety Communication: FDA strengthens warnings and changes prescribing instructions to decrease the risk of serious allergic reactions with anemia drug Feraheme (ferumoxytol) 2015. Available from: http://www.fda.gov/Drugs/DrugSafety/ucm440138.htm. Last accessed 26 Feb 2017.
  94. 94.
    Bircher AJ, Auerbach M. Hypersensitivity from intravenous iron products. Immunol Allergy Clin North Am. 2014;34(3):707–23.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Mukundan S, Steigner ML, Hsiao L-L, Malek SK, Tullius SG, Chin MS, et al. Ferumoxytol-enhanced magnetic resonance imaging in late-stage CKD. Am J Kidney Dis. 2016;67(6):984–8.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Fananapazir G, Marin D, Suhocki PV, Kim CY, Bashir MR. Vascular artifact mimicking thrombosis on MR imaging using ferumoxytol as a contrast agent in abdominal vascular assessment. J Vasc Interv Radiol. 2014;25(6):969–76.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Hanneman K, Kino A, Cheng JY, Alley MT, Vasanawala SS. Assessment of the precision and reproducibility of ventricular volume, function, and mass measurements with ferumoxytol-enhanced 4D flow MRI. J Magn Reson Imaging. 2016;44(2):383–92.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Yilmaz A, Dengler MA, van der Kuip H, Yildiz H, Rösch S, Klumpp S, et al. Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach. Eur Heart J. 2013;34(6):462–75.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Alam SR, Shah ASV, Richards J, Lang NN, Barnes G, Joshi N, et al. Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction: early clinical experience. Circ Cardiovasc Imaging. 2012;5(5):559–65.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Alam SR, Stirrat C, Richards J, Mirsadraee S, Semple SIK, Tse G, et al. Vascular and plaque imaging with ultrasmall superparamagnetic particles of iron oxide. J Cardiovasc Magn Reson. 2015;17:83.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Burke C, Alexander Grant L, Goh V, Griffin N. The role of hepatocyte-specific contrast agents in hepatobiliary magnetic resonance imaging. Semin Ultrasound CT MR. 2013;34(1):44–53.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Fernandes JL, Storey P, da Silva JA, de Figueiredo GS, Kalaf JM, Coelho OR. Preliminary assessment of cardiac short term safety and efficacy of manganese chloride for cardiovascular magnetic resonance in humans. J Cardiovasc Magn Reson. 2011;13:6.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Thurnher S, Miller S, Schneider G, Ballarati C, Bongartz G, Herborn CU, et al. Diagnostic performance of gadobenate dimeglumine enhanced MR angiography of the iliofemoral and calf arteries: a large-scale multicenter trial. Am J Roentgenol. 2007;189(5):1223–37.CrossRefGoogle Scholar
  104. 104.
    Camren GP, Wilson GJ, Bamra VR, Nguyen KQ, Hippe DS, Maki JH. A comparison between gadofosveset trisodium and gadobenate dimeglumine for steady state MRA of the thoracic vasculature. Biomed Res Int. 2014;2014:Article ID 625614, 6 pages.CrossRefGoogle Scholar
  105. 105.
    Christie A, Chandramohan S, Roditi G. Comprehensive MRA of the lower limbs including high-resolution extended-phase infra-inguinal imaging with gadobenate dimeglumine: initial experience with inter-individual comparison to the blood-pool contrast agent gadofosveset trisodium. Clin Radiol. 2013;68(2):125–30.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Frydrychowicz A, Russe MF, Bock J, Stalder AF, Bley TA, Harloff A, et al. Comparison of gadofosveset trisodium and gadobenate dimeglumine during time-resolved thoracic MR angiography at 3T. Acad Radiol. 2010;17(11):1394–400.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Erb-Eigner K, Taupitz M, Asbach P. Equilibrium-phase MR angiography: comparison of unspecific extracellular and protein-binding gadolinium-based contrast media with respect to image quality. Contrast Media Mol Imaging. 2016;11(1):71–6.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Deray G, Rouviere O, Bacigalupo L, Maes B, Hannedouche T, Vrtovsnik F, et al. Safety of meglumine gadoterate (Gd-DOTA)-enhanced MRI compared to unenhanced MRI in patients with chronic kidney disease (RESCUE study). Eur Radiol. 2013;23(5):1250–9.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Ishiguchi T, Takahashi S. Safety of gadoterate meglumine (Gd-DOTA) as a contrast agent for magnetic resonance imaging: results of a post-marketing surveillance study in Japan. Drugs R D. 2010;10(3):133–45.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53.CrossRefGoogle Scholar
  111. 111.
    Jerosch-Herold M, Kwong RY. Magnetic resonance imaging in the assessment of ventricular remodeling and viability. Radiographics. 2008;5(1):5–10.Google Scholar
  112. 112.
    Rudolph A, Messroghli D, Knobelsdorff-Brenkenhoff von F, Traber J, Schüler J, Wassmuth R, et al. Prospective, randomized comparison of gadopentetate and gadobutrol to assess chronic myocardial infarction applying cardiovascular magnetic resonance. BMC Med Imaging. 2015;15:55.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Heydari B, Jerosch-Herold M, Kwong RY. Assessment of myocardial ischemia with cardiovascular magnetic resonance. Prog Cardiovasc Dis. 2011;54(3):191–203.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, et al. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation. 2003;108(4):432–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Heydari B, Kwong RY, Jerosch-Herold M. Technical advances and clinical applications of quantitative myocardial blood flow imaging with cardiac MRI. Prog Cardiovasc Dis. 2015;57(6):615–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Non-invasive Cardiovascular Imaging, Radiology Division, Department of RadiologyBrigham and Women’s HospitalBostonUSA
  2. 2.Non-invasive Cardiovascular Imaging, Cardiovascular Division, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations