Advertisement

Core Concepts: Post-cardiac Surgery Acute Kidney Injury

  • Jason B. O’Neal
  • Frederic T. BillingsIV
  • Andrew D. Shaw
Chapter

Abstract

Acute kidney injury (AKI) complicates the postoperative course in 30% of adult cardiac surgery patients. Similar rates are observed in pediatric cardiac surgery patients. In both children and adults, a diagnosis of AKI carries a marked increase of extrarenal organ morbidity and a fivefold increase in the risk of death during hospitalization. Renal ischemia, inflammation, hemolysis, and oxidative stress contribute to the development of AKI after cardiac surgery. Preventive strategies for AKI following cardiac surgery remain limited, including maintenance of renal perfusion and intravascular volume while avoiding volume overload, administration of balanced salt crystalloid intravenous fluids, and limiting the duration of cardiopulmonary bypass. Although severe AKI requiring dialysis is rare after cardiac surgery, mild AKI is common. This is significant, as it increases the incidence of new and progressive chronic kidney disease. In turn, this complication leads to adverse medium- and long-term outcomes in cardiac surgical patients. Several early-phase clinical trials are underway in cardiac surgery patients, both for the prevention and treatment of AKI. The findings of these studies may lead to the approval of new therapeutic options for this important complication of heart surgery. In conjunction with this, the development and validation of biomarkers indicative of tubular damage to predict AKI onset and prognosis may supplant creatinine-based criteria for AKI endpoints in clinical trials and become incorporated in future consensus guidelines for clinical diagnosis.

Keywords

Cardiac surgery Acute kidney injury Extracorporeal circulation Hypoperfusion Inflammation Pigment nephropathy Fluid management Diuretics Dialysis 

