Contrast-Associated Acute Kidney Injury

  • Steven D. WeisbordEmail author


Acute kidney injury (AKI) is a well-recognized iatrogenic sequela of intravascular iodinated contrast media administration. The incidence of contrast-associated acute kidney injury (CA-AKI) varies depending on the threshold change in kidney function used to define renal injury and the clinical characteristics and risk profile of the patient population. CA-AKI typically manifests as relatively small, transient decrements in kidney function that occur within 2–4 days of contrast administration. A growing number of studies suggest that this condition is associated with serious adverse outcomes, including death and accelerated longer term loss of kidney function; however, the causal nature of these associations remains unknown. This is important as recent data demonstrate that indicated contrast-enhanced procedures are not performed in some patients with chronic kidney disease, likely out of concern by providers for the development of CA-AKI. CA-AKI is one of the few potentially preventable forms of renal injury; as a result, there has been substantial interest in identifying strategies to reduce the risk of this condition. Past research of multiple pharmacological and non-pharmacological interventions forms the current evidence basis for the prevention of this condition. Given an aging patient population, growing prevalence of chronic kidney disease and diabetes, and increasing reliance on diagnostic and therapeutic procedures that utilize intravascular iodinated contrast, AKI is likely to remain a common complication of iodinated contrast. As a result, it is essential for providers caring for patients undergoing contrast-enhanced procedures to recognize the risk factors for, outcomes associated with, and evidence basis for the prevention of this iatrogenic condition.


Iodinated contrast Acute kidney injury Contrast-associated acute kidney injury Prevention Outcomes 


  1. 1.
    Heyman SN, Brezis M, Epstein FH, Spokes K, Silva P, Rosen S. Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int. 1991;40:632–42.CrossRefPubMedGoogle Scholar
  2. 2.
    Heyman SN, Reichman J, Brezis M. Pathophysiology of radiocontrast nephropathy: a role for medullary hypoxia. Investig Radiol. 1999;34:685–91.CrossRefGoogle Scholar
  3. 3.
    Nicot GS, Merle LJ, Charmes JP, et al. Transient glomerular proteinuria, enzymuria, and nephrotoxic reaction induced by radiocontrast media. JAMA. 1984;252:2432–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Haller C, Hizoh I. The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro. Investig Radiol. 2004;39:149–54.CrossRefGoogle Scholar
  5. 5.
    Hizoh I, Haller C. Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress. Investig Radiol. 2002;37:428–34.CrossRefGoogle Scholar
  6. 6.
    Hizoh I, Strater J, Schick CS, Kubler W, Haller C. Radiocontrast-induced DNA fragmentation of renal tubular cells in vitro: role of hypertonicity. Nephrol Dial Transplant. 1998;13:911–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Hardiek K, Katholi RE, Ramkumar V, Deitrick C. Proximal tubule cell response to radiographic contrast media. Am J Physiol Renal Physiol. 2001;280:F61–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Heyman SN, Rosen S, Khamaisi M, Idee JM, Rosenberger C. Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy. Investig Radiol. 2010;45:188–95.CrossRefGoogle Scholar
  9. 9.
    Moreau JF, Droz D, Noel LH, Leibowitch J, Jungers P, Michel JR. Tubular nephrotoxicity of water-soluble iodinated contrast media. Investig Radiol. 1980;15:S54–60.CrossRefGoogle Scholar
  10. 10.
    Humes HD, Hunt DA, White MD. Direct toxic effect of the radiocontrast agent diatrizoate on renal proximal tubule cells. Am J Phys. 1987;252:F246–55.Google Scholar
  11. 11.
    Bakris GL, Lass N, Gaber AO, Jones JD, Burnett JC Jr. Radiocontrast medium-induced declines in renal function: a role for oxygen free radicals. Am J Phys. 1990;258:F115–20.CrossRefGoogle Scholar
  12. 12.
    Bakris GL, Gaber AO, Jones JD. Oxygen free radical involvement in urinary Tamm-Horsfall protein excretion after intrarenal injection of contrast medium. Radiology. 1990;175:57–60.CrossRefPubMedGoogle Scholar
  13. 13.
    Parvez Z, Rahman MA, Moncada R. Contrast media-induced lipid peroxidation in the rat kidney. Investig Radiol. 1989;24:697–702.CrossRefGoogle Scholar
  14. 14.
    Yoshioka T, Fogo A, Beckman JK. Reduced activity of antioxidant enzymes underlies contrast media-induced renal injury in volume depletion. Kidney Int. 1992;41:1008–15.CrossRefPubMedGoogle Scholar
  15. 15.
    Erley CM, Heyne N, Burgert K, Langanke J, Risler T, Osswald H. Prevention of radiocontrast-induced nephropathy by adenosine antagonists in rats with chronic nitric oxide deficiency. J Am Soc Nephrol. 1997;8:1125–32.PubMedGoogle Scholar
  16. 16.
    Schnackenberg CG. Physiological and pathophysiological roles of oxygen radicals in the renal microvasculature. Am J Physiol Regul Integr Comp Physiol. 2002;282:R335–42.CrossRefPubMedGoogle Scholar
  17. 17.
    Szabo G, Bahrle S, Stumpf N, et al. Poly(ADP-Ribose) polymerase inhibition reduces reperfusion injury after heart transplantation. Circ Res. 2002;90:100–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Weisbord SD, Mor MK, Resnick AL, et al. Prevention, incidence, and outcomes of contrast-induced acute kidney injury. Arch Intern Med. 2008;168:1325–32.CrossRefPubMedGoogle Scholar
  19. 19.
