Advertisement

Introduction to PDE-Constrained Optimization in the Oil and Gas Industry

  • Jeremy Brandman
  • Huseyin Denli
  • Dimitar Trenev
Chapter
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 163)

Abstract

This article is an expanded version of a tutorial on applications of PDE-constrained optimization in the oil and gas industry that was given at the Frontiers in PDE-Constrained Optimization workshop. (The workshop was held at the Institute for Mathematics and its Applications June 6–10, 2016.) We begin with an overview of the oil and gas supply chain that highlights the importance of PDE-constrained optimization. Next, we take an in-depth look at two key applications: full-wavefield inversion and reservoir history matching. For each application, we introduce a PDE model, derive the gradient of the objective function using the adjoint-state method, and present simple numerical results. We conclude with a discussion of key challenges.

Notes

Acknowledgements

The authors thank ExxonMobil for permission to publish this work. The authors also thank Martin Lacasse, Laurent White, Rohan Panchadhara, Anatoly Baumstein, Tom Dickens, Dave Stern, Klaus Wiegand, and Xiao-Hui Wu for their feedback on an earlier version of this paper.

References

  1. 1.
    Outlook for energy: A view to 2040. http://corporate.exxonmobil.com/en/energy/energy-outlook, 2016.
  2. 2.
    Jorg E. Aarnes, Tore Gimse, and Knut-Andreas Lie. An introduction to the numerics of flow in porous media using Matlab. In Geir Hasle, Knut-Andreas Lie, and Ewald Quak, editors, Geometric Modelling, Numerical Simulation, and Optimization, pages 265–306. Springer, 2007.Google Scholar
  3. 3.
    A Abubakar, G Gao, T M Habashy, and J Liu. Joint inversion approaches for geophysical electromagnetic and elastic full-waveform data. Inverse Problems, 28(5):055016, 2012.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chinedu C. Agbalaka, Dave Stern, and Dean S. Oliver. Two-stage ensemble-based history matching with multiple modes in the objective function. Society of Petroleum Engineers Journal, 55:28–43, 2013.Google Scholar
  5. 5.
    Volkan Akcelik, Huseyin Denli, Alex Kanevsky, Kinesh K. Patel, Laurent White, and Martin-Daniel Lacasse. Multiparameter material model and source signature full waveform inversion. SEG Technical Program Expanded Abstracts, pages 2406–2410, 2012.Google Scholar
  6. 6.
    Keiiti Aki and Paul G. Richards. Quantitative Seismology. University Science Books, 2002.Google Scholar
  7. 7.
    Myron Bartlett Allen III, Graca Alda Behie, and John Arthur Trangenstein. Multiphase Flow in Porous Media, volume 34 of Lecture Notes in Engineering. Springer, 1988.Google Scholar
  8. 8.
    John E. Anderson, Lijian Tan, and Don Wang. Time-reversal checkpointing methods for RTM and FWI. Geophysics, 77(4):S93–S103, 2012.CrossRefGoogle Scholar
  9. 9.
    A. C. Antoulas, D. C. Sorensen, and S. Gugercin. A survey of model reduction methods for large-scale systems. Contemporary Mathematics, 280:193–219, 2001.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Aleksandr Aravkin, Tristan van Leeuwen, and Felix Herrmann. Robust full-waveform inversion using the student’s t-distribution. pages 2669–2673, 2011.Google Scholar
  11. 11.
    Khalid Aziz and Antonin Settari. Petroleum Reservoir Simulation. 2002.Google Scholar
  12. 12.
    W. Bangerth, H. Klie, M. F. Wheeler, P. L. Stoffa, and M. K. Sen. On optimization algorithms for the reservoir oil well placement problem. Comp. Geosc., 10(3):303–319, 2006.CrossRefGoogle Scholar
  13. 13.
    Rishi Bansal, Jerry Krebs, Partha Routh, Sunwoong Lee, John Anderson, Anatoly Baumstein, Anoop Mullur, Spyros Lazaratos, Ivan Chikichev, and David McAdow. Simultaneous-source full-wavefield inversion. The Leading Edge, 32(9):1100–1108, 2013.CrossRefGoogle Scholar
  14. 14.
    Anatoly Baumstein. Borehole-constrained multi-parameter full waveform inversion. 77th EAGE Conference and Exhibition, 2015.Google Scholar
  15. 15.
    Jacob Bear. Dynamics of Fluids in Porous Media. Dover, 1972.zbMATHGoogle Scholar
  16. 16.
    Lorenz T. Biegler. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia, 2010.CrossRefGoogle Scholar
  17. 17.
    Biondo Biondi and Ali Almomin. Simultaneous inversion of full data bandwidth by tomographic full-waveform inversion. Geophysics, 79(3):WA129–WA140, 2014.CrossRefGoogle Scholar
  18. 18.
    Knut Bjorlykke, editor. Petroleum Geoscience: From Sedimentary Environments to Rock Physics. Springer, 2015.Google Scholar
  19. 19.
    Franco Brezzi and Michael Fortin. Mixed and hybrid finite-element methods, volume 15 of Springer Series in Computational Mathematics. Springer, 1991.CrossRefGoogle Scholar
  20. 20.
    Carey Bunks, Fatimetou M. Saleck, S. Zaleski, and G. Chavent. Multiscale seismic waveform inversion. Geophysics, 60(5):1457–1473, 1995.CrossRefGoogle Scholar
  21. 21.
    Jef Caers. Efficient gradual deformation using a streamline-based proxy method. Journal of Petroleum Science and Engineering, 39:57–83, 2003.CrossRefGoogle Scholar
  22. 22.
    G. Chavent, M. Dupuy, and P. Lemmonier. History matching by use of optimal theory. SPE Journal, 15(1):74–86, 1975.Google Scholar
  23. 23.
    W.H. Chen, G.R. Gavalas, J.H. Seinfeld, and M.L. Wasserman. A new algorithm for automatic history matching. SPE Journal, 14(6):593–608, 1974.Google Scholar
  24. 24.
    Yangkang Chen, Hanming Chen, Kui Xiang, and Xiaohong Chen. Geological structure guided well log interpolation for high-fidelity full waveform inversion. Geophysical Journal International, 2016.Google Scholar
  25. 25.
    Benxin Chi, Liangguo Dong, and Yuzhu Liu. Full waveform inversion method using envelope objective function without low frequency data. Journal of Applied Geophysics, 109:36–46, 2014.CrossRefGoogle Scholar
  26. 26.
    Robert Clayton and Björn Engquist. Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Seismological Society of America, 67(6):1529–1540, 1977.Google Scholar
  27. 27.
    Augustin Cosse, Stephen D. Shank, and Laurent Demanet. A short note on rank-2 relaxation for waveform inversion. SEG Technical Program Expanded Abstracts, pages 1344–1350, 2015.Google Scholar
  28. 28.
    Debanjan Datta and Mrinal K. Sen. Estimating a starting model for full-waveform inversion using a global optimization method. Geophysics, 81(4):R211–R223, 2016.CrossRefGoogle Scholar
  29. 29.
    Laurent Demanet. Waves and imaging: Class notes - 18.367. http://math.mit.edu/icg/resources/notes367.pdf, September 2017.
  30. 30.
    Huseyin Denli, Volkan Akcelik, Alex Kanevsky, Dimitar Trenev, Laurent White, and Martin-Daniel Lacasse. Full-wavefield inversion for acoustic wave velocity and attenuation. SEG Technical Program Expanded Abstracts, pages 980–985, 2013.Google Scholar
  31. 31.
    Morgan Downey. Oil 101. Wooden Table Press LLC, USA, 2009.Google Scholar
  32. 32.
    Bjorn Engquist and Brittany D. Froese. Application of the Wasserstein metric to seismic signals. Communications in Mathematical Sciences, 12(5):979–988, 2014.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Geir Evensen. Data Assimilation. Springer, 2009.CrossRefGoogle Scholar
  34. 34.
    ExxonMobil. Technology: Exploration and production, 2016. http://www.aboutnaturalgas.com/en/technology/exploration-and-production.
  35. 35.
    Andrew Fowler. Mathematical Geoscience. Interdisciplinary Applied Mathematics. Springer, 2011.CrossRefGoogle Scholar
  36. 36.
    J. H. Seinfeld G. R. Gavalas, P. C. Shah. Reservoir history matching by Bayesian estimation. Society of Petroleum Engineers Journal, 16(6), 1976.Google Scholar
  37. 37.
    Michal Holtzman Gazit and Eldad Haber. Joint inversion through a level set formulation. ASEG Extended Abstracts: 22nd Geophysical Conference, pages 1–3, 2013.Google Scholar
  38. 38.
    Andreas Griewank and Andrea Walther. Algorithm 799: Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Trans. Math. Softw., 26(1):19–45, March 2000.CrossRefGoogle Scholar
  39. 39.
    Max Gunzburger. Perspectives in Flow Control and Optimization. Society for Industrial and Applied Mathematics, 2003.Google Scholar
  40. 40.
    Eldad Haber. Computational methods in geophysical electromagnetics. Society for Industrial and Applied Mathematics, Philadelphia, 2014.CrossRefGoogle Scholar
  41. 41.
    Matthias Heinkenschloss. PDE Constrained Optimization. https://www.siam.org/meetings/op08/Heinkenschloss.pdf, May 2008. Presentation at the SIAM Conference on Optimization.
  42. 42.
    Matthias Heinkenschloss. Numerical solution of implicitly constrained optimization problems. Technical Report TR08-05, Department of Computational and Applied Mathematics, Rice University, 2013.Google Scholar
  43. 43.
    Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Texts in Applied Mathematics, 2007.zbMATHGoogle Scholar
  44. 44.
    Michael Hinze, Rene Pinnau, Michael Ulbrich, and Stefan Ulbrich. Optimization with PDE Constraints. Springer, 2009.zbMATHGoogle Scholar
  45. 45.
    Hussein Hoteit and Abbas Firoozabadi. Numerical modeling of two-phase flow in heterogeneous permeable media with different capillary pressures. Advances in Water Resources, 31:56–73, 2008.CrossRefGoogle Scholar
  46. 46.
    Peter Howell, Gregory Kozyreff, and John Ockendon. Applied Solid Mechanics. Cambridge University Press, first edition, 2009.Google Scholar
  47. 47.
    Daniel J. Jacob, Alexander J. Turner, Joannes D. Maasakkers, Jianxiong Sheng, Kang Sun, Xiong Liu, Kelly Chance, Ilse Aben, Jason McKeever, and Christian Frankenberg. Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmos. Chem. Phys., 16:14371–14396, 2016.CrossRefGoogle Scholar
  48. 48.
    Jari Kaipio and Erkki Somersalo. Statistical and Computational Inverse Problems. Applied Mathematical Sciences. Springer, 2005.zbMATHGoogle Scholar
  49. 49.
    Małgorzata P. Kaleta, Remus G. Hanea, Arnold W. Heemink, and Jan-Dirk Jansen. Model-reduced gradient-based history matching. Computational Geosciences, 15(1):135–153, 2011.CrossRefGoogle Scholar
  50. 50.
    Martin Käser, Verena Hermann, and Josep de la Puente. Quantitative accuracy analysis of the discontinuous Galerkin method for seismic wave propagation. Geophysical Journal International, 173(3):990–999, 2008.CrossRefGoogle Scholar
  51. 51.
    C.T. Kelley. Iterative Methods for Optimization. Society for Industrial and Applied Mathematics, 1999.Google Scholar
  52. 52.
    Dimitri Komatitsch and Jeroen Tromp. The spectral element method for three-dimensional seismic wave propagation. SEG Technical Program Expanded Abstracts, pages 2197–2200, 2000.Google Scholar
  53. 53.
    Dimitri Komatitsch and Jeroen Tromp. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophysical Journal International, 154(1):146–153, 2003.CrossRefGoogle Scholar
  54. 54.