References

  1. 1.
    Chawla LS, Amdur RL, Shaw AD, Faselis C, Palant CE, Kimmel PL. Association between AKI and long-term renal and cardiovascular outcomes in United States veterans. Clin J Am Soc Nephrol. 2014;9(3):448–56.  https://doi.org/10.2215/CJN.02440213; Epub 2013 Dec 5.CrossRefGoogle Scholar
  2. 2.
    Lagny MG, Jouret F, Koch JN, Blaffart F, Donneau AF, Albert A, Roediger L, Krzesinski JM, Defraigne JO. Incidence and outcomes of acute kidney injury after cardiac surgery using either criteria of the RIFLE classification. BMC Nephrol. 2015;16:76.  https://doi.org/10.1186/s12882–015–0066–9.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Parolari A, Pesce LL, Pacini D, Mazzanti V, Salis S, Sciacovelli C, Rossi F, Alamanni F, MRGoCS Outcomes. Risk factors for perioperative acute kidney injury after adult cardiac surgery: role of perioperative management. Ann Thorac Surg. 2012;93(2):584–91.  https://doi.org/10.1016/j.athoracsur.2011.09.073.CrossRefGoogle Scholar
  4. 4.
    Lopez-Delgado JC, Esteve F, Torrado H, Rodríguez-Castro D, Carrio ML, Farrero E, Javierre C, Ventura JL, Manez R. Influence of acute kidney injury on short- and long-term outcomes in patients undergoing cardiac surgery: risk factors and prognostic value of a modified RIFLE classification. Crit Care. 2013;7(6):R293.  https://doi.org/10.1186/cc13159.CrossRefGoogle Scholar
  5. 5.
    Gomez H, Ince C, De Backer D, Pickkers P, Payen D, Hotchkiss J, Kellum JA. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 2014;41(1):3–11.  https://doi.org/10.1097/SHK.0000000000000052.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pickering JW, James MT, Palmer SC. Acute kidney injury and prognosis after cardiopulmonary bypass: a meta-analysis of cohort studies. Am J Kidney Dis. 2015;65(2):283–93.  https://doi.org/10.1053/j.ajkd.2014.09.008; Epub Nov 5.CrossRefPubMedGoogle Scholar
  7. 7.
    Li S, Krawczeski CD, Zappitelli M, Devarajan P, Thiessen-Philbrook H, Coca SG, Kim RW, Parikh CR, TRIBE-AKI Consortium. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med. 2011;39(6):1493–9.  https://doi.org/10.1097/CCM.0b013e31821201d3.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Axelrod DM, Sutherland SM. Acute kidney injury in the pediatric cardiac patient. Paediatr Anaesth. 2014;24(9):899–901.  https://doi.org/10.1111/pan.12448.CrossRefGoogle Scholar
  9. 9.
    Li S, Krawczeski CD, Zappitelli M, Devarajan P, Thiessen-Philbrook H, Coca SG, et al. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med. 2011;39(6):1493–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fujii T, Kurata H, Takaoka M, Muraoka T, Fujisawa Y, Shokoji T, Nishiyama A, Abe Y, Matsumura Y. The role of renal sympathetic nervous system in the pathogenesis of ischemic acute renal failure. Eur J Pharmacol. 2003;481:241–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Sreedharan R, Devarajan P, Van Why S. Pathogenesis of acute renal failure. In: Avner E, Harmon W, Niaudet P, Yoshikawa N, editors. Pediatric nephrology. Heidleberg: Springer; 2009. p. 1579–602.CrossRefGoogle Scholar
  12. 12.
    Ricksten SE, Bragadottir G, Redfors B. Renal oxygenation in clinical acute kidney injury. Crit Care. 2013;7(2):221.  https://doi.org/10.1186/cc12530.CrossRefGoogle Scholar
  13. 13.
    Schrier CLEaRW. Pathophysiology of ischemic acute renal injury. In: Schrier RW, editor. Diseases of the kidney and urinary tract. 8th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2007. p. 930–61.Google Scholar
  14. 14.
    Loebl EC, Baxter CR, Curreri PW. The mechanism of erythrocyte destruction in the early postburn period. Ann Surg. 1973;178(6):681–6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ronco C, Bellomo R, Kellum JA. Acute Kidney Injury. Contrib Nephrol. 2007;156:340–53.CrossRefPubMedGoogle Scholar
  16. 16.
    Keene WR, Jandl JH. The sites of hemoglobin catabolism. Blood. 1965;26:705–19.PubMedGoogle Scholar
  17. 17.
    Billings FT 4th, Ball SK, Roberts LJ 2nd, Pretorius M. Postoperative acute kidney injury is associated with hemoglobinemia and an enhanced oxidative stress response. Free Radic Biol Med. 2011;50(11):1480–7.  https://doi.org/10.1016/j.freeradbiomed.2011.02.011; Epub Feb 18.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vijayan A, Miller SB. Acute renal failure: prevention and nondialytic therapy. Semin Nephrol. 1998;18:523–32.PubMedGoogle Scholar
  19. 19.
    Giglio M, Dalfino L, Puntillo F, et al. Haemodynamic goal-directed therapy in cardiac and vascular surgery. A systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2012;15(5):878–87.  https://doi.org/10.1093/icvts/ivs323; Epub 2012 Jul 24.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Aya HD, Cecconi M, Hamilton M, Rhodes A. Goal-directed therapy in cardiac surgery: a systematic review and meta-analysis. Br J Anaesth. 2013;110(4):510–7.  https://doi.org/10.1093/bja/aet020; Epub 2013 Feb 27.CrossRefGoogle Scholar
  21. 21.
    Thomson R, Meeran H, Valencia O, Al-Subaie N. Goal-directed therapy after cardiac surgery and the incidence of acute kidney injury. J Crit Care. 2014;29(6):997–1000.  https://doi.org/10.1016/j.jcrc.2014.06.011; Epub Jun 23.CrossRefPubMedGoogle Scholar
  22. 22.
    Frenette AJ, Bouchard J, Bernier P, Charbonneau A, Nguyen LT, Rioux JP, Troyanov S, Williamson DR. Albumin administration is associated with acute kidney injury in cardiac surgery: a propensity score analysis. Crit Care. 2014;8(6):602.  https://doi.org/10.1186/s13054–014–0602–1.CrossRefGoogle Scholar
  23. 23.
    Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, Glass P, Lipman J, Liu B, McArthur C, McGuinness S, Rajbhandari D, Taylor CB, Webb SA, Investigators C, AaNZICSCT Group. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.  https://doi.org/10.1056/NEJMoa1209759; Epub 2012 Oct 17CrossRefGoogle Scholar
  24. 24.
    Raghunathan K, Murray PT, Beattie WS, Lobo DN, Myburgh J, Sladen R, Kellum JA, Mythen MG, Shaw AD, ADQI XII Investigators Group. Choice of fluid in acute illness: what should be given? An international consensus. Br J Anaesth. 2014;113(5):772–83.  https://doi.org/10.1093/bja/aeu301.CrossRefPubMedGoogle Scholar
  25. 25.
    Kim JY, Joung KW, Kim KM, Kim MJ, Kim JB, Jung SH, Lee EH, Choi IC. Relationship between a perioperative intravenous fluid administration strategy and acute kidney injury following off-pump coronary artery bypass surgery: an observational study. Crit Care. 2015;19:350.  https://doi.org/10.1186/s13054–015–1065–8.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lai EY, Onozato ML, Solis G, Aslam S, Welch WJ, Wilcox CS. Myogenic responses of mouse isolated perfused renal afferent arterioles: effects of salt intake and reduced renal mass. Hypertension. 2010;55(4):983–9.  https://doi.org/10.1161/HYPERTENSIONAHA.109.149120; Epub 2010 Mar 1.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 1-L infusions of 6% hydroxyethyl starch suspended in 0.9% saline (voluven) and a balanced solution (Plasma Volume Redibag) on blood volume, renal blood flow velocity, and renal corti. Ann Surg. 2014;259(5):881–7.  https://doi.org/10.1097/SLA.0000000000000324.CrossRefPubMedGoogle Scholar
  28. 28.
    Krajewski ML, Raghunathan K, Paluszkiewicz SM, Schermer CR, Shaw AD. Meta-analysis of high- versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg. 2015;102(1):24–36.  https://doi.org/10.1002/bjs.9651; Epub 2014 Oct 30.CrossRefPubMedGoogle Scholar
  29. 29.
    Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.  https://doi.org/10.1001/jama.2012.13356.CrossRefGoogle Scholar
  30. 30.
    Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, McGuinness S, Mehrtens J, Myburgh J, Psirides A, Reddy S, Bellomo R, SPLIT Investigators; ANZICS CTG. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314(16):1701–10.  https://doi.org/10.1001/jama.2015.12334.CrossRefGoogle Scholar
  31. 31.
    Antonucci F, Calo L, Rizzolo M, Cantaro S, Bertolissi M, Travaglini M, Geatti O, Borsatti A, D’Angelo A. Nifedipine can preserve renal function in patients undergoing aortic surgery with infrarenal crossclamping. Nephron. 1996;74(4):668–73.CrossRefPubMedGoogle Scholar
  32. 32.
    Bergman AS, Odar-Cederlöf I, Westman L. Renal and hemodynamic effects of diltiazem after elective major vascular surgery—a potential renoprotective agent? Ren Fail. 1995;17(2):155–63.CrossRefPubMedGoogle Scholar
  33. 33.
    Colson P, Ribstein J, Séguin JR, Marty-Ane C, Roquefeuil B. Mechanisms of renal hemodynamic impairment during infrarenal aortic cross-clamping. Anesth Analg. 1992;75(1):18–23.CrossRefPubMedGoogle Scholar
  34. 34.
    Tumlin JA, Finkel KW, Murray PT, Samuels J, Cotsonis G, Shaw AD. Fenoldopam mesylate in early acute tubular necrosis: a randomized, double-blind, placebo-controlled clinical trial. Am J Kidney Dis. 2005;46(1):26–34.CrossRefPubMedGoogle Scholar
  35. 35.
    Zangrillo A, Biondi-Zoccai GG, Frati E, Covello RD, Cabrini L, Guarracino F, Ruggeri L, Bove T, Bignami E, Landoni G. Fenoldopam and acute renal failure in cardiac surgery: a meta-analysis of randomized placebo-controlled trials. J Cardiothorac Vasc Anesth. 2012;26(3):407–13.  https://doi.org/10.1053/j.jvca.2012.01.038; Epub Mar 28.CrossRefPubMedGoogle Scholar
  36. 36.
    Landoni G, Biondi-Zoccai GG, Marino G, Bove T, Fochi O, Maj G, Calabrò MG, Sheiban I, Tumlin JA, Ranucci M, Zangrillo A. Fenoldopam reduces the need for renal replacement therapy and in-hospital death in cardiovascular surgery: a meta-analysis. J Cardiothorac Vasc Anesth. 2008;22(1):7–33.  https://doi.org/10.1053/j.jvca.2007.07.015; Epub Nov 7.CrossRefGoogle Scholar
  37. 37.
    Bove T, Zangrillo A, Guarracino F, Alvaro G, Persi B, Maglioni E, Galdieri N, Comis M, Caramelli F, Pasero DC, Pala G, Renzini M, Conte M, Paternoster G, Martinez B, Pinelli F, Frontini M, Zucchetti MC, Pappalardo F, Amantea B. Effect of fenoldopam on use of renal replacement therapy among patients with acute kidney injury after cardiac surgery: a randomized clinical trial. JAMA. 2014;312(21):2244–53.  https://doi.org/10.1001/jama.2014.13573.CrossRefPubMedGoogle Scholar
  38. 38.
    Lauschke A, Teichgräber UK, Frei U, Eckardt KU. ‘Low-dose’ dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int. 2006;69(9):1669–74.CrossRefPubMedGoogle Scholar
  39. 39.
    Pass LJ, Eberhart RC, Brown JC, Rohn GN, Estrera AS. The effect of mannitol and dopamine on the renal response to thoracic aortic cross-clamping. J Thorac Cardiovasc Surg. 1988;95(4):608–12.PubMedGoogle Scholar
  40. 40.
    Lassnigg A, Donner E, Grubhofer G, Presterl E, Druml W, Hiesmayr M. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol. 2000;11(1):v97–104.Google Scholar
  41. 41.
    Bailey M, McGuinness S, Haase M, Haase-Fielitz A, Parke R, Hodgson CL, Forbes A, Bagshaw SM, Bellomo R. Sodium bicarbonate and renal function after cardiac surgery: a prospectively planned individual patient meta-analysis. Anesthesiology. 2015;122(2):294–306. https://doi.org/10.1097/ALN.0000000000000547.CrossRefPubMedGoogle Scholar
  42. 42.
    Schiffl H. Prevention of acute kidney injury by intravenous sodium bicarbonate: the end of a saga. Crit Care. 2014;18(6):672. https://doi.org/10.1186/s13054-014-0672-0.
  43. 43.
    McGuinness SP, Parke RL, Bellomo R, Van Haren FM, Bailey M. Sodium bicarbonate infusion to reduce cardiac surgery-associated acute kidney injury: a phase II multicenter double-blind randomized controlled trial. Crit Care Med. 2013;41(7):1599–607.  https://doi.org/10.1097/CCM.0b013e31828a3f99.CrossRefPubMedGoogle Scholar
  44. 44.
    Nigwekar SU, Kandula P, Hix JK, Thakar CV. Off-pump coronary artery bypass surgery and acute kidney injury: a meta-analysis of randomized and observational studies. Am J Kidney Dis. 2009;54(3):413–23.  https://doi.org/10.1053/j.ajkd.2009.01.267; Epub May 5.CrossRefPubMedGoogle Scholar
  45. 45.
    Seabra VF, Alobaidi S, Balk EM, Poon AH, Jaber BL. Off-pump coronary artery bypass surgery and acute kidney injury: a meta-analysis of randomized controlled trials. Clin J Am Soc Nephrol. 2010;5(10):1734–44.  https://doi.org/10.2215/CJN.02800310; Epub 2010 Jul 29.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kamperidis V, van Rosendael PJ, de Weger A, Katsanos S, Regeer M, van der Kley F, Mertens B, Sianos G, Ajmone Marsan N, Bax JJ, Delgado V. Surgical sutureless and transcatheter aortic valves: hemodynamic performance and clinical outcomes in propensity score-matched high-risk populations with severe aortic stenosis. JACC Cardiovasc Interv. 2015;8(5):670–7.  https://doi.org/10.1016/j.jcin.2014.10.029.CrossRefPubMedGoogle Scholar
  47. 47.
    Lindman BR, Goldstein JS, Nassif ME, Zajarias A, Novak E, Tibrewala A, Vatterott AM, Lawler C, Damiano RJ, Moon MR, Lawton JS, Lasala JM, Maniar HS. Systemic inflammatory response syndrome after transcatheter or surgical aortic valve replacement. Heart. 2015;101(7):537–45.  https://doi.org/10.1136/heartjnl-2014–307057; Epub 2015 Jan 20.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120:c79–84.CrossRefGoogle Scholar
  49. 49.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative workgroup. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12; Epub 2004 May 24.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lombardi R, Ferreiro A, Servetto C. Renal function after cardiac surgery: adverse effect of furosemide. Ren Fail. 2003;25:775–86.CrossRefPubMedGoogle Scholar
  51. 51.
    Fiaccadori E, Lombardi M, Leonardi S, et al. Prevalence and clinical outcome associated with preexisting malnutrition in acute renal failure: a prospective cohort study. J Am Soc Nephrol. 1999;10:581–93.PubMedGoogle Scholar
  52. 52.
    Palevsky PM, Murray PT. Acute kidney injury and critical care nephrology. NephSAP. 2006;5(2):72–120.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jason B. O’Neal
    • 1
  • Frederic T. BillingsIV
    • 2
  • Andrew D. Shaw
    • 3
  1. 1.Department of AnesthesiologyVanderbilt University Medical CenterNashvilleUSA
  2. 2.Department of AnesthesiologyVanderbilt UniversityNashvilleUSA
  3. 3.Department of Anesthesiology and Pain MedicineUniversity of AlbertaEdmontonCanada

Personalised recommendations