    Shema L, Ore L, Geron R, Kristal B. Contrast-induced nephropathy among Israeli hospitalized patients: incidence, risk factors, length of stay and mortality. Isr Med Assoc J. 2009;11:460–4.PubMedGoogle Scholar
  20. 20.
    D’Elia JA, Gleason RE, Alday M, et al. Nephrotoxicity from angiographic contrast material. A prospective study. Am J Med. 1982;72:719–25.CrossRefPubMedGoogle Scholar
  21. 21.
    Bruce RJ, Djamali A, Shinki K, Michel SJ, Fine JP, Pozniak MA. Background fluctuation of kidney function versus contrast-induced nephrotoxicity. AJR Am J Roentgenol. 2009;192:711–8.CrossRefPubMedGoogle Scholar
  22. 22.
    McDonald JS, McDonald RJ, Carter RE, Katzberg RW, Kallmes DF, Williamson EE. Risk of intravenous contrast material-mediated acute kidney injury: a propensity score-matched study stratified by baseline-estimated glomerular filtration rate. Radiology. 2014;271:65–73.CrossRefPubMedGoogle Scholar
  23. 23.
    McDonald JS, McDonald RJ, Lieske JC, et al. Risk of acute kidney injury, dialysis, and mortality in patients with chronic kidney disease after intravenous contrast material exposure. Mayo Clin Proc. 2015;90:1046–53.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    McDonald RJ, McDonald JS, Bida JP, et al. Intravenous contrast material-induced nephropathy: causal or coincident phenomenon? Radiology. 2013;267:106–18.CrossRefGoogle Scholar
  25. 25.
    McDonald RJ, McDonald JS, Newhouse JH, Davenport MS. Controversies in contrast material-induced acute kidney injury: closing in on the truth? Radiology. 2015;277:627–32.CrossRefPubMedGoogle Scholar
  26. 26.
    Wilhelm-Leen E, Montez-Rath ME, Chertow G. Estimating the risk of radiocontrast-associated nephropathy. J Am Soc Nephrol. 2017;28:653–9.CrossRefPubMedGoogle Scholar
  27. 27.
    McDonald JS, McDonald RJ, Comin J, et al. Frequency of acute kidney injury following intravenous contrast medium administration: a systematic review and meta-analysis. Radiology. 2013;267:119–28.CrossRefGoogle Scholar
  28. 28.
    McCullough PA, Adam A, Becker CR, et al. Risk prediction of contrast-induced nephropathy. Am J Cardiol. 2006;98:27K–36K.CrossRefPubMedGoogle Scholar
  29. 29.
    McCullough PA, Wolyn R, Rocher LL, Levin RN, O’Neill WW. Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med. 1997;103:368–75.CrossRefGoogle Scholar
  30. 30.
    Rudnick MR, Goldfarb S, Wexler L, et al. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. The Iohexol Cooperative Study. Kidney Int. 1995;47:254–61.CrossRefPubMedGoogle Scholar
  31. 31.
    Cramer BC, Parfrey PS, Hutchinson TA, et al. Renal function following infusion of radiologic contrast material. A prospective controlled study. Arch Intern Med. 1985;145:87–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Weisberg LS, Kurnik PB, Kurnik BR. Risk of radiocontrast nephropathy in patients with and without diabetes mellitus. Kidney Int. 1994;45:259–65.CrossRefGoogle Scholar
  33. 33.
    Stolker JM, McCullough PA, Rao S, et al. Pre-procedural glucose levels and the risk for contrast-induced acute kidney injury in patients undergoing coronary angiography. J Am Coll Cardiol. 2010;55:1433–40.CrossRefPubMedGoogle Scholar
  34. 34.
    Taliercio CP, Vlietstra RE, Fisher LD, Burnett JC. Risks for renal dysfunction with cardiac angiography. Ann Intern Med. 1986;104:501–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Gomes AS, Baker JD, Martin-Paredero V, et al. Acute renal dysfunction after major arteriography. AJR Am J Roentgenol. 1985;145:1249–53.CrossRefPubMedGoogle Scholar
  36. 36.
    Ahmad SR, Kortepeter C, Brinker A, Chen M, Beitz J. Renal failure associated with the use of celecoxib and rofecoxib. Drug Saf. 2002;25:537–44.CrossRefPubMedGoogle Scholar
  37. 37.
    Nikolsky E, Mehran R, Lasic Z, et al. Low hematocrit predicts contrast-induced nephropathy after percutaneous coronary interventions. Kidney Int. 2005;67:706–13.CrossRefPubMedGoogle Scholar
  38. 38.
    Mehran R, Aymong ED, Nikolsky E, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44:1393–9.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Hsu RK, Hsu CY. Proteinuria and reduced glomerular filtration rate as risk factors for acute kidney injury. Curr Opin Nephrol Hypertens. 2011;20:211–7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    He F, Zhang J, Lu ZQ, et al. Risk factors and outcomes of acute kidney injury after intracoronary stent implantation. World J Emerg Med. 2012;3:197–201.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Marenzi G, Assanelli E, Campodonico J, et al. Contrast volume during primary percutaneous coronary intervention and subsequent contrast-induced nephropathy and mortality. Ann Intern Med. 2009;150:170–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Nyman U, Almen T, Aspelin P, Hellstrom M, Kristiansson M, Sterner G. Contrast-medium-Induced nephropathy correlated to the ratio between dose in gram iodine and estimated GFR in ml/min. Acta Radiol. 2005;46:830–42.CrossRefPubMedGoogle Scholar
  43. 43.
    Worasuwannarak S, Pornratanarangsi S. Prediction of contrast-induced nephropathy in diabetic patients undergoing elective cardiac catheterization or PCI: role of volume-to-creatinine clearance ratio and iodine dose-to-creatinine clearance ratio. J Med Assoc Thai. 2010;93 Suppl 1:S29–34.PubMedGoogle Scholar
  44. 44.
    Barrett BJ, Carlisle EJ. Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology. 1993;188:171–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Levy EM, Viscoli CM, Horwitz RI. The effect of acute renal failure on mortality. A cohort analysis. JAMA. 1996;275:1489–94.CrossRefGoogle Scholar
  46. 46.
    Bartholomew BA, Harjai KJ, Dukkipati S, et al. Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification. Am J Cardiol. 2004;93:1515–9.CrossRefGoogle Scholar
  47. 47.
    From AM, Bartholmai BJ, Williams AW, Cha SS, McDonald FS. Mortality associated with nephropathy after radiographic contrast exposure. Mayo Clin Proc. 2008;83:1095–100.CrossRefPubMedGoogle Scholar
  48. 48.
    Weisbord SD, Chen H, Stone RA, et al. Associations of increases in serum creatinine with mortality and length of hospital stay after coronary angiography. J Am Soc Nephrol. 2006;17:2871–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Rihal CS, Textor SC, Grill DE, et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002;105:2259–64.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Marenzi G, Assanelli E, Marana I, et al. N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. N Engl J Med. 2006;354:2773–82.CrossRefPubMedGoogle Scholar
  51. 51.
    Maioli M, Toso A, Leoncini M, et al. Sodium bicarbonate versus saline for the prevention of contrast-induced nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. J Am Coll Cardiol. 2008;52:599–604.CrossRefPubMedGoogle Scholar
  52. 52.
    Adolph E, Holdt-Lehmann B, Chatterjee T, et al. Renal Insufficiency Following Radiocontrast Exposure Trial (REINFORCE): a randomized comparison of sodium bicarbonate versus sodium chloride hydration for the prevention of contrast-induced nephropathy. Coron Artery Dis. 2008;19:413–9.PubMedGoogle Scholar
  53. 53.
    Subramanian S, Tumlin J, Bapat B, Zyczynski T. Economic burden of contrast-induced nephropathy: implications for prevention strategies. J Med Econ. 2007;10:119–34.CrossRefPubMedGoogle Scholar
  54. 54.
    Goldenberg I, Chonchol M, Guetta V. Reversible acute kidney injury following contrast exposure and the risk of long-term mortality. Am J Nephrol. 2009;29:136–44.CrossRefPubMedGoogle Scholar
  55. 55.
    Harjai KJ, Raizada A, Shenoy C, et al. A comparison of contemporary definitions of contrast nephropathy in patients undergoing percutaneous coronary intervention and a proposal for a novel nephropathy grading system. Am J Cardiol. 2008;101:812–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Roghi A, Savonitto S, Cavallini C, et al. Impact of acute renal failure following percutaneous coronary intervention on long-term mortality. J Cardiovasc Med (Hagerstown). 2008;9:375–81.CrossRefGoogle Scholar
  57. 57.
    Solomon RJ, Mehran R, Natarajan MK, et al. Contrast-induced nephropathy and long-term adverse events: cause and effect? Clin J Am Soc Nephrol. 2009;4:1162–9.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Brown JR, Malenka DJ, DeVries JT, et al. Transient and persistent renal dysfunction are predictors of survival after percutaneous coronary intervention: insights from the Dartmouth Dynamic Registry. Catheter Cardiovasc Interv. 2008;72:347–54.CrossRefPubMedGoogle Scholar
  59. 59.
    James MT, Ghali WA, Tonelli M, et al. Acute kidney injury following coronary angiography is associated with a long-term decline in kidney function. Kidney Int. 2010;78:803–9.CrossRefPubMedGoogle Scholar
  60. 60.
    James MT, Ghali WA, Knudtson ML, et al. Associations between acute kidney injury and cardiovascular and renal outcomes after coronary angiography. Circulation. 2011;123:409–16.CrossRefGoogle Scholar
  61. 61.
    Chertow GM, Normand SL, McNeil BJ. “Renalism”: inappropriately low rates of coronary angiography in elderly individuals with renal insufficiency. J Am Soc Nephrol. 2004;15:2462–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Han JH, Chandra A, Mulgund J, et al. Chronic kidney disease in patients with non-ST-segment elevation acute coronary syndromes. Am J Med. 2006;119:248–54.CrossRefPubMedGoogle Scholar
  63. 63.
    Szummer K, Lundman P, Jacobson SH, et al. Relation between renal function, presentation, use of therapies and in-hospital complications in acute coronary syndrome: data from the SWEDEHEART register. J Intern Med. 2010;268:40–9.PubMedGoogle Scholar
  64. 64.
    Goldenberg I, Subirana I, Boyko V, et al. Relation between renal function and outcomes in patients with non-ST-segment elevation acute coronary syndrome: real-world data from the European Public Health Outcome Research and Indicators Collection Project. Arch Intern Med. 2010;170:888–95.CrossRefPubMedGoogle Scholar
  65. 65.
    Nauta ST, van Domburg RT, Nuis RJ, Akkerhuis M, Deckers JW. Decline in 20-year mortality after myocardial infarction in patients with chronic kidney disease: evolution from the prethrombolysis to the percutaneous coronary intervention era. Kidney Int. 2013;84:353–8.CrossRefPubMedGoogle Scholar
  66. 66.
    James MT, Tonelli M, Ghali WA, et al. Renal outcomes associated with invasive versus conservative management of acute coronary syndrome: propensity matched cohort study. BMJ. 2013;347:f4151.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med. 2003;348:491–9.CrossRefGoogle Scholar
  68. 68.
    Jo SH, Youn TJ, Koo BK, et al. Renal toxicity evaluation and comparison between visipaque (iodixanol) and hexabrix (ioxaglate) in patients with renal insufficiency undergoing coronary angiography: the RECOVER study: a randomized controlled trial. J Am Coll Cardiol. 2006;48:924–30.CrossRefPubMedGoogle Scholar
  69. 69.
    Carraro M, Malalan F, Antonione R, et al. Effects of a dimeric vs a monomeric nonionic contrast medium on renal function in patients with mild to moderate renal insufficiency: a double-blind, randomized clinical trial. Eur Radiol. 1998;8:144–7.CrossRefPubMedGoogle Scholar
  70. 70.
    Chalmers N, Jackson RW. Comparison of iodixanol and iohexol in renal impairment. Br J Radiol. 1999;72:701–3.CrossRefPubMedGoogle Scholar
  71. 71.
    Juergens CP, Winter JP, Nguyen-Do P, et al. Nephrotoxic effects of iodixanol and iopromide in patients with abnormal renal function receiving N-acetylcysteine and hydration before coronary angiography and intervention: a randomized trial. Intern Med J. 2009;39:25–31.CrossRefPubMedGoogle Scholar
  72. 72.
    Laskey W, Aspelin P, Davidson C, et al. Nephrotoxicity of iodixanol versus iopamidol in patients with chronic kidney disease and diabetes mellitus undergoing coronary angiographic procedures. Am Heart J 2009;158:822–8 e3.CrossRefPubMedGoogle Scholar
  73. 73.
    Nguyen SA, Suranyi P, Ravenel JG, et al. Iso-osmolality versus low-osmolality iodinated contrast medium at intravenous contrast-enhanced CT: effect on kidney function. Radiology. 2008;248:97–105.CrossRefPubMedGoogle Scholar
  74. 74.
    Solomon RJ, Natarajan MK, Doucet S, et al. Cardiac Angiography in Renally Impaired Patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease. Circulation. 2007;115:3189–96.CrossRefPubMedGoogle Scholar
  75. 75.
    McCullough PA, Bertrand ME, Brinker JA, Stacul F. A meta-analysis of the renal safety of isosmolar iodixanol compared with low-osmolar contrast media. J Am Coll Cardiol. 2006;48:692–9.CrossRefGoogle Scholar
  76. 76.
    Sharma SK, Kini A. Effect of nonionic radiocontrast agents on the occurrence of contrast-induced nephropathy in patients with mild-moderate chronic renal insufficiency: pooled analysis of the randomized trials. Catheter Cardiovasc Interv. 2005;65:386–93.CrossRefPubMedGoogle Scholar
  77. 77.
    Solomon R. The role of osmolality in the incidence of contrast-induced nephropathy: a systematic review of angiographic contrast media in high risk patients. Kidney Int. 2005;68:2256–63.CrossRefPubMedGoogle Scholar
  78. 78.
    Reed M, Meier P, Tamhane UU, Welch KB, Moscucci M, Gurm HS. The relative renal safety of iodixanol compared with low-osmolar contrast media: a meta-analysis of randomized controlled trials. JACC Cardiovasc Interv. 2009;2:645–54.CrossRefGoogle Scholar
  79. 79.
    Heinrich MC, Haberle L, Muller V, Bautz W, Uder M. Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials. Radiology. 2009;250:68–86.CrossRefPubMedGoogle Scholar
  80. 80.
    Anderson JL, Adams CD, Antman EM, et al. 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127:e663–828.CrossRefPubMedGoogle Scholar
  81. 81.
    ESUR Guidelines on Contrast Media; 2008.Google Scholar
  82. 82.
    Lee PT, Chou KJ, Liu CP, et al. Renal protection for coronary angiography in advanced renal failure patients by prophylactic hemodialysis. A randomized controlled trial. J Am Coll Cardiol. 2007;50:1015–20.CrossRefPubMedGoogle Scholar
  83. 83.
    Reinecke H, Fobker M, Wellmann J, et al. A randomized controlled trial comparing hydration therapy to additional hemodialysis or N-acetylcysteine for the prevention of contrast medium-induced nephropathy: the Dialysis-versus-Diuresis (DVD) Trial. Clin Res Cardiol. 2007;96:130–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Holscher B, Heitmeyer C, Fobker M, Breithardt G, Schaefer RM, Reinecke H. Predictors for contrast media-induced nephropathy and long-term survival: prospectively assessed data from the randomized controlled Dialysis-Versus-Diuresis (DVD) trial. Can J Cardiol. 2008;24:845–50.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Hsieh YC, Ting CT, Liu TJ, Wang CL, Chen YT, Lee WL. Short- and long-term renal outcomes of immediate prophylactic hemodialysis after cardiovascular catheterizations in patients with severe renal insufficiency. Int J Cardiol. 2005;101:407–13.CrossRefPubMedGoogle Scholar
  86. 86.
    Berger ED, Bader BD, Bosker J, Risler T, Erley CM. Contrast media-induced kidney failure cannot be prevented by hemodialysisDtsch Med Wochenschr. 2001;126:162–6.CrossRefPubMedGoogle Scholar
  87. 87.
    Frank H, Werner D, Lorusso V, et al. Simultaneous hemodialysis during coronary angiography fails to prevent radiocontrast-induced nephropathy in chronic renal failure. Clin Nephrol. 2003;60:176–82.CrossRefPubMedGoogle Scholar
  88. 88.
    Huber W, Jeschke B, Kreymann B, et al. Haemodialysis for the prevention of contrast-induced nephropathy: outcome of 31 patients with severely impaired renal function, comparison with patients at similar risk and review. Invest Radiol. 2002;37:471–81.CrossRefPubMedGoogle Scholar
  89. 89.
    Marenzi G, Lauri G, Campodonico J, et al. Comparison of two hemofiltration protocols for prevention of contrast-induced nephropathy in high-risk patients. Am J Med. 2006;119:155–62.CrossRefGoogle Scholar
  90. 90.
    Marenzi G, Marana I, Lauri G, et al. The prevention of radiocontrast-agent-induced nephropathy by hemofiltration. N Engl J Med. 2003;349:1333–40.CrossRefPubMedGoogle Scholar
  91. 91.
    Solomon R, Werner C, Mann D, D’Elia J, Silva P. Effects of saline, mannitol, and furosemide to prevent acute decreases in renal function induced by radiocontrast agents. [see comments.]. N Engl J Med. 1994;331:1416–20.CrossRefPubMedGoogle Scholar
  92. 92.
    Weinstein JM, Heyman S, Brezis M. Potential deleterious effect of furosemide in radiocontrast nephropathy. Nephron. 1992;62:413–5.CrossRefPubMedGoogle Scholar
  93. 93.
    Hall KA, Wong RW, Hunter GC, et al. Contrast-induced nephrotoxicity: the effects of vasodilator therapy. J Surg Res. 1992;53:317–20.CrossRefPubMedGoogle Scholar
  94. 94.
    Kellum JA. The use of diuretics and dopamine in acute renal failure: a systematic review of the evidence. Crit Care (Lond). 1997;1:53–9.CrossRefGoogle Scholar
  95. 95.
    Weisberg LS, Kurnik PB, Kurnik BR. Dopamine and renal blood flow in radiocontrast-induced nephropathy in humans. Ren Fail. 1993;15:61–8.CrossRefPubMedGoogle Scholar
  96. 96.
    Kapoor A, Sinha N, Sharma RK, et al. Use of dopamine in prevention of contrast induced acute renal failure—a randomised study. Int J Cardiol. 1996;53:233–6.CrossRefPubMedGoogle Scholar
  97. 97.
    Bakris GL, Lass NA, Glock D. Renal hemodynamics in radiocontrast medium-induced renal dysfunction: a role for dopamine-1 receptors. Kidney Int. 1999;56:206–10.CrossRefPubMedGoogle Scholar
  98. 98.
    Madyoon H, Croushore L. Use of fenoldopam for prevention of radiocontrast nephropathy in the cardiac catheterization laboratory: a case series. J Interv Cardiol. 2001;14:179–85.CrossRefPubMedGoogle Scholar
  99. 99.
    Madyoon H, Croushore L, Weaver D, Mathur V. Use of fenoldopam to prevent radiocontrast nephropathy in high-risk patients. Catheter Cardiovasc Interv. 2001;53:341–5.CrossRefPubMedGoogle Scholar
  100. 100.
    Singer I, Epstein M. Potential of dopamine A-1 agonists in the management of acute renal failure. Am J Kidney Dis. 1998;31:743–55.CrossRefPubMedGoogle Scholar
  101. 101.
    Madyoon H. Clinical experience with the use of fenoldopam for prevention of radiocontrast nephropathy in high-risk patients. Rev Cardiovasc Med. 2001;2 Suppl 1:S26–30.PubMedGoogle Scholar
  102. 102.
    Mathur VS. The role of the DA1 receptor agonist fenoldopam in the management of critically ill, transplant, and hypertensive patients. Rev Cardiovasc Med. 2003;4 Suppl 1:S35–40.PubMedGoogle Scholar
  103. 103.
    Stone GW, McCullough PA, Tumlin JA, et al. Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA. 2003;290:2284–91.CrossRefGoogle Scholar
  104. 104.
    Kurnik BR, Allgren RL, Genter FC, Solomon RJ, Bates ER, Weisberg LS. Prospective study of atrial natriuretic peptide for the prevention of radiocontrast-induced nephropathy. Am J Kidney Dis. 1998;31:674–80.CrossRefPubMedGoogle Scholar
  105. 105.
    Morikawa S, Sone T, Tsuboi H, et al. Renal protective effects and the prevention of contrast-induced nephropathy by atrial natriuretic peptide. J Am Coll Cardiol. 2009;53:1040–6.CrossRefPubMedGoogle Scholar
  106. 106.
    Erley CM, Duda SH, Rehfuss D, et al. Prevention of radiocontrast-media-induced nephropathy in patients with pre-existing renal insufficiency by hydration in combination with the adenosine antagonist theophylline. Nephrol Dial Transplant. 1999;14:1146–9.CrossRefPubMedGoogle Scholar
  107. 107.
    Katholi RE, Taylor GJ, McCann WP, et al. Nephrotoxicity from contrast media: attenuation with theophylline. Radiology. 1995;195:17–22.CrossRefPubMedGoogle Scholar
  108. 108.
    Bagshaw SM, Ghali WA. Theophylline for prevention of contrast-induced nephropathy: a systematic review and meta-analysis. Arch Intern Med. 2005;165:1087–93.CrossRefPubMedGoogle Scholar
  109. 109.
    Ix JH, McCulloch CE, Chertow GM. Theophylline for the prevention of radiocontrast nephropathy: a meta-analysis. Nephrol Dial Transplant. 2004;19:2747–53.CrossRefPubMedGoogle Scholar
  110. 110.
    Kelly AM, Dwamena B, Cronin P, Bernstein SJ, Carlos RC. Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy. Ann Intern Med. 2008;148:284–94.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Han Y, Zhu G, Han L, et al. Short-term rosuvastatin therapy for prevention of contrast-induced acute kidney injury in patients with diabetes and chronic kidney disease. J Am Coll Cardiol. 2014;63:62–70.CrossRefGoogle Scholar
  112. 112.
    Leoncini M, Toso A, Maioli M, Tropeano F, Villani S, Bellandi F. Early high-dose rosuvastatin for contrast-induced nephropathy prevention in acute coronary syndrome: results from the PRATO-ACS Study (Protective Effect of Rosuvastatin and Antiplatelet Therapy On contrast-induced acute kidney injury and myocardial damage in patients with Acute Coronary Syndrome). J Am Coll Cardiol. 2014;63:71–9.CrossRefGoogle Scholar
  113. 113.
    Vidt DG, Harris S, McTaggart F, Ditmarsch M, Sager PT, Sorof JM. Effect of short-term rosuvastatin treatment on estimated glomerular filtration rate. Am J Cardiol. 2006;97:1602–6.CrossRefPubMedGoogle Scholar
  114. 114.
    Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med. 2000;343:180–4.CrossRefGoogle Scholar
  115. 115.
    Baker CS, Baker LR. Prevention of contrast nephropathy after cardiac catheterisation. Heart. 2001:361–2.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Briguori C, Manganelli F, Scarpato P, et al. Acetylcysteine and contrast agent-associated nephrotoxicity. J Am Coll Cardiol. 2002;40:298–303.CrossRefPubMedGoogle Scholar
  117. 117.
    Coyle LC, Rodriguez A, Jeschke RE, Simon-Lee A, Abbott KC, Taylor AJ. Acetylcysteine In Diabetes (AID): a randomized study of acetylcysteine for the prevention of contrast nephropathy in diabetics. Am Heart J. 2006;151:1032 e9–12.CrossRefGoogle Scholar
  118. 118.
    Kay J, Chow WH, Chan TM, et al. Acetylcysteine for prevention of acute deterioration of renal function following elective coronary angiography and intervention: a randomized controlled trial. JAMA. 2003;289:553–8.CrossRefGoogle Scholar
  119. 119.
    Gomes VO, Poli de Figueredo CE, Caramori P, et al. N-acetylcysteine does not prevent contrast induced nephropathy after cardiac catheterisation with an ionic low osmolality contrast medium: a multicentre clinical trial. Heart. 2005;91:774–8.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Fung JW, Szeto CC, Chan WW, et al. Effect of N-acetylcysteine for prevention of contrast nephropathy in patients with moderate to severe renal insufficiency: a randomized trial. Am J Kidney Dis. 2004;43:801–8.CrossRefPubMedGoogle Scholar
  121. 121.
    Durham JD, Caputo C, Dokko J, et al. A randomized controlled trial of N-acetylcysteine to prevent contrast nephropathy in cardiac angiography. Kidney Int. 2002;62:2202–7.CrossRefPubMedGoogle Scholar
  122. 122.
    Allaqaband S, Tumuluri R, Malik AM, et al. Prospective randomized study of N-acetylcysteine, fenoldopam, and saline for prevention of radiocontrast-induced nephropathy. Catheter Cardiovasc Interv. 2002;57:279–83.CrossRefPubMedGoogle Scholar
  123. 123.
    Shyu KG, Cheng JJ, Kuan P. Acetylcysteine protects against acute renal damage in patients with abnormal renal function undergoing a coronary procedure. J Am Coll Cardiol. 2002;40:1383–8.CrossRefPubMedGoogle Scholar
  124. 124.
    Sandhu C, Belli AM, Oliveira DB. The role of N-acetylcysteine in the prevention of contrast-induced nephrotoxicity. Cardiovasc Intervent Radiol. 2006;29:344–7.CrossRefPubMedGoogle Scholar
  125. 125.
    Rashid ST, Salman M, Myint F, et al. Prevention of contrast-induced nephropathy in vascular patients undergoing angiography: a randomized controlled trial of intravenous N-acetylcysteine. J Vasc Surg. 2004;40:1136–41.CrossRefPubMedGoogle Scholar
  126. 126.
    Oldemeyer JB, Biddle WP, Wurdeman RL, Mooss AN, Cichowski E, Hilleman DE. Acetylcysteine in the prevention of contrast-induced nephropathy after coronary angiography. Am Heart J. 2003;146:E23.CrossRefPubMedGoogle Scholar
  127. 127.
    Ochoa A, Pellizzon G, Addala S, et al. Abbreviated dosing of N-acetylcysteine prevents contrast-induced nephropathy after elective and urgent coronary angiography and intervention. J Interv Cardiol. 2004;17:159–65.CrossRefPubMedGoogle Scholar
  128. 128.
    MacNeill BD, Harding SA, Bazari H, et al. Prophylaxis of contrast-induced nephropathy in patients undergoing coronary angiography. Catheter Cardiovasc Interv. 2003;60:458–61.CrossRefPubMedGoogle Scholar
  129. 129.
    Kefer JM, Hanet CE, Boitte S, Wilmotte L, De Kock M. Acetylcysteine, coronary procedure and prevention of contrast-induced worsening of renal function: which benefit for which patient? Acta Cardiol. 2003;58:555–60.CrossRefPubMedGoogle Scholar
  130. 130.
    Goldenberg I, Shechter M, Matetzky S, et al. Oral acetylcysteine as an adjunct to saline hydration for the prevention of contrast-induced nephropathy following coronary angiography. A randomized controlled trial and review of the current literature. Eur Heart J. 2004;25:212–8.CrossRefPubMedGoogle Scholar
  131. 131.
    Drager LF, Andrade L, Barros de Toledo JF, Laurindo FR, Machado Cesar LA, Seguro AC. Renal effects of N-acetylcysteine in patients at risk for contrast nephropathy: decrease in oxidant stress-mediated renal tubular injury. Nephrol Dial Transplant. 2004;19:1803–7.CrossRefPubMedGoogle Scholar
  132. 132.
    Diaz-Sandoval LJ, Kosowsky BD, Losordo DW. Acetylcysteine to prevent angiography-related renal tissue injury (the APART trial). Am J Cardiol. 2002;89:356–8.CrossRefPubMedGoogle Scholar
  133. 133.
    Azmus AD, Gottschall C, Manica A, et al. Effectiveness of acetylcysteine in prevention of contrast nephropathy. J Invasive Cardiol. 2005;17:80–4.PubMedGoogle Scholar
  134. 134.
    Webb JG, Pate GE, Humphries KH, et al. A randomized controlled trial of intravenous N-acetylcysteine for the prevention of contrast-induced nephropathy after cardiac catheterization: lack of effect. Am Heart J. 2004;148:422–9.CrossRefPubMedGoogle Scholar
  135. 135.
    Balderramo DC, Verdu MB, Ramacciotti CF, et al. Renoprotective effect of high periprocedural doses of oral N-acetylcysteine in patients scheduled to undergo a same-day angiography. Rev Fac Cien Med Univ Nac Cordoba. 2004;61:13–9.PubMedGoogle Scholar
  136. 136.
    Carbonell N, Blasco M, Sanjuan R, et al. Intravenous N-acetylcysteine for preventing contrast-induced nephropathy: a randomised trial. Int J Cardiol. 2007;115:57–62.CrossRefPubMedGoogle Scholar
  137. 137.
    Amini M, Salarifar M, Amirbaigloo A, Masoudkabir F, Esfahani F. N-acetylcysteine does not prevent contrast-induced nephropathy after cardiac catheterization in patients with diabetes mellitus and chronic kidney disease: a randomized clinical trial. Trials. 2009;10:45.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Miner SE, Dzavik V, Nguyen-Ho P, et al. N-acetylcysteine reduces contrast-associated nephropathy but not clinical events during long-term follow-up. Am Heart J. 2004;148:690–5.CrossRefPubMedGoogle Scholar
  139. 139.
    Alonso A, Lau J, Jaber BL, Weintraub A, Sarnak MJ. Prevention of radiocontrast nephropathy with N-acetylcysteine in patients with chronic kidney disease: a meta-analysis of randomized, controlled trials. Am J Kidney Dis. 2004;43:1–9.CrossRefPubMedGoogle Scholar
  140. 140.
    Bagshaw SM, Ghali WA. Acetylcysteine for prevention of contrast-induced nephropathy after intravascular angiography: a systematic review and meta-analysis. BMC Med. 2004;2:38.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Birck R, Krzossok S, Markowetz F, Schnulle P, van der Woude FJ, Braun C. Acetylcysteine for prevention of contrast nephropathy: meta-analysis. Lancet. 2003;362:598–603.CrossRefPubMedGoogle Scholar
  142. 142.
    Duong MH, MacKenzie TA, Malenka DJ. N-acetylcysteine prophylaxis significantly reduces the risk of radiocontrast-induced nephropathy: comprehensive meta-analysis. Catheter Cardiovasc Interv. 2005;64:471–9.CrossRefPubMedGoogle Scholar
  143. 143.
    Gonzales DA, Norsworthy KJ, Kern SJ, et al. A meta-analysis of N-acetylcysteine in contrast-induced nephrotoxicity: unsupervised clustering to resolve heterogeneity. BMC Med. 2007;5:32.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Isenbarger DW, Kent SM, O’Malley PG. Meta-analysis of randomized clinical trials on the usefulness of acetylcysteine for prevention of contrast nephropathy. Am J Cardiol. 2003;92:1454–8.CrossRefPubMedGoogle Scholar
  145. 145.
    Kshirsagar AV, Poole C, Mottl A, et al. N-acetylcysteine for the prevention of radiocontrast induced nephropathy: a meta-analysis of prospective controlled trials. J Am Soc Nephrol. 2004;15:761–9.CrossRefPubMedGoogle Scholar
  146. 146.
    Misra D, Leibowitz K, Gowda RM, Shapiro M, Khan IA. Role of N-acetylcysteine in prevention of contrast-induced nephropathy after cardiovascular procedures: a meta-analysis. Clin Cardiol. 2004;27:607–10.CrossRefPubMedGoogle Scholar
  147. 147.
    Nallamothu BK, Shojania KG, Saint S, et al. Is acetylcysteine effective in preventing contrast-related nephropathy? A meta-analysis. Am J Med. 2004;117:938–47.CrossRefPubMedGoogle Scholar
  148. 148.
    Pannu N, Manns B, Lee H, Tonelli M. Systematic review of the impact of N-acetylcysteine on contrast nephropathy. Kidney Int. 2004;65:1366–74.CrossRefPubMedGoogle Scholar
  149. 149.
    Weisbord SD, Gallagher M, Jneid H, et al. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med. 2017;Google Scholar
  150. 150.
    Merten GJ, Burgess WP, Gray LV, et al. Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA. 2004;291:2328–34.CrossRefGoogle Scholar
  151. 151.