    Jerome R. Krebs, John E. Anderson, David Hinkley, Ramesh Neelamani, Sunwoong Lee, Anatoly Baumstein, and Martin-Daniel Lacasse. Fast full-wavefield seismic inversion using encoded sources. Geophysics, 74(6):WCC177–WCC188, 2009.CrossRefGoogle Scholar
  55. 55.
    Martin-Daniel Lacasse, Laurent White, Huseyin Denli, and Lingyun Qiu. Full-wavefield inversion: An extreme-scale PDE-constrained optimization problem. In Harbir Antil, Drew Kouri, Martin-Daniel Lacasse, and Denis Ridzal, editors, Frontiers in PDE-Constrained Optimization. Springer, 2018.Google Scholar
  56. 56.
    Randall J. Leveque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2002.CrossRefGoogle Scholar
  57. 57.
    Randall J. Leveque. Finite Difference Methods for Ordinary and Partial Differential Equations. Society for Industrial and Applied Mathematics, 2007.Google Scholar
  58. 58.
    Simon Luo and Paul Sava. A deconvolution-based objective function for wave-equation inversion. SEG Technical Program Expanded Abstracts, pages 2788–2792, 2011.Google Scholar
  59. 59.
    Guri I. Marchuk. Adjoint Equations and Analysis of Complex Systems, volume 295 of Mathematics and Its Applications. Springer Science + Business Media, B.V., 1995.Google Scholar
  60. 60.
    Stephen Marshak. Earth. W.W. Norton, 2012.Google Scholar
  61. 61.
    Gary S. Martin, Robert Wiley, and Kurt J. Marfurt. Marmousi2: An elastic upgrade for Marmousi. The Leading Edge, 25(2):156–166, 2006.CrossRefGoogle Scholar
  62. 62.
    James Martin, Lucas C. Wilcox, Carsten Bursteddes, and Omar Ghattas. A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion. SIAM J. Sci Comput., 34:146–1487, 2012.MathSciNetCrossRefGoogle Scholar
  63. 63.
    L. Métivier, R. Brossier, J. Virieux, and S. Operto. Full waveform inversion and the truncated Newton method. SIAM Journal on Scientific Computing, 35(2):B401–B437, 2013.MathSciNetCrossRefGoogle Scholar
  64. 64.
    Peter Moczo, Johan O.A. Robertsson, and Leo Eisner. The finite-difference time-domain method for modeling of seismic wave propagation. In Valerie Maupin Ru-Shan Wu and Renata Dmowska, editors, Advances in Wave Propagation in Heterogenous Earth, volume 48 of Advances in Geophysics, pages 421–516. Elsevier, 2007.Google Scholar
  65. 65.
    Ramesh (Neelsh) Neelamani, Christine E. Krohn, Jerry R. Krebs, Justin K. Romberg, Max Deffenbaugh, and John E. Anderson. Efficient seismic forward modeling using simultaneous random sources and sparsity. Geophysics, 75(6):WB15–WB27, 2010.Google Scholar
  66. 66.
    Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, 2006.zbMATHGoogle Scholar
  67. 67.
    Dean S. Oliver and Yan Chen. Recent progress on reservoir history matching: a review. Computational Geosciences, 15(1):185–221, 2011.CrossRefGoogle Scholar
  68. 68.
    Dean S. Oliver, Albert C. Reynolds, and Ning Liu. Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press, 2008.CrossRefGoogle Scholar
  69. 69.
    Donald W. Peaceman. Fundamentals of numerical reservoir simulation. Elsevier, 1977.Google Scholar
  70. 70.
    George F. Pinder and William G. Gray. Essentials of Multiphase Flow and Transport in Porous Media. John Wiley and Sons, 2 2008.Google Scholar
  71. 71.
    S. J. Qina and T.A. Badgwell. A survey of industrial model predictive control technology. Cont. Engr. Prac., 11:733–764, 2003.CrossRefGoogle Scholar
  72. 72.
    Martin S. Raymond and William L. Leffler. Oil and Gas Production in Nontechnical Language. PennWell Corporation, 2006.Google Scholar
  73. 73.
    P. S. Routh, J. R. Krebs, S. Lazaratos, A. I. Baumstein, I. Chikichev, S. Lee, N. Downey, D. Hinkley, and J. E. Anderson. Full-wavefield inversion of marine streamer data with the encoded simultaneous source method. 73rd EAGE Conference and Exhibition, 2011.Google Scholar
  74. 74.
    Partha Routh, Jerry Krebs, Spyros Lazaratos, Anatoly Baumstein, Sunwoong Lee, Young Ho Cha, Ivan Chikichev, Nathan Downey, Dave Hinkley, and John Anderson. Encoded simultaneous source full-wavefield inversion for spectrally shaped marine streamer data. SEG Technical Program Expanded Abstracts, pages 2433–2438, 2011.Google Scholar
  75. 75.
    A. Seiler, G. Evensen, J.-A. Skjervheim, J. Hove, and J. G. Vabø. Using the Ensemble Kalman Filter for History Matching and Uncertainty Quantification of Complex Reservoir Models, pages 247–271. John Wiley & Sons, Ltd, 2010.Google Scholar
  76. 76.
    Peter M Shearer. Introduction to Seismology. Cambridge University Press, second edition, 2009.Google Scholar
  77. 77.
    Laurent Sirgue and R. Gerhard Pratt. Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies. Geophysics, 69:231–248, 2004.CrossRefGoogle Scholar
  78. 78.
    Vaclav Smil. Oil. Oneworld Publications, London, 2013.Google Scholar
  79. 79.
    William W. Symes. Migration velocity analysis and waveform inversion. Geophysical Prospecting, 56(6):765–790, 2008.CrossRefGoogle Scholar
  80. 80.
    William W. Symes. The seismic reflection inverse problem. Inverse Problems, 25(12), 2009.Google Scholar
  81. 81.
    William W. Symes. CAAM 436 notes: Partial differential equations of mathematical physics, 2012.Google Scholar
  82. 82.
    William W. Symes, Igor S. Terentyev, and Tetyana W. Vdovina. Gridding requirements for accurate finite difference simulation. SEG Technical Program Expanded Abstracts, pages 2077–2081, 2008.Google Scholar
  83. 83.
    Sirui Tan and Lianjie Huang. An efficient finite-difference method with high-order accuracy in both time and space domains for modelling scalar-wave propagation. Geophysical Journal International, 2014.Google Scholar
  84. 84.
    Leon Thomsen. Understanding Seismic Anisotropy in Exploration and Exploitation. Society of Exploration Geophysicists, 2014.Google Scholar
  85. 85.
    Ilya Tsvankin, James Gaiser, Vladimir Grechka, Mirko van der Baan, and Leon Thomsen. Seismic anisotropy in exploration and reservoir characterization: An overview. Geophysics, 75(5):A15–A29, 2010.CrossRefGoogle Scholar
  86. 86.
    Denes Vigh, E. William Starr, and Pavan Elapavuluri. Acoustic waveform inversion vs. elastic data. SEG Technical Program Expanded Abstracts, pages 2298–2301, 2009.Google Scholar
  87. 87.
    J. Virieux and S. Operto. An overview of full-waveform inversion in exploration geophysics. Geophysics, 74(6):WCC1–WCC26, 2009.CrossRefGoogle Scholar
  88. 88.
    Michael Warner and Lluis Guasch. Adaptive waveform inversion: Theory. Geophysics, 81(6):R429–R445, 2016.CrossRefGoogle Scholar
  89. 89.
    J. H. Williamson. Low-Storage Runge-Kutta Schemes. Journal of Computational Physics, 35:48–56, March 1980.MathSciNetCrossRefGoogle Scholar
  90. 90.
    Rachel Wood and Andrew Curtis. Geological prior information and its application to geoscientific problems. Special Publications, London Geological Society, 239:1–14, 2004.CrossRefGoogle Scholar
  91. 91.
    Xiao-Hui Wu, Linfeng Bi, and Subhash Kalla. Effective parametrization for reliable reservoir performance predictions. Int. J. Uncert. Quant., 2(3):259–278, 2012.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jeremy Brandman
    • 1
  • Huseyin Denli
    • 1
  • Dimitar Trenev
    • 1
  1. 1.Corporate Strategic ResearchExxonMobil Research and Engineering CompanyAnnandaleUSA

Personalised recommendations