Advertisement

Cardiac Magnetic Resonance Imaging Physics

  • Mehmet Akçakaya
  • Maxine Tang
  • Reza NezafatEmail author
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

The fundamentals of cardiovascular magnetic resonance (CMR) rely on a knowledge of magnetic resonance imaging (MRI) physics. MRI physics describes how protons in a magnetic field behave in response to stimuli such as magnetic gradients and radiofrequency pulses, the basic building blocks of an MRI pulse sequence. MRI pulse sequences utilize the magnetic properties of tissues, specifically T1, T2, and T2* relaxation, to form images and create tissue contrast. In MRI, images are acquired in k-space and must be converted to images. A basic understanding of k-space is crucial to learning how images are formed in MRI, since the parameters of k-space acquisition are directly related to the properties of the final image, e.g., image resolution and field of view. Furthermore, fast imaging techniques, such as parallel imaging and compressed sensing, are applied in k-space. For CMR in particular, accelerated imaging techniques are used to achieve the high temporal resolution necessary to capture the dynamic heart.

In this chapter, we will cover MRI physics, image formation, accelerated imaging techniques, and basic pulse sequences for CMR.

Keywords

Cardiac magnetic resonance imaging MRI physics k-space Image formation Pulse sequences Accelerated imaging 

References

  1. 1.
    Lauterbur PC. Image formation by induced local interactions. Examples employing nuclear magnetic resonance. Clin Orthop Relat Res. 1973;1989(244):3–6.Google Scholar
  2. 2.
    Sharma P, Socolow J, Patel S, Pettigrew RI, Oshinski JN. Effect of Gd-DTPA-BMA on blood and myocardial T1 at 1.5T and 3T in humans. J Magn Reson Imaging. 2006;23(3):323–30.CrossRefGoogle Scholar
  3. 3.
    MacFall JR, Pelc NJ, Vavrek RM. Correction of spatially dependent phase shifts for partial Fourier imaging. Magn Reson Imaging. 1988;6(2):143–55.CrossRefGoogle Scholar
  4. 4.
    Hunold P, Maderwald S, Ladd ME, Jellus V, Barkhausen J. Parallel acquisition techniques in cardiac cine magnetic resonance imaging using TrueFISP sequences: comparison of image quality and artifacts. J Magn Reson Imaging. 2004;20(3):506–11.CrossRefGoogle Scholar
  5. 5.
    Tsao J, Boesiger P, Pruessmann KP. K-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med. 2003;50(5):1031–42.CrossRefGoogle Scholar
  6. 6.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.CrossRefGoogle Scholar
  7. 7.
    Bydder M, Larkman DJ, Hajnal JV. Generalized SMASH imaging. Magn Reson Med. 2002;47(1):160–70.CrossRefGoogle Scholar
  8. 8.
    Hutchinson M, Raff U. Fast MRI data acquisition using multiple detectors. Magn Reson Med. 1988;6(1):87–91.CrossRefGoogle Scholar
  9. 9.
    Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38(4):591–603.CrossRefGoogle Scholar
  10. 10.
    Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47(6):1202–10.CrossRefGoogle Scholar
  11. 11.
    Barger AV, Grist TM, Block WF, Mistretta CA. Single breath-hold 3D contrast-enhanced method for assessment of cardiac function. Magn Reson Med. 2000;44(6):821–4.CrossRefGoogle Scholar
  12. 12.
    Peters DC, Ennis DB, McVeigh ER. High-resolution MRI of cardiac function with projection reconstruction and steady-state free precession. Magn Reson Med. 2002;48(1):82–8.CrossRefGoogle Scholar
  13. 13.
    Larson AC, White RD, Laub G, McVeigh ER, Li D, Simonetti OP. Self-gated cardiac cine MRI. Magn Reson Med. 2004;51(1):93–102.CrossRefGoogle Scholar
  14. 14.
    Bi X, Park J, Larson AC, Zhang Q, Simonetti O, Li D. Contrast-enhanced 4D radial coronary artery imaging at 3.0 T within a single breath-hold. Magn Reson Med. 2005;54(2):470–5.CrossRefGoogle Scholar
  15. 15.
    Meyer CH, Pauly JM, Macovski A, Nishimura DG. Simultaneous spatial and spectral selective excitation. Magn Reson Med. 1990;15(2):287–304.CrossRefGoogle Scholar
  16. 16.
    Meyer CH, Hu BS, Nishimura DG, Macovski A. Fast spiral coronary artery imaging. Magn Reson Med. 1992;28(2):202–13.CrossRefGoogle Scholar
  17. 17.
    Bornert P, Stuber M, Botnar RM, et al. Direct comparison of 3D spiral vs. Cartesian gradient-echo coronary magnetic resonance angiography. Magn Reson Med. 2001;46(4):789–94.CrossRefGoogle Scholar
  18. 18.
    Nayak KS, Pauly JM, Yang PC, Hu BS, Meyer CH, Nishimura DG. Real-time interactive coronary MRA. Magn Reson Med. 2001;46(3):430–5.CrossRefGoogle Scholar
  19. 19.
    Hardy CJ, Zhao L, Zong X, Saranathan M, Yucel EK. Coronary MR angiography: respiratory motion correction with BACSPIN. J Magn Reson Imaging. 2003;17(2):170–6.CrossRefGoogle Scholar
  20. 20.
    Yang PC, Meyer CH, Terashima M, et al. Spiral magnetic resonance coronary angiography with rapid real-time localization. J Am Coll Cardiol. 2003;41(7):1134–41.CrossRefGoogle Scholar
  21. 21.
    Block KT, Uecker M, Frahm J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med. 2007;57(6):1086–98.CrossRefGoogle Scholar
  22. 22.
    Lustig M, Donoho DL, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.CrossRefGoogle Scholar
  23. 23.
    Haase A, Matthaei D, Hanicke W, Frahm J. Dynamic digital subtraction imaging using fast low-angle shot MR movie sequence. Radiology. 1986;160(2):537–41.CrossRefGoogle Scholar
  24. 24.
    Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol. 2003;13(11):2409–18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medicine (Cardiovascular Division)Beth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisUSA

Personalised recommendations