Advertisement

Post-renal Acute Kidney Injury: Epidemiology, Presentation, Pathophysiology, Diagnosis, and Management

  • Valary T. Raup
  • Steven L. Chang
  • Jairam R. Eswara
Chapter

Abstract

Postobstructive renal damage has many etiologies but can be simply defined as a mechanical inability for urine to pass through the urinary system resulting in kidney damage. This obstruction can occur at any point along the urinary tract, from the tip of the urethra to within the kidney itself. Etiologies can be intrinsic and extrinsic and partial and complete and can occur at any time. The causes of post-renal acute kidney injury may be divided anatomically based on location. Upper tract causes of post-renal obstruction include renal etiologies and ureteral etiologies. Lower tract causes of post-renal obstruction include bladder, prostatic, and urethral etiologies. Obstructive uropathy often presents as some combination of flank or abdominal pain, hematuria, uremic symptoms, occasionally signs of infection when this is present, or rarely decreased urine output. Identification of elevated creatinine and/or hydronephrosis on routine surveillance or workup of other issues can also lead to the diagnosis. The preferred screening test for hydronephrosis is renal ultrasound, but renal radionuclide studies may be indicated if contrast is contraindicated or the remaining function of the kidney is in question. Management of post-renal acute kidney injury involves first relieving the obstruction, and this depends upon the anatomic location and etiology. Treatments are grouped based on anatomic location.