    Mueller C, Buerkle G, Buettner HJ, et al. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. [see comments.]. Arch Intern Med. 2002;162:329–36.CrossRefPubMedGoogle Scholar
  152. 152.
    Trivedi HS, Moore H, Nasr S, et al. A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity. Nephron. 2003;93:C29–34.CrossRefPubMedGoogle Scholar
  153. 153.
    Weisbord SD, Palevsky PM. Prevention of contrast-induced nephropathy with volume expansion. Clin J Am Soc Nephrol. 2008;3:273–80.CrossRefPubMedGoogle Scholar
  154. 154.
    Brar SS, Shen AY, Jorgensen MB, et al. Sodium bicarbonate vs sodium chloride for the prevention of contrast medium-induced nephropathy in patients undergoing coronary angiography: a randomized trial. JAMA. 2008;300:1038–46.CrossRefGoogle Scholar
  155. 155.
    Kanbay M, Covic A, Coca SG, Turgut F, Akcay A, Parikh CR. Sodium bicarbonate for the prevention of contrast-induced nephropathy: a meta-analysis of 17 randomized trials. Int Urol Nephrol. 2009;41:617–27.CrossRefPubMedGoogle Scholar
  156. 156.
    Masuda M, Yamada T, Mine T, et al. Comparison of usefulness of sodium bicarbonate versus sodium chloride to prevent contrast-induced nephropathy in patients undergoing an emergent coronary procedure. Am J Cardiol. 2007;100:781–6.CrossRefPubMedGoogle Scholar
  157. 157.
    Ozcan EE, Guneri S, Akdeniz B, et al. Sodium bicarbonate, N-acetylcysteine, and saline for prevention of radiocontrast-induced nephropathy. A comparison of 3 regimens for protecting contrast-induced nephropathy in patients undergoing coronary procedures. A single-center prospective controlled trial. Am Heart J. 2007;154:539–44.CrossRefPubMedGoogle Scholar
  158. 158.
    Pakfetrat M, Nikoo MH, Malekmakan L, et al. A comparison of sodium bicarbonate infusion versus normal saline infusion and its combination with oral acetazolamide for prevention of contrast-induced nephropathy: a randomized, double-blind trial. Int Urol Nephrol. 2009;41:629–34.CrossRefPubMedGoogle Scholar
  159. 159.
    Recio-Mayoral A, Chaparro M, Prado B, et al. The reno-protective effect of hydration with sodium bicarbonate plus N-acetylcysteine in patients undergoing emergency percutaneous coronary intervention: the RENO Study. J Am Coll Cardiol. 2007;49:1283–8.CrossRefPubMedGoogle Scholar
  160. 160.
    Vasheghani-Farahani A, Sadigh G, Kassaian SE, et al. Sodium bicarbonate plus isotonic saline versus saline for prevention of contrast-induced nephropathy in patients undergoing coronary angiography: a randomized controlled trial. Am J Kidney Dis. 2009;54:610–8.CrossRefPubMedGoogle Scholar
  161. 161.
    Zoungas S, Ninomiya T, Huxley R, et al. Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy. Ann Intern Med. 2009;151:631–8.CrossRefPubMedGoogle Scholar
  162. 162.
    Navaneethan SD, Singh S, Appasamy S, Wing RE, Sehgal AR. Sodium bicarbonate therapy for prevention of contrast-induced nephropathy: a systematic review and meta-analysis. Am J Kidney Dis. 2009;53:617–27.CrossRefPubMedGoogle Scholar
  163. 163.
    Meier P, Ko DT, Tamura A, Tamhane U, Gurm HS. Sodium bicarbonate-based hydration prevents contrast-induced nephropathy: a meta-analysis. BMC Med. 2009;7:23.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Hoste EA, De Waele JJ, Gevaert SA, Uchino S, Kellum JA. Sodium bicarbonate for prevention of contrast-induced acute kidney injury: a systematic review and meta-analysis. Nephrol Dial Transplant. 2009;Google Scholar
  165. 165.
    Brown JR, Block CA, Malenka DJ, O’Connor GT, Schoolwerth AC, Thompson CA. Sodium bicarbonate plus N-acetylcysteine prophylaxis: a meta-analysis. JACC Cardiovasc Interv. 2009;2:1116–24.CrossRefPubMedGoogle Scholar
  166. 166.
    Joannidis M, Schmid M, Wiedermann CJ. Prevention of contrast media-induced nephropathy by isotonic sodium bicarbonate: a meta-analysis. Wien Klin Wochenschr. 2008;120:742–8.CrossRefPubMedGoogle Scholar
  167. 167.
    Hogan SE, L’Allier P, Chetcuti S, et al. Current role of sodium bicarbonate-based preprocedural hydration for the prevention of contrast-induced acute kidney injury: a meta-analysis. Am Heart J. 2008;156:414–21.CrossRefPubMedGoogle Scholar
  168. 168.
    Ho KM, Morgan DJ. Use of isotonic sodium bicarbonate to prevent radiocontrast nephropathy in patients with mild pre-existing renal impairment: a meta-analysis. Anaesth Intensive Care. 2008;36:646–53.PubMedGoogle Scholar
  169. 169.
    Kunadian V, Zaman A, Spyridopoulos I, Qiu W. Sodium bicarbonate for the prevention of contrast induced nephropathy: a meta-analysis of published clinical trials. Eur J Radiol.Google Scholar
  170. 170.
    Brar SS, Aharonian V, Mansukhani P, et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet. 2014;383:1814–23.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Renal Section and Center for Health Equity Research and PromotionVA Pittsburgh Healthcare SystemPittsburghUSA
  2. 2.Renal-Electrolyte Division, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations