Drug-Induced Acute Kidney Injury

  • Randy L. Luciano
  • Mark A. PerazellaEmail author


Drug-induced acute kidney injury (AKI) is a relatively common problem. Prescribed medications, over-the-counter drugs/substances, and diagnostic agents may alter kidney function. As the kidney filters, secretes, reabsorbs, biotransforms, and excretes many drugs, it is not surprising that acute kidney injury is an adverse effect. Drugs and their metabolites can lead to injury within all compartments of the kidney including the vasculature, glomerulus, tubules, and interstitium. Common forms of drug-induced AKI affecting the various renal compartments include thrombotic microangiopathy, membranous and minimal change/focal segmental glomerulosclerosis, acute tubular injury/necrosis, osmotic nephropathy, crystalline-induced AKI, and acute interstitial nephritis. Recognizing AKI syndromes that are associated with various agents can lead to early identification of potentially harmful drugs and therapeutic agents, reducing exposure in at-risk patients. Once identified, the medication or agent can be withheld or dose-reduced, thereby significantly impacting and potentially reducing the duration and severity of kidney injury.


Acute kidney injury Chronic kidney disease Prerenal Intrinsic renal Postrenal Acute tubular necrosis Acute interstitial nephritis Crystalline nephropathy 


  1. 1.
    Schetz M, Dasta J, Goldstein S, Golper T. Drug-induced acute kidney injury. Curr Opin Crit Care. 2005;11:555–65.CrossRefPubMedGoogle Scholar
  2. 2.
    Choudhury D, Ahmed Z. Drug-induced nephrotoxicity. Med Clin North Am. 1997;81:705–17.CrossRefPubMedGoogle Scholar
  3. 3.
    Leape LL, Brennan TA, Laird N, et al. The nature of adverse events in hospitalized patients. Results of the Harvard Medical Practice Study II. N Engl J Med. 1991;324:377–84.CrossRefGoogle Scholar
  4. 4.
    Mehta RL, Pascual MT, Soroko S, et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66:1613–21.CrossRefPubMedGoogle Scholar
  5. 5.
    Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39:930–6.CrossRefGoogle Scholar
  6. 6.
    Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.CrossRefGoogle Scholar
  7. 7.
    Perazella MA. Renal vulnerability to drug toxicity. Clin J Am Soc Nephrol. 2009;4:1275–83.CrossRefPubMedGoogle Scholar
  8. 8.
    Fanos V, Cataldi L. Renal transport of antibiotics and nephrotoxicity: a review. J Chemother. 2001;13:461–72.CrossRefPubMedGoogle Scholar
  9. 9.
    Enomoto A, Endou H. Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease. Clin Exp Nephrol. 2005;9:195–205.CrossRefPubMedGoogle Scholar
  10. 10.
    Nagai J, Takano M. Molecular aspects of renal handling of aminoglycosides and strategies for preventing the nephrotoxicity. Drug Metab Pharmacokinet. 2004;19:159–70.CrossRefPubMedGoogle Scholar
  11. 11.
    Ciarimboli G, Ludwig T, Lang D, et al. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol. 2005;167:1477–84.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jerkic M, Vojvodic S, Lopez-Novoa JM. The mechanism of increased renal susceptibility to toxic substances in the elderly. Part I. The role of increased vasoconstriction. Int Urol Nephrol. 2001;32:539–47.CrossRefPubMedGoogle Scholar
  13. 13.
    Singh NP, Ganguli A, Prakash A. Drug-induced kidney diseases. J Assoc Physicians India. 2003;51:970–9.PubMedGoogle Scholar
  14. 14.
    Guo X, Nzerue C. How to prevent, recognize, and treat drug-induced nephrotoxicity. Cleveland Clin J Med. 2002;69:289–90, 293–284, 296–287 passim.CrossRefGoogle Scholar
  15. 15.
    Ciarimboli G, Koepsell H, Iordanova M, et al. Individual PKC-phosphorylation sites in organic cation transporter 1 determine substrate selectivity and transport regulation. J Am Soc Nephrol. 2005;16:1562–70.CrossRefPubMedGoogle Scholar
  16. 16.
    Harty L, Johnson K, Power A. Race and ethnicity in the era of emerging pharmacogenomics. J Clin Pharmacol. 2006;46:405–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Perazella MA. Diagnosing drug-induced AIN in the hospitalized patient: a challenge for the clinician. Clin Nephrol. 2014;81:381–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Muriithi AK, Nasr SH, Leung N. Utility of urine eosinophils in the diagnosis of acute interstitial nephritis. Clin J Am Soc Nephrol. 2013;8:1857–62.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Smith ER, Cai MM, McMahon LP, Wright DA, Holt SG. The value of simultaneous measurements of urinary albumin and total protein in proteinuric patients. Nephrol Dial Transplant. 2012;27:1534–41.CrossRefPubMedGoogle Scholar
  20. 20.
    Samarawickrama A, Cai M, Smith ER, et al. Simultaneous measurement of urinary albumin and total protein may facilitate decision-making in HIV-infected patients with proteinuria. HIV Med. 2012;13:526–32.PubMedGoogle Scholar
  21. 21.
    Fogazzi GB, Verdesca S, Garigali G. Urinalysis: core curriculum 2008. Am J Kidney Dis. 2008;51:1052–67.CrossRefPubMedGoogle Scholar
  22. 22.
    Perazella MA. The urine sediment as a biomarker of kidney disease. Am J Kidney Dis. 2015;66:748.CrossRefGoogle Scholar
  23. 23.
    Fogazzi GB. Crystalluria: a neglected aspect of urinary sediment analysis. Nephrol Dial Transplant. 1996;11:379–87.CrossRefPubMedGoogle Scholar
  24. 24.
    Clive DM, Stoff JS. Renal syndromes associated with nonsteroidal antiinflammatory drugs. N Engl J Med. 1984;310:563–72.CrossRefPubMedGoogle Scholar
  25. 25.
    Schlondorff D. Renal complications of nonsteroidal anti-inflammatory drugs. Kidney Int. 1993;44:643–53.CrossRefPubMedGoogle Scholar
  26. 26.
    Perazella MA. COX-2 selective inhibitors: analysis of the renal effects. Expert Opin Drug Saf. 2002;1:53–64.CrossRefPubMedGoogle Scholar
  27. 27.
    Perazella MA, Tray K. Selective cyclooxygenase-2 inhibitors: a pattern of nephrotoxicity similar to traditional nonsteroidal anti-inflammatory drugs. Am J Med. 2001;111:64–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Eras J, Perazella MA. NSAIDs and the kidney revisited: are selective cyclooxygenase-2 inhibitors safe? Am J Med Sci. 2001;321:181–90.CrossRefPubMedGoogle Scholar
  29. 29.
    Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Chapman JR, Allen RD. Calcineurin inhibitor nephrotoxicity: longitudinal assessment by protocol histology. Transplantation. 2004;78:557–65.CrossRefPubMedGoogle Scholar
  30. 30.
    Fellstrom B. Cyclosporine nephrotoxicity. Transplant Proc. 2004;36:220S–3S.CrossRefPubMedGoogle Scholar
  31. 31.
    Navar LG, Harrison-Bernard LM, Imig JD, Wang CT, Cervenka L, Mitchell KD. Intrarenal angiotensin II generation and renal effects of AT1 receptor blockade. J Am Soc Nephrol. 1999;10(Suppl 12):S266–72.PubMedGoogle Scholar
  32. 32.
    Brewster UC, Perazella MA. The renin-angiotensin-aldosterone system and the kidney: effects on kidney disease. Am J Med. 2004;116:263–72.CrossRefPubMedGoogle Scholar
  33. 33.
    Lee KG, Loh HL, Tan CS. Spontaneous cholesterol crystal embolism—a rare cause of renal failure. Ann Acad Med Singapore. 2012;41:176–7.PubMedGoogle Scholar
  34. 34.
    Hitti WA, Wali RK, Weinman EJ, Drachenberg C, Briglia A. Cholesterol embolization syndrome induced by thrombolytic therapy. Am J Cardiovasc Drugs. 2008;8:27–34.CrossRefPubMedGoogle Scholar
  35. 35.
    Walter RB, Joerger M, Pestalozzi BC. Gemcitabine-associated hemolytic-uremic syndrome. Am J Kidney Dis. 2002;40:E16.CrossRefPubMedGoogle Scholar
  36. 36.
    Fung MC, Storniolo AM, Nguyen B, Arning M, Brookfield W, Vigil J. A review of hemolytic uremic syndrome in patients treated with gemcitabine therapy. Cancer. 1999;85:2023–32.CrossRefPubMedGoogle Scholar
  37. 37.
    Harper L, Savage CO. Pathogenesis of ANCA-associated systemic vasculitis. J Pathol. 2000;190:349–59.CrossRefPubMedGoogle Scholar
  38. 38.
    Gao Y, Zhao MH. Review article: drug-induced anti-neutrophil cytoplasmic antibody-associated vasculitis. Nephrology. 2009;14:33–41.CrossRefPubMedGoogle Scholar
  39. 39.
    Markowitz GS, Bomback AS, Perazella MA. Drug-induced glomerular disease: direct cellular injury. Clin J Am Soc Nephrol. 2015;10:1291–9.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hofstra JM, Debiec H, Short CD, et al. Antiphospholipase A2 receptor antibody titer and subclass in idiopathic membranous nephropathy. J Am Soc Nephrol. 2012;23:1735–43.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hogan JJ, Markowitz GS, Radhakrishnan J. Drug-induced glomerular disease: immune-mediated injury. Clin J Am Soc Nephrol. 2015;10:1300–10.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Perazella MA, Markowitz GS. Drug-induced acute interstitial nephritis. Nat Rev Nephrol. 2010;6:461–70.CrossRefGoogle Scholar
  43. 43.
    Pirani CL, Valeri A, D’Agati V, Appel GB. Renal toxicity of nonsteroidal anti-inflammatory drugs. Contrib Nephrol. 1987;55:159–75.CrossRefPubMedGoogle Scholar
  44. 44.
    Alper AB Jr, Meleg-Smith S, Krane NK. Nephrotic syndrome and interstitial nephritis associated with celecoxib. Am J Kidney dis. 2002;40:1086–90.CrossRefPubMedGoogle Scholar
  45. 45.
    Brewster UC, Perazella MA. Proton pump inhibitors and the kidney: critical review. Clin Nephrol. 2007;68:65–72.CrossRefPubMedGoogle Scholar
  46. 46.
    Brewster UC, Perazella MA. Acute kidney injury following proton pump inhibitor therapy. Kidney Int. 2007;71:589–93.CrossRefPubMedGoogle Scholar
  47. 47.
    Geevasinga N, Coleman PL, Webster AC, Roger SD. Proton pump inhibitors and acute interstitial nephritis. Clin Gastroenterol Hepatol. 2006;4:597–604.CrossRefPubMedGoogle Scholar
  48. 48.
    Perazella MA. Drug-induced nephropathy: an update. Expert Opin Drug Saf. 2005;4:689–706.CrossRefGoogle Scholar
  49. 49.
    Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 2011;79:33–45.CrossRefPubMedGoogle Scholar
  50. 50.
    Dickenmann M, Oettl T, Mihatsch MJ. Osmotic nephrosis: acute kidney injury with accumulation of proximal tubular lysosomes due to administration of exogenous solutes. Am J Kidney Dis. 2008;51:491–503.CrossRefPubMedGoogle Scholar
  51. 51.
    Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367:124–34.CrossRefGoogle Scholar
  52. 52.
    Myburgh JA, Finfer S, Bellomo R, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–11.CrossRefGoogle Scholar
  53. 53.
    Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins. 2010;2:2490–518.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zaidan M, Lescure FX, Brocheriou I, et al. Tubulointerstitial nephropathies in HIV-infected patients over the past 15 years: a clinico-pathological study. Clin J Am Soc Nephrol. 2013;8:930–8.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Herlitz LC, Mohan S, Stokes MB, Radhakrishnan J, D’Agati VD, Markowitz GS. Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney Int. 2010;78:1171–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Perazella MA. Tenofovir-induced kidney disease: an acquired renal tubular mitochondriopathy. Kidney Int. 2010;78:1060–3.CrossRefPubMedGoogle Scholar
  57. 57.
    Luciano RL, Perazella MA. Crystalline-induced kidney disease: a case for urine microscopy. Clin Kidney J. 2015;8:131–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Yarlagadda SG, Perazella MA. Drug-induced crystal nephropathy: an update. Expert Opin Drug Saf. 2008;7:147–58.CrossRefPubMedGoogle Scholar
  59. 59.
    Fleischer R, Johnson M. Acyclovir nephrotoxicity: a case report highlighting the importance of prevention, detection, and treatment of acyclovir-induced nephropathy. Case Rep Med. 2010;2010:1.CrossRefGoogle Scholar
  60. 60.
    Chaudhari D, Crisostomo C, Ganote C, Youngberg G. Acute oxalate nephropathy associated with orlistat: a case report with a review of the literature. Case Rep Nephrol. 2013;2013:124604.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Singh A, Sarkar SR, Gaber LW, Perazella MA. Acute oxalate nephropathy associated with orlistat, a gastrointestinal lipase inhibitor. Am J Kidney Dis. 2007;49:153–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Perazella MA, Moeckel GW. Nephrotoxicity from chemotherapeutic agents: clinical manifestations, pathobiology, and prevention/therapy. Semin Nephrol. 2010;30:570–81.CrossRefPubMedGoogle Scholar
  63. 63.
    Widemann BC, Balis FM, Kim A, et al. Glucarpidase, leucovorin, and thymidine for high-dose methotrexate-induced renal dysfunction: clinical and pharmacologic factors affecting outcome. J Clin Oncol. 2010;28:3979–86.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Chang HR, Pella PM. Atazanavir urolithiasis. N Engl J Med. 2006;355:2158–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Pacanowski J, Poirier JM, Petit I, Meynard JL, Girard PM. Atazanavir urinary stones in an HIV-infected patient. AIDS. 2006;20:2131.CrossRefPubMedGoogle Scholar
  66. 66.
    Jao J, Wyatt CM. Antiretroviral medications: adverse effects on the kidney. Adv Chronic Kidney Dis. 2010;17:72–82.CrossRefPubMedGoogle Scholar
  67. 67.
    Couzigou C, Daudon M, Meynard JL, et al. Urolithiasis in HIV-positive patients treated with atazanavir. Clin Infect Dis. 2007;45:e105–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Daudon M, Jungers P. Drug-induced renal calculi: epidemiology, prevention and management. Drugs. 2004;64:245–75.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Section of Nephrology, Department of Internal MedicineYale University School of MedicineNew HavenUSA
  2. 2.Section of NephrologyYale University School of MedicineNew HavenUSA
  3. 3.Department of MedicineYale UniversityNew HavenUSA

Personalised recommendations