Keywords

Obstruction Renal injury Postobstructive renal disorder Acute kidney injury 

References

  1. 1.
    Gottlieb RH, Weinberg EP, Rubens DJ, Monk RD, Grossman EB. Renal sonography: can it be used more selectively in the setting of an elevated serum creatinine level? Am J Kidney Dis. 1997;29(3):362–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Bell ET. Renal diseases. Philadelphia: Lea & Febiger; 1950.Google Scholar
  3. 3.
    Campbell MF. Urinary obstruction. In: Campbell MF, Harrison JH, editors. Urology. Philadelphia: Saunders; 1970. p. 1772–93.Google Scholar
  4. 4.
    Tan PH, Chiang GS, Tay AH. Pathology of urinary tract malformations in a paediatric autopsy series. Ann Acad Med Singap. 1994;23:838–43.PubMedGoogle Scholar
  5. 5.
    Allen JT, Vaughan ED, Gillenwater JY. The effect of indomethacin on renal blood flow and urethral pressure in unilateral ureteral obstruction in a awake dogs. Investig Urol. 1978;15:324–7.Google Scholar
  6. 6.
    Gaudio KM, Siegel NJ, Hayslett JP, Kashgarian M. Renal perfusion and intratubular pressure during ureteral occlusion in the rat. Am J Phys. 1980;238(3):F205–9.Google Scholar
  7. 7.
    Salvemini D, Seibert K, Masferrer JL, Misko TP, Currie MG, Needleman P. Endogenous nitric oxide enhances prostaglandin production in a model of renal inflammation. J Clin Invest. 1994;93(5):1940–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Miyajima A, Chen J, Poppas DP, Vaughan ED Jr, Felsen D. Role of nitric oxide in renal tubular apoptosis of unilateral ureteral obstruction. Kidney Int. 2001;59(4):1290–303.CrossRefPubMedGoogle Scholar
  9. 9.
    Lanzone JA, Gulmi FA, Chou SY, et al. Renal hemodynamics in acute unilateral ureteral obstruction: contribution of endothelium-derived relaxing factor. J Urol. 1995;153:2055–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Wang W, Luo R, Lin Y, Wang F, Zheng P, Levi M, Yang T, Li C. Aliskiren restores renal AQP2 expression during unilateral ureteral obstruction by inhibiting the inflammasome. Am J Physiol Renal Physiol. 2015;308(8):F910–22.  https://doi.org/10.1152/ajprenal.00649.2014; Epub 2015 Feb 18.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Siegel NJ, Feldman RA, Lytton B, Hayslett JP, Kashgarian M. Renal cortical blood flow distribution in obstructive nephropathy in rats. Circ Res. 1977;40(4):379–84.CrossRefPubMedGoogle Scholar
  12. 12.
    Ichikawa I, Purkerson ML, Yates J, Klahr S. Dietary protein intake conditions the degree of renal vasoconstriction in acute renal failure caused by ureteral obstruction. Am J Phys. 1985;249(1 Pt 2):F54–61.Google Scholar
  13. 13.
    Klotman PE, Smith SR, Volpp BD, Coffman TM, Yarger WE. Thromboxane synthetase inhibition improves function of hydronephrotic rat kidneys. Am J Phys. 1986;250(2 Pt 2):F282–7.Google Scholar
  14. 14.
    Loo MH, Egan D, Vaughan ED Jr, Marion D, Felsen D, Weisman S. The effect of the thromboxane A2 synthesis inhibitor OKY-046 on renal function in rabbits following release of unilateral ureteral obstruction. J Urol. 1987;137(3):571–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Purkerson ML, Blaine EH, Stokes TJ, et al. Role of atrial peptide in the natriuresis and diuresis that follows relief of obstruction in rat. Am J Phys. 1989;256:F583–9.Google Scholar
  16. 16.
    Schreiner GF, Harris KP, Purkerson ML, et al. Immunological aspects of acute ureteral obstruction: immune cell infiltrate in the kidney. Kidney Int. 1988;34:487–93.CrossRefPubMedGoogle Scholar
  17. 17.
    Harris KP, Schreiner GF, Klahr S. Effect of leukocyte depletion on the function of the postobstructed kidney in the rat. Kidney Int. 1989;36(2):210–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Kelleher JP, Shah V, Godley ML, Wakefield AJ, Gordon I, Ransley PG, Snell ME, Risdon RA. Urinary endothelin (ET1) in complete ureteric obstruction in the miniature pig. Urol Res. 1992;20(1):63–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Syed N, Gulmi FA, Chou SY, Mooppan UM, Kim H. Renal actions of endothelin-1 under endothelin receptor blockade by BE-18257B. J Urol. 1998;159(2):563–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Harris RH, Yarger WE. The pathogenesis of post-obstructive diuresis: the role of circulating natriuretic and diuretic factors, including urea. J Clin Invest. 1975;56:880–7.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tanner GA. Tubuloglomerular feedback after nephron or ureteral obstruction. Am J Phys. 1985;248(5 Pt 2):F688–97.Google Scholar
  22. 22.
    Gulmi FA, Matthews GJ, Marion D, et al. Volume expansion enhances the recovery of renal function and prolongs the diuresis and natriuresis after release of bilateral ureteral obstruction: a possible role for atrial natriuretic peptide. J Urol. 1995;153:1276–83.CrossRefPubMedGoogle Scholar
  23. 23.
    Reyes AA, Klahr S. Renal function after release of ureteral obstruction: role of endothelin and the renal artery endothelium. Kidney Int. 1992;42:632–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Jaenike JR. The renal functional defect of postobstructive nephyropathy: the effects of bilateral ureteral obstruction in the rat. J Clin Invest. 1972;51:2999–3006.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Solez K, Ponchak S, Buono RA, et al. Inner medullary plasma flow in the kidney with ureteral obstruction. Am J Phys. 1976;231:1315–21.Google Scholar
  26. 26.
    Yarger WE, Aynedjian HS, Bank N. A micropuncture study of postobstructive diuresis in the rat. J Clin Invest. 1972;51(3):625–37.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Li P, Oparil S, Novak L, Cao X, Shi W, Lucas J, Chen YF. ANP signaling inhibits TGF-beta-induced Smad2 and Smad3 nuclear translocation and extracellular matrix expression in rat pulmonary arterial smooth muscle cells. J Appl Physiol (1985). 2007;102(1):390–8; Epub 2006 Oct 12.CrossRefGoogle Scholar
  28. 28.
    Stecker JF, Gillenwater JY. Experimental partial ureteral obstruction. I. Alteration in renal function. Investig Urol. 1971;8:377–85.Google Scholar
  29. 29.
    Middleton GW, Beamon CR, Panko WB, Gillenwater JY. Effects of ureteral obstruction on the renal metabolism of alpha-ketoglutarate and other substrates in vivo. Investig Urol. 1977;14(4):255–62.Google Scholar
  30. 30.
    Nito H, Descoeudres C, Kurokawa K, Massry SG. Effect of unilateral obstruction on renal cell metabolism and function. J Lab Clin Med. 1978;91(1):60–71. No abstract available.PubMedGoogle Scholar
  31. 31.
    Klahr S, Schwab SJ, Stokes TJ. Metabolic adaptations of the nephron in renal disease. Kidney Int. 1986;29(1):80–9. Review. No abstract available.CrossRefPubMedGoogle Scholar
  32. 32.
    Nilsson L, Madsen K, Topcu SO, Jensen BL, Frøkiær J, Nørregaard R. Disruption of cyclooxygenase-2 prevents downregulation of cortical AQP2 and AQP3 in response to bilateral ureteral obstruction in the mouse. Am J Physiol Renal Physiol. 2012;302(11):F1430–9.  https://doi.org/10.1152/ajprenal.00682.2011; Epub 2012 Mar 7.CrossRefPubMedGoogle Scholar
  33. 33.
    Li C, Wang W, Kwon TH, et al. Downregulation of AQP1, -2, and -3 after ureteral obstruction is associated with a long-term urine-concentrating defect. Am J Physiol Renal Physiol. 2001;281:F163–71.CrossRefPubMedGoogle Scholar
  34. 34.
    Jaenike JR, Bray GA. Effects of acute transitory urinary obstruction in the dog. Am J Phys. 1960;199:1219–22.Google Scholar
  35. 35.
    Zeidel ML. Hormonal regulation of inner medullary collecting duct sodium transport. Am J Phys. 1993;265(2 Pt 2):F159–73. Review.Google Scholar
  36. 36.
    Rokaw MD, Sarac E, Lechman E, West M, Angeski J, Johnson JP, Zeidel ML. Chronic regulation of transepithelial Na+ transport by the rate of apical Na+ entry. Am J Phys. 1996;270(2 Pt 1):C600–7.CrossRefGoogle Scholar
  37. 37.
    Kwon TH, Laursen UH, Marples D, Maunsbach AB, Knepper MA, Frokiaer J, Nielsen S. Altered expression of renal AQPs and Na(+) transporters in rats with lithium-induced NDI. Am J Physiol Renal Physiol. 2000;279(3):F552–64.CrossRefPubMedGoogle Scholar
  38. 38.
    Sonnenberg H, Wilson DR. The role of the medullary collecting ducts in postobstructive diuresis. J Clin Invest. 1976;57:1564–74.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Purcell H, Bastani B, Harris KP, Hemken P, Klahr S, Gluck S. Cellular distribution of H(+)-ATPase following acute unilateral ureteral obstruction in rats. Am J Phys. 1991;261(3 Pt 2):F365–76.Google Scholar
  40. 40.
    Valles PG, Manucha WA. Kidney Int. 2000;58:1641–51.CrossRefPubMedGoogle Scholar
  41. 41.
    Wang CJ, Huang SW, Chang CH. Efficacy of an alpha1 blocker in expulsive therapy of lower ureteral stones. J Enourol. 2008;22:41–6.CrossRefGoogle Scholar
  42. 42.
    Ellenbogen PH, Scheible FW, Talner LB, Leopold GR. Sensitivity of gray scale ultrasound in detecting urinary tract obstruction. AJR Am J Roentgenol. 1978;130(4):731.CrossRefPubMedGoogle Scholar
  43. 43.
    Kamholtz RG, Cronan JJ, Dorfman GS. Obstruction and the minimally dilated renal collecting system: US evaluation. Radiology. 1989;170(1 Pt 1):51.CrossRefPubMedGoogle Scholar
  44. 44.
    Lupton EW, George NJ. The Whitaker test: 35 years on. BJU Int. 2010;105(1):94–100.CrossRefGoogle Scholar
  45. 45.
    Oates J, O’Flynn K. The Whitaker test. In: Payne S, Eardley I, O’Flynn K, editors. Imaging and technology in urology. London: Springer; 2012. p. 157–60.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Valary T. Raup
    • 1
  • Steven L. Chang
    • 1
  • Jairam R. Eswara
    • 1
  1. 1.Division of Urology, Department of SurgeryBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations