Congenital Heart Disease: Indications, Patient Preparation, and Simple Lesions

  • Rahul H. Rathod
  • Andrew J. PowellEmail author
Part of the Contemporary Cardiology book series (CONCARD)


Technical advances over the past two decades have greatly expanded the diagnostic role of cardiac magnetic resonance (CMR) in pediatric and adult patients with congenital heart disease. The first part of this chapter reviews the indications, patient preparation and monitoring, and sedation strategies for CMR in patients with congenital heart disease. The second part of this chapter details the CMR evaluation of several “simple” congenital heart lesions: atrial septal defects and other interatrial communications, ventricular septal defects, patent ductus arteriosus, partially anomalous pulmonary venous connections, coarctation of the aorta, and vascular rings. Despite being classified as “simple”, many of the conditions in this chapter have important anatomic subtypes and variable physiology. Thus, summaries of the anatomic considerations and clinical management decisions are provided for each lesion.


Cardiac magnetic resonance Congenital heart disease Atrial septal defect Ventricular septal defect Patent ductus arteriosus Partially anomalous pulmonary venous connection Coarctation Vascular ring 

Supplementary material

Video 20.1a

(AVI 4938 kb)

Video 20.1b

(AVI 3036 kb)

Video 20.2a

(MPG 2118 kb)

Video 20.2b

(MPG 2313 kb)

Video 20.3

(AVI 2604 kb)

Video 20.4

(AVI 1947 kb)

Video 20.5

(AVI 9823 kb)

Video 20.6

(AVI 12019 kb)

Video 20.7

(AVI 18356 kb)

Video 20.8a

(MPG 1729 kb)

Video 20.8b

(AVI 21595 kb)

Video 20.9

(AVI 24215 kb)

Video 20.10

(AVI 22627 kb)


  1. 1.
    Walsh MA, Noga M, Rutledge J. Cumulative radiation exposure in pediatric patients with congenital heart disease. Pediatr Cardiol. 2015;36(2):289–94. Epub 2014PubMedCrossRefGoogle Scholar
  2. 2.
    Ait-Ali L, Andreassi MG, Foffa I, Spadoni I, Vano E, Picano E. Cumulative patient effective dose and acute radiation-induced chromosomal DNA damage in children with congenital heart disease. Heart. 2010;96:269–74.PubMedCrossRefGoogle Scholar
  3. 3.
    Song S, Liu C, Zhang M. Radiation dose and mortality risk to children undergoing therapeutic interventional cardiology. Acta Radiol. 2015;56(7):867–72. Epub 2014PubMedCrossRefGoogle Scholar
  4. 4.
    Glatz AC, Purrington KS, Klinger A, King AR, Hellinger J, Zhu X, et al. Cumulative exposure to medical radiation for children requiring surgery for congenital heart disease. J Pediatr. 2014;164:789–94. e710PubMedCrossRefGoogle Scholar
  5. 5.
    Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Valsangiacomo Buechel ER, et al. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson. 2013;15:51.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kilner PJ, Geva T, Kaemmerer H, Trindade PT, Schwitter J, Webb GD. Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the european society of cardiology. Eur Heart J. 2010;31:794–805.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    American College of Cardiology Foundation Task Force on Expert Consensus D, Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: A report of the american college of cardiology foundation task force on expert consensus documents. Circulation. 2010;121:2462–508.CrossRefGoogle Scholar
  8. 8.
    Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, et al. Society for cardiovascular magnetic resonance; working group on cardiovascular magnetic resonance of the European Society of Cardiology. Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. J Cardiovasc Magn Reson. 2004;6:727–65.PubMedCrossRefGoogle Scholar
  9. 9.
    Moghari MH, Komarlu R, Annese D, Geva T, Powell AJ. Free-breathing steady-state free precession cine cardiac magnetic resonance with respiratory navigator gating. Magn Reson Med Magn Reson Med. 2015;73(4):1555–61.PubMedCrossRefGoogle Scholar
  10. 10.
    Harned RK 2nd, Strain JD. MRI-compatible audio/visual system: impact on pediatric sedation. Pediatr Radiol. 2001;31:247–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Windram J, Grosse-Wortmann L, Shariat M, Greer ML, Crawford MW, Yoo SJ. Cardiovascular MRI without sedation or general anesthesia using a feed-and-sleep technique in neonates and infants. Pediatr Radiol. 2012;42:183–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Gutierrez FR. Magnetic resonance imaging of congenital heart disease. Top Magn Reson Imaging. 1995;7:246–57.PubMedCrossRefGoogle Scholar
  13. 13.
    Masui T, Katayama M, Kobayashi S, Ito T, Seguchi M, Koide M, et al. Gadolinium-enhanced MR angiography in the evaluation of congenital cardiovascular disease pre- and postoperative states in infants and children. J Magn Reson Imaging. 2000;12:1034–42.PubMedCrossRefGoogle Scholar
  14. 14.
    Schlesinger AE, Hernandez RJ. Magnetic resonance imaging in congenital heart disease in children. Tex Heart Inst J. 1996;23:128–43.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Fogel MA, Donofrio MT, Ramaciotti C, Hubbard AM, Weinberg PM. Magnetic resonance and echocardiographic imaging of pulmonary artery size throughout stages of Fontan reconstruction. Circulation. 1994;90:2927–36.PubMedCrossRefGoogle Scholar
  16. 16.
    Beekman RP, Hoorntje TM, Beek FJ, Kuijten RH. Sedation for children undergoing magnetic resonance imaging: efficacy and safety of rectal thiopental. Eur J Pediatr. 1996;155:820–2.PubMedCrossRefGoogle Scholar
  17. 17.
    Didier D, Ratib O, Beghetti M, Oberhaensli I, Friedli B. Morphologic and functional evaluation of congenital heart disease by magnetic resonance imaging. J Magn Reson Imaging. 1999;10:639–55.PubMedCrossRefGoogle Scholar
  18. 18.
    Tsai-Goodman B, Geva T, Odegard KC, Sena LM, Powell AJ. Clinical role, accuracy, and technical aspects of cardiovascular magnetic resonance imaging in infants. Am J Cardiol. 2004;94:69–74.PubMedCrossRefGoogle Scholar
  19. 19.
    Odegard KC, DiNardo JA, Tsai-Goodman B, Powell AJ, Geva T, Laussen PC. Anaesthesia considerations for cardiac MRI in infants and small children. Paediatr Anaesth. 2004;14:471–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Ahmed S, Shellock FG. Magnetic resonance imaging safety: implications for cardiovascular patients. J Cardiovasc Magn Reson. 2001;3:171–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Shellock FG, O’Neil M, Ivans V, Kelly D, O’Connor M, et al. Cardiac pacemakers and implantable cardioverter defibrillators are unaffected by operation of an extremity MR imaging system. AJR Am J Roentgenol. 1999;172:165–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Loewy J, Loewy A, Kendall EJ. Reconsideration of pacemakers and MR imaging. Radiographics. 2004;24:1257–67. discussion 1267–1258PubMedCrossRefGoogle Scholar
  23. 23.
    Martin ET, Coman JA, Shellock FG, Pulling CC, Fair R, Jenkins K. Magnetic resonance imaging and cardiac pacemaker safety at 1.5-tesla. J Am Coll Cardiol. 2004;43:1315–24.PubMedCrossRefGoogle Scholar
  24. 24.
    Naehle CP, Kreuz J, Strach K, Schwab JO, Pingel S, Luechinger R, et al. Safety, feasibility, and diagnostic value of cardiac magnetic resonance imaging in patients with cardiac pacemakers and implantable cardioverters/defibrillators at 1.5 t. Am Heart J. 2011;161:1096–105.PubMedCrossRefGoogle Scholar
  25. 25.
    Roguin A, Zviman MM, Meininger GR, Rodrigues ER, Dickfeld TM, Bluemke DA, et al. Modern pacemaker and implantable cardioverter/defibrillator systems can be magnetic resonance imaging safe: in vitro and in vivo assessment of safety and function at 1.5 t. Circulation. 2004;110:475–82.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Shinbane JS, Colletti PM, Shellock FG. Magnetic resonance imaging in patients with cardiac pacemakers: era of “MR conditional” designs. J Cardiovasc Magn Reson. 2011;13:63.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Wollmann CG, Thudt K, Kaiser B, Salomonowitz E, Mayr H, Globits S. Safe performance of magnetic resonance of the heart in patients with magnetic resonance conditional pacemaker systems: the safety issue of the estimate study. J Cardiovasc Magn Reson. 2014;16:30.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Dewey FE, Rosenthal D, Murphy DJ Jr, Froelicher VF, Ashley EA. Does size matter? Clinical applications of scaling cardiac size and function for body size. Circulation. 2008;117:2279–87.PubMedCrossRefGoogle Scholar
  29. 29.
    Sluysmans T, Colan SD. Theoretical and empirical derivation of cardiovascular allometric relationships in children. J Appl Physiol. 2005;99:445–57.PubMedCrossRefGoogle Scholar
  30. 30.
    Gutgesell HP, Rembold CM. Growth of the human heart relative to body surface area. Am J Cardiol. 1990;65:662–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Cantinotti M, Scalese M, Molinaro S, Murzi B, Passino C. Limitations of current echocardiographic nomograms for left ventricular, valvular, and arterial dimensions in children: a critical review. J Am Soc Echocardiogr. 2012;25:142–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU. Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging. 2003;17:323–9.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Buechel EV, Kaiser T, Jackson C, Schmitz A, Kellenberger CJ. Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2009;11:19.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S. Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson. 2005;7:775–82.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Robbers-Visser D, Boersma E, Helbing WA. Normal biventricular function, volumes, and mass in children aged 8 to 17 years. J Magn Reson Imaging. 2009;29:552–9.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Sarikouch S, Peters B, Gutberlet M, Leismann B, Kelter-Kloepping A, Koerperich H, et al. Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging. 2010;3:65–76.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kaiser T, Kellenberger CJ, Albisetti M, Bergstrasser E, Valsangiacomo Buechel ER. Normal values for aortic diameters in children and adolescents – assessment in vivo by contrast-enhanced CMR-angiography. J Cardiovasc Magn Reson. 2008;10:56.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Voges I, Jerosch-Herold M, Hedderich J, Pardun E, Hart C, Gabbert DD, et al. Normal values of aortic dimensions, distensibility, and pulse wave velocity in children and young adults: a cross-sectional study. J Cardiovasc Magn Reson. 2012;14:77.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984;59:17–20.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Raghib G, Ruttenberg HD, Anderson RC, Amplatz K, Adams P Jr, Edwards JE. Termination of left superior vena cava in left atrium, atrial septal defect, and absence of coronary sinus; a developmental complex. Circulation. 1965;31:906–18.PubMedCrossRefGoogle Scholar
  41. 41.
    Radzik D, Davignon A, van Doesburg N, Fournier A, Marchand T, Ducharme G. Predictive factors for spontaneous closure of atrial septal defects diagnosed in the first 3 months of life. J Am Coll Cardiol. 1993;22:851–3.PubMedCrossRefGoogle Scholar
  42. 42.
    Furlan AJ, Reisman M, Massaro J, Mauri L, Adams H, Albers GW, et al. Closure or medical therapy for cryptogenic stroke with patent foramen ovale. N Engl J Med. 2012;366:991–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Udell JA, Opotowsky AR, Khairy P, Silversides CK, Gladstone DJ, et al. Patent foramen ovale closure vs medical therapy for stroke prevention: meta-analysis of randomized trials and review of heterogeneity in meta-analyses. Can J Cardiol. 2014;30(10):1216–24.PubMedCrossRefGoogle Scholar
  44. 44.
    Homma S, Sacco RL. Patent foramen ovale and stroke. Circulation. 2005;112:1063–72.PubMedCrossRefGoogle Scholar
  45. 45.
    Said SM, Burkhart HM, Schaff HV, Cetta F Jr, Phillips SD, Barnes RD, et al. Single-patch, 2-patch, and caval division techniques for repair of partial anomalous pulmonary venous connections: does it matter? J Thorac Cardiovasc Surg. 2012;143:896–903.PubMedCrossRefGoogle Scholar
  46. 46.
    Powell AJ, Tsai-Goodman B, Prakash A, Greil GF, Geva T. Comparison between phase-velocity cine magnetic resonance imaging and invasive oximetry for quantification of atrial shunts. Am J Cardiol. 2003;91:1523–5. A1529PubMedCrossRefGoogle Scholar
  47. 47.
    Beerbaum P, Korperich H, Barth P, Esdorn H, Gieseke J, Meyer H. Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation. 2001;103:2476–82.PubMedCrossRefGoogle Scholar
  48. 48.
    Hundley WG, Li HF, Lange RA, Pfeifer DP, Meshack BM, Willard JE, et al. Assessment of left-to-right intracardiac shunting by velocity-encoded, phase-difference magnetic resonance imaging. A comparison with oximetric and indicator dilution techniques. Circulation. 1995;91:2955–60.PubMedCrossRefGoogle Scholar
  49. 49.
    Arheden H, Holmqvist C, Thilen U, Hanseus K, Bjorkhem G, Pahlm O, et al. Left-to-right cardiac shunts: comparison of measurements obtained with MR velocity mapping and with radionuclide angiography. Radiology. 1999;211:453–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Diethelm L, Dery R, Lipton MJ, Higgins CB. Atrial-level shunts: sensitivity and specificity of MR in diagnosis. Radiology. 1987;162:181–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Dinsmore RE, Wismer GL, Guyer D, Thompson R, Liu P, Stratemeier E, et al. Magnetic resonance imaging of the interatrial septum and atrial septal defects. AJR Am J Roentgenol. 1985;145:697–703.PubMedCrossRefGoogle Scholar
  52. 52.
    Sakakibara M, Kobayashi S, Imai H, Watanabe S, Masuda Y, Inagaki Y. Diagnosis of atrial septal defect using magnetic resonance imaging. J Cardiol. 1987;17:817–29.PubMedGoogle Scholar
  53. 53.
    Holmvang G, Palacios IF, Vlahakes GJ, Dinsmore RE, Miller SW, Liberthson RR, et al. Imaging and sizing of atrial septal defects by magnetic resonance. Circulation. 1995;92:3473–80.PubMedCrossRefGoogle Scholar
  54. 54.
    Thomson LE, Crowley AL, Heitner JF, Cawley PJ, Weinsaft JW, Kim HW, et al. Direct en face imaging of secundum atrial septal defects by velocity-encoded cardiovascular magnetic resonance in patients evaluated for possible transcatheter closure. Circ Cardiovasc Imaging. 2008;1:31–40.PubMedCrossRefGoogle Scholar
  55. 55.
    Beerbaum P, Korperich H, Esdorn H, Blanz U, Barth P, Hartmann J, et al. Atrial septal defects in pediatric patients: noninvasive sizing with cardiovascular MR imaging. Radiology. 2003;228:361–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Piaw CS, Kiam OT, Rapaee A, Khoon LC, Bang LH, Ling CW, et al. Use of non-invasive phase contrast magnetic resonance imaging for estimation of atrial septal defect size and morphology: a comparison with transesophageal echo. Cardiovasc Intervent Radiol. 2006;29:230–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Teo KS, Disney PJ, Dundon BK, Worthley MI, Brown MA, et al. Assessment of atrial septal defects in adults comparing cardiovascular magnetic resonance with transoesophageal echocardiography. J Cardiovasc Magn Reson. 2010;12:44.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Durongpisitkul K, Tang NL, Soongswang J, Laohaprasitiporn D, Nanal A. Predictors of successful transcatheter closure of atrial septal defect by cardiac magnetic resonance imaging. Pediatr Cardiol. 2004;25:124–30.PubMedCrossRefGoogle Scholar
  59. 59.
    Van Praagh R, Geva T, Kreutzer J. Ventricular septal defects: how shall we describe, name and classify them? J Am Coll Cardiol. 1989;14:1298–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Bol-Raap G, Weerheim J, Kappetein AP, Witsenburg M, Bogers AJ. Follow-up after surgical closure of congenital ventricular septal defect. Eur J Cardiothorac Surg. 2003;24:511–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Kumar K, Lock JE, Geva T. Apical muscular ventricular septal defects between the left ventricle and the right ventricular infundibulum. Diagnostic and interventional considerations. Circulation. 1997;95:1207–13.PubMedCrossRefGoogle Scholar
  62. 62.
    Knauth AL, Lock JE, Perry SB, McElhinney DB, Gauvreau K, Landzberg MJ, et al. Transcatheter device closure of congenital and postoperative residual ventricular septal defects. Circulation. 2004;110:501–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Didier D, Higgins CB, Fisher MR, Osaki L, Silverman NH, Cheitlin MD. Congenital heart disease: gated MR imaging in 72 patients. Radiology. 1986;158:227–35.PubMedCrossRefGoogle Scholar
  64. 64.
    Lowell DG, Turner DA, Smith SM, Bucheleres GH, Santucci BA, et al. The detection of atrial and ventricular septal defects with electrocardiographically synchronized magnetic resonance imaging. Circulation. 1986;73:89–94.PubMedCrossRefGoogle Scholar
  65. 65.
    Baker EJ, Ayton V, Smith MA, Parsons JM, Ladusans EJ, Anderson RH, et al. Magnetic resonance imaging at a high field strength of ventricular septal defects in infants. Br Heart J. 1989;62:305–10.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bremerich J, Reddy GP, Higgins CB. MRI of supracristal ventricular septal defects. J Comput Assist Tomogr. 1999;23:13–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Yoo SJ, Lim TH, Park IS, Hong CY, Song MG, Kim SH. Defects of the interventricular septum of the heart: En face MR imaging in the oblique coronal plane. AJR Am J Roentgenol. 1991;157:943–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Yoo SJ, Kim YM, Choe YH. Magnetic resonance imaging of complex congenital heart disease. Int J Card Imaging. 1999;15:151–60.PubMedCrossRefGoogle Scholar
  69. 69.
    Sorensen TS, Korperich H, Greil GF, Eichhorn J, Barth P, Meyer H, et al. Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation. 2004;110:163–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Mohiaddin RH, Underwood R, Romeira L, Anagnostopoulos C, Karwatowski SP, et al. Comparison between cine magnetic resonance velocity mapping and first-pass radionuclide angiocardiography for quantitating intracardiac shunts. Am J Cardiol. 1995;75:529–32.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Fortescue EB, Lock JE, Galvin T, McElhinney DB. To close or not to close: the very small patent ductus arteriosus. Congenit Heart Dis. 2010;5:354–65.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Geva T, Greil GF, Marshall AC, Landzberg M, Powell AJ. Gadolinium-enhanced 3-dimensional magnetic resonance angiography of pulmonary blood supply in patients with complex pulmonary stenosis or atresia: comparison with x-ray angiography. Circulation. 2002;106:473–8.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Geva T, Van Praagh S. Anomalies of the pulmonary veins. In: Allen HD, Gutgessel HP, Clark EB, Driscoll DJ, editors. Moss & Adams’ heart disease in infants, children, and adolescents. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 736–72.Google Scholar
  74. 74.
    Neill CA, Ferencz C, Sabiston DC, Sheldon H. The familial occurrence of hypoplastic right lung with systemic arterial supply and venous drainage “scimitar syndrome”. Bull Johns Hopkins Hosp. 1960;107:1–21.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Dyme JL, Prakash A, Printz BF, Kaur A, Parness IA, Nielsen JC. Physiology of isolated anomalous pulmonary venous connection of a single pulmonary vein as determined by cardiac magnetic resonance imaging. Am J Cardiol. 2006;98:107–10.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Greil GF, Powell AJ, Gildein HP, Geva T. Gadolinium-enhanced three-dimensional magnetic resonance angiography of pulmonary and systemic venous anomalies. J Am Coll Cardiol. 2002;39:335–41.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Prasad SK, Soukias N, Hornung T, Khan M, Pennell DJ, et al. Role of magnetic resonance angiography in the diagnosis of major aortopulmonary collateral arteries and partial anomalous pulmonary venous drainage. Circulation. 2004;109:207–14.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ferrari VA, Scott CH, Holland GA, Axel L, Sutton MS. Ultrafast three-dimensional contrast-enhanced magnetic resonance angiography and imaging in the diagnosis of partial anomalous pulmonary venous drainage. J Am Coll Cardiol. 2001;37:1120–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Roos-Hesselink JW, Scholzel BE, Heijdra RJ, Spitaels SE, Meijboom FJ, Boersma E, et al. Aortic valve and aortic arch pathology after coarctation repair. Heart. 2003;89:1074–7.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Konen E, Merchant N, Provost Y, McLaughlin PR, Crossin J, Paul NS. Coarctation of the aorta before and after correction: the role of cardiovascular MRI. AJR Am J Roentgenol. 2004;182:1333–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Campbell M. Natural history of coarctation of the aorta. Br Heart J. 1970;32:633–40.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Bogaert J, Gewillig M, Rademakers F, Bosmans H, Verschakelen J, et al. Transverse arch hypoplasia predisposes to aneurysm formation at the repair site after patch angioplasty for coarctation of the aorta. J Am Coll Cardiol. 1995;26:521–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Parks WJ, Ngo TD, Plauth WH Jr, Bank ER, Sheppard SK, et al. Incidence of aneurysm formation after dacron patch aortoplasty repair for coarctation of the aorta: long-term results and assessment utilizing magnetic resonance angiography with three-dimensional surface rendering. J Am Coll Cardiol. 1995;26:266–71.PubMedCrossRefGoogle Scholar
  84. 84.
    Rao PS, Jureidini SB, Balfour IC, Singh GK, Chen SC. Severe aortic coarctation in infants less than 3 months: successful palliation by balloon angioplasty. J Invasive Cardiol. 2003;15:202–8.PubMedGoogle Scholar
  85. 85.
    Corno AF, Botta U, Hurni M, Payot M, Sekarski N, et al. Surgery for aortic coarctation: a 30 years experience. Eur J Cardiothorac Surg. 2001;20:1202–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Walhout RJ, Lekkerkerker JC, Ernst SM, Hutter PA, Plokker TH, Meijboom EJ. Angioplasty for coarctation in different aged patients. Am Heart J. 2002;144:180–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Fawzy ME, Awad M, Hassan W, Al Kadhi Y, Shoukri M, Fadley F. Long-term outcome (up to 15 years) of balloon angioplasty of discrete native coarctation of the aorta in adolescents and adults. J Am Coll Cardiol. 2004;43:1062–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Chen SS, Dimopoulos K, Alonso-Gonzalez R, Liodakis E, Teijeira-Fernandez E, Alvarez-Barredo M, et al. Prevalence and prognostic implication of restenosis or dilatation at the aortic coarctation repair site assessed by cardiovascular MRI in adult patients late after coarctation repair. Int J Cardiol. 2014;173:209–15.PubMedCrossRefGoogle Scholar
  89. 89.
    Therrien J, Thorne SA, Wright A, Kilner PJ, Somerville J. Repaired coarctation: a “cost-effective” approach to identify complications in adults. J Am Coll Cardiol. 2000;35:997–1002.PubMedCrossRefGoogle Scholar
  90. 90.
    Simpson IA, Chung KJ, Glass RF, Sahn DJ, Sherman FS, Hesselink J. Cine magnetic resonance imaging for evaluation of anatomy and flow relations in infants and children with coarctation of the aorta. Circulation. 1988;78:142–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Mendelsohn AM, Banerjee A, Donnelly LF, Schwartz DC. Is echocardiography or magnetic resonance imaging superior for precoarctation angioplasty evaluation? Catheter Cardiovasc Diagn. 1997;42:26–30.CrossRefGoogle Scholar
  92. 92.
    Rupprecht T, Nitz W, Wagner M, Kreissler P, Rascher W, Hofbeck M. Determination of the pressure gradient in children with coarctation of the aorta by low-field magnetic resonance imaging. Pediatr Cardiol. 2002;23:127–31.PubMedCrossRefGoogle Scholar
  93. 93.
    Prince MR, Narasimham DL, Jacoby WT, Williams DM, Cho KJ, et al. Three-dimensional gadolinium-enhanced MR angiography of the thoracic aorta. AJR Am J Roentgenol. 1996;166:1387–97.PubMedCrossRefGoogle Scholar
  94. 94.
    Krinsky GA, Rofsky NM, DeCorato DR, Weinreb JC, Earls JP, Flyer MA, et al. Thoracic aorta: comparison of gadolinium-enhanced three-dimensional MR angiography with conventional MR imaging. Radiology. 1997;202:183–93.PubMedCrossRefGoogle Scholar
  95. 95.
    Bogaert J, Kuzo R, Dymarkowski S, Janssen L, Celis I, et al. Follow-up of patients with previous treatment for coarctation of the thoracic aorta: comparison between contrast-enhanced MR angiography and fast spin-echo MR imaging. Eur Radiol. 2000;10:1847–54.PubMedCrossRefGoogle Scholar
  96. 96.
    Muzzarelli S, Ordovas KG, Hope MD, Meadows JJ, Higgins CB, Meadows AK. Diagnostic value of the flow profile in the distal descending aorta by phase-contrast magnetic resonance for predicting severe coarctation of the aorta. J Magn Reson Imaging. 2011;33:1440–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Muhler EG, Neuerburg JM, Ruben A, Grabitz RG, Gunther RW, et al. Evaluation of aortic coarctation after surgical repair: role of magnetic resonance imaging and doppler ultrasound. Br Heart J. 1993;70:285–90.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Mohiaddin RH, Kilner PJ, Rees S, Longmore DB. Magnetic resonance volume flow and jet velocity mapping in aortic coarctation. J Am Coll Cardiol. 1993;22:1515–21.PubMedCrossRefGoogle Scholar
  99. 99.
    Steffens JC, Bourne MW, Sakuma H, O’Sullivan M, Higgins CB. Quantification of collateral blood flow in coarctation of the aorta by velocity encoded cine magnetic resonance imaging. Circulation. 1994;90:937–43.PubMedCrossRefGoogle Scholar
  100. 100.
    Nielsen JC, Powell AJ, Gauvreau K, Marcus EN, Prakash A, Geva T. Magnetic resonance imaging predictors of coarctation severity. Circulation. 2005;111:622–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Muzzarelli S, Meadows AK, Ordovas KG, Hope MD, Higgins CB, Nielsen JC, et al. Prediction of hemodynamic severity of coarctation by magnetic resonance imaging. Am J Cardiol. 2011;108:1335–40.PubMedCrossRefGoogle Scholar
  102. 102.
    Oshinski JN, Parks WJ, Markou CP, Bergman HL, Larson BE, Ku DN, et al. Improved measurement of pressure gradients in aortic coarctation by magnetic resonance imaging. J Am Coll Cardiol. 1996;28:1818–26.PubMedCrossRefGoogle Scholar
  103. 103.
    Rengier F, Delles M, Eichhorn J, Azad YJ, von Tengg-Kobligk H, Ley-Zaporozhan J, et al. Noninvasive pressure difference mapping derived from 4D flow MRI in patients with unrepaired and repaired aortic coarctation. Cardiovasc Diagn Ther. 2014;4:97–103.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Riesenkampff E, Fernandes JF, Meier S, Goubergrits L, Kropf S, Schubert S, et al. Pressure fields by flow-sensitive, 4D, velocity-encoded CMR in patients with aortic coarctation. JACC Cardiovasc Imaging. 2014;7:920–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Holmqvist C, Stahlberg F, Hanseus K, Hochbergs P, Sandstrom S, et al. Collateral flow in coarctation of the aorta with magnetic resonance velocity mapping: correlation to morphological imaging of collateral vessels. J Magn Reson Imaging. 2002;15:39–46.PubMedCrossRefGoogle Scholar
  106. 106.
    Araoz PA, Reddy GP, Tarnoff H, Roge CL, Higgins CB. MR findings of collateral circulation are more accurate measures of hemodynamic significance than arm-leg blood pressure gradient after repair of coarctation of the aorta. J Magn Reson Imaging. 2003;17:177–83.PubMedCrossRefGoogle Scholar
  107. 107.
    Julsrud PR, Breen JF, Felmlee JP, Warnes CA, Connolly HM, Schaff HV. Coarctation of the aorta: collateral flow assessment with phase-contrast MR angiography. AJR Am J Roentgenol. 1997;169:1735–42.PubMedCrossRefGoogle Scholar
  108. 108.
    Weinberg PM. Aortic arch anomalies. In: Allen HD, Gutgesell HP, Clark EB, Driscoll DJ, editors. Moss & Adams’ heart disease in infants, children, and adolescents. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 707–35.Google Scholar
  109. 109.
    McElhinney DB, Clark BJ III, Weinberg PM, Kenton ML, McDonald-McGinn D, Driscoll DA, et al. Association of chromosome 22q11 deletion with isolated anomalies of aortic arch laterality and branching. J Am Coll Cardiol. 2001;37:2114–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Powell AJ. Vascular rings and slings (chapter 30). In: Lai WW, Mertens LL, Cohen MS, Geva T, editors. Echocardiography in pediatric and congenital heart disease. Oxford: Wiley-Blackwell; 2009. p. 523–36.CrossRefGoogle Scholar
  111. 111.
    Moes CAF. Vascular rings and related conditions. In: Freedom RM, Mawson JB, Yoo SJ, Benson LN, editors. Congenital heart disease: textbook of angiocardiography. Armonk: Futura Publishing Company; 1997. p. 947–83.Google Scholar
  112. 112.
    van Son JA, Julsrud PR, Hagler DJ, Sim EK, Pairolero PC, Puga FJ, et al. Surgical treatment of vascular rings: the mayo clinic experience. Mayo Clin Proc. 1993;68:1056–63.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Bonnard A, Auber F, Fourcade L, Marchac V, Emond S, Revillon Y. Vascular ring abnormalities: a retrospective study of 62 cases. J Pediatr Surg. 2003;38:539–43.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Woods RK, Sharp RJ, Holcomb GW III, Snyder CL, Lofland GK, et al. Vascular anomalies and tracheoesophageal compression: a single institution’s 25-year experience. Ann Thorac Surg. 2001;72:434–8.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Backer CL, Ilbawi MN, Idriss FS, DeLeon SY. Vascular anomalies causing tracheoesophageal compression. Review of experience in children. J Thorac Cardiovasc Surg. 1989;97:725–31.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of CardiologyBoston Children’s HospitalBostonUSA
  2. 2.Department of PediatricsHarvard Medical SchoolBostonUSA

Personalised recommendations