Advertisement

Risk of Fatigue at Work

  • Zahra Banafsheh Alemohammad
  • Khosro Sadeghniiat-Haghighi
Chapter

Abstract

Fatigue could be determined as a depletion of cognitive recourses that prevents a person from performing work safely and effectively. It is a workplace hazard that affects the health and safety of both the employee and his or her colleagues. The term “fatigue” with a widespread usage in occupational medicine is a complex phenomenon definition of which is very difficult. Other terms such as drowsiness and sleepiness that are often used instead of fatigue have different definitions. These are actually two different, although related, states. Sleepiness is the tendency to fall asleep, but fatigue is the body’s response to deficits in subjective capacity. When physical and mental exertion exceeds current capacity, fatigue is represented by an inability to function at the desired level. Workers with fatigue are more likely to experience job absenteeism than workers without fatigue.

Keywords

Fatigue Workplace hazard Occupational medicine 

References

  1. 1.
    Sadeghniiat-Haghighi K, Yazdi Z. Fatigue management in the workplace. Ind Psychiatry J. 2015;24(1):12–7.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Akerstedt T, Wright KP Jr. Sleep loss and fatigue in shift work and shift work disorder. Sleep Med Clin. 2009;4(2):257–71.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Janssen N, Kant IJ, Swaen GM, Janssen PP, Schroer CA. Fatigue as a predictor of sickness absence: results from the Maastricht cohort study on fatigue at work. Occup Environ Med. 2003;60(Suppl 1):i71–6.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lim SM, Chia SE. The prevalence of fatigue and associated health and safety risk factors among taxi drivers in Singapore. Singap Med J. 2015;56(2):92–7.CrossRefGoogle Scholar
  5. 5.
    Lin WQ, Jing MJ, Tang J, Wang JJ, Zhang HS, Yuan LX, et al. Factors associated with fatigue among men aged 45 and older: a cross-sectional study. Int J Environ Res Public Health. 2015;12(9):10897–909.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ricci JA, Chee E, Lorandeau AL, Berger J. Fatigue in the U.S. workforce: prevalence and implications for lost productive work time. J Occup Environ Med. 2007;49(1):1–10.CrossRefPubMedGoogle Scholar
  7. 7.
    Cullen W, Kearney Y, Bury G. Prevalence of fatigue in general practice. Ir J Med Sci. 2002;171(1):10–2.CrossRefPubMedGoogle Scholar
  8. 8.
    Jackson CA, Earl L. Prevalence of fatigue among commercial pilots. Occup Med (Lond). 2006;56(4):263–8.CrossRefGoogle Scholar
  9. 9.
    Lerman SE, Eskin E, Flower DJ, George EC, Gerson B, Hartenbaum N, et al. Fatigue risk management in the workplace. J Occup Environ Med. 2012;54(2):231–58.CrossRefPubMedGoogle Scholar
  10. 10.
    Reszka E, Peplonska B, Wieczorek E, Sobala W, Bukowska A, Gromadzinska J, et al. Rotating night shift work and polymorphism of genes important for the regulation of circadian rhythm. Scand J Work Environ Health. 2013;39(2):178–86.CrossRefPubMedGoogle Scholar
  11. 11.
    Hillman DR, Murphy AS, Pezzullo L. The economic cost of sleep disorders. Sleep. 2006;29(3):299–305.CrossRefPubMedGoogle Scholar
  12. 12.
    Van Dongen HP. Predicting sleep/wake behavior for model-based fatigue risk management. Sleep. 2010;33(2):144–5.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mallis MM, Mejdal S, Nguyen TT, Dinges DF. Summary of the key features of seven biomathematical models of human fatigue and performance. Aviat Space Environ Med. 2004;75(3 Suppl):A4–14.PubMedGoogle Scholar
  14. 14.
    Borbely AA. Refining sleep homeostasis in the two-process model. J Sleep Res. 2009;18(1):1–2.CrossRefPubMedGoogle Scholar
  15. 15.
    Goel N, Basner M, Rao H, Dinges DF. Circadian rhythms, sleep deprivation, and human performance. Prog Mol Biol Transl Sci. 2013;119:155–90.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Edgar DM, Dement WC, Fuller CA. Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci. 1993;13(3):1065–79.CrossRefPubMedGoogle Scholar
  17. 17.
    Smith MR, Burgess HJ, Fogg LF, Eastman CI. Racial differences in the human endogenous circadian period. PLoS One. 2009;4(6):e6014.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Barclay NL, Gregory AM. Quantitative genetic research on sleep: a review of normal sleep, sleep disturbances and associated emotional, behavioural, and health-related difficulties. Sleep Med Rev. 2013;17(1):29–40.CrossRefPubMedGoogle Scholar
  19. 19.
    Baehr EK, Revelle W, Eastman CI. Individual differences in the phase and amplitude of the human circadian temperature rhythm: with an emphasis on morningness-eveningness. J Sleep Res. 2000;9(2):117–27.CrossRefPubMedGoogle Scholar
  20. 20.
    Van Dongen HP, Maislin G, Mullington JM, Dinges DF. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep. 2003;26(2):117–26.CrossRefPubMedGoogle Scholar
  21. 21.
    Johnson ML, Belenky G, Redmond DP, Thorne DR, Williams JD, Hursh SR, et al. Modulating the homeostatic process to predict performance during chronic sleep restriction. Aviat Space Environ Med. 2004;75(3 Suppl):A141–6.PubMedGoogle Scholar
  22. 22.
    Ingre M, Van Leeuwen W, Klemets T, Ullvetter C, Hough S, Kecklund G, et al. Validating and extending the three process model of alertness in airline operations. PLoS One. 2014;9(10):e108679.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Akerstedt T, Ingre M, Kecklund G, Folkard S, Axelsson J. Accounting for partial sleep deprivation and cumulative sleepiness in the three-process model of alertness regulation. Chronobiol Int. 2008;25(2):309–19.CrossRefPubMedGoogle Scholar
  24. 24.
    Santhi N, Groeger JA, Archer SN, Gimenez M, Schlangen LJ, Dijk DJ. Morning sleep inertia in alertness and performance: effect of cognitive domain and white light conditions. PLoS One. 2013;8(11):e79688.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Burke TM, Scheer FA, Ronda JM, Czeisler CA, Wright KP Jr. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions. J Sleep Res. 2015;24(4):364–71.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Goel N, Rao H, Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol. 2009;29(4):320–39.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Banks S, Dinges DF. Behavioral and physiological consequences of sleep restriction. J Clin Sleep Med. 2007;3(5):519–28.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Van Dongen HP, Vitellaro KM, Dinges DF. Individual differences in adult human sleep and wakefulness: leitmotif for a research agenda. Sleep. 2005;28(4):479–96.CrossRefPubMedGoogle Scholar
  29. 29.
    Lim J, Dinges DF. A meta-analysis of the impact of short-term sleep deprivation on cognitive variables. Psychol Bull. 2010;136(3):375–89.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lim J, Dinges DF. Sleep deprivation and vigilant attention. Ann N Y Acad Sci. 2008;1129:305–22.CrossRefPubMedGoogle Scholar
  31. 31.
    Abe T, Mollicone D, Basner M, Dinges DF. Sleepiness and safety: where biology needs technology. Sleep Biol Rhythms. 2014;12(2):74–84.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Basner M, Dinges DF. Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss. Sleep. 2011;34(5):581–91.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhang C, Varvarigou V, Parks PD, Gautam S, Bueno AV, Malhotra A, et al. Psychomotor vigilance testing of professional drivers in the occupational health clinic: a potential objective screen for daytime sleepiness. J Occup Environ Med. 2012;54(3):296–302.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sunwoo BY, Jackson N, Maislin G, Gurubhagavatula I, George CF, Pack AI. Reliability of a single objective measure in assessing sleepiness. Sleep. 2012;35(1):149–58.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gander P, Millar M, Webster C, Merry A. Sleep loss and performance of anaesthesia trainees and specialists. Chronobiol Int. 2008;25(6):1077–91.CrossRefPubMedGoogle Scholar
  36. 36.
    Basner M, Mollicone D, Dinges DF. Validity and sensitivity of a brief psychomotor vigilance test (PVT-B) to total and partial sleep deprivation. Acta Astronaut. 2011;69(11–12):949–59.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Basner M, Dinges DF. An adaptive-duration version of the PVT accurately tracks changes in psychomotor vigilance induced by sleep restriction. Sleep. 2012;35(2):193–202.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wilkinson VE, Jackson ML, Westlake J, Stevens B, Barnes M, Swann P, et al. The accuracy of eyelid movement parameters for drowsiness detection. J Clin Sleep Med. 2013;9(12):1315–24.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Ftouni S, Rahman SA, Crowley KE, Anderson C, Rajaratnam SM, Lockley SW. Temporal dynamics of ocular indicators of sleepiness across sleep restriction. J Biol Rhythm. 2013;28(6):412–24.CrossRefGoogle Scholar
  40. 40.
    Anderson C, Chang AM, Sullivan JP, Ronda JM, Czeisler CA. Assessment of drowsiness based on ocular parameters detected by infrared reflectance oculography. J Clin Sleep Med. 2013;9(9):907–20, 20A–20B.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Abe T, Nonomura T, Komada Y, Asaoka S, Sasai T, Ueno A, et al. Detecting deteriorated vigilance using percentage of eyelid closure time during behavioral maintenance of wakefulness tests. Int J Psychophysiol. 2011;82(3):269–74.CrossRefPubMedGoogle Scholar
  42. 42.
    Chua EC, Tan WQ, Yeo SC, Lau P, Lee I, Mien IH, et al. Heart rate variability can be used to estimate sleepiness-related decrements in psychomotor vigilance during total sleep deprivation. Sleep. 2012;35(3):325–34.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Chalder T, Berelowitz G, Pawlikowska T, Watts L, Wessely S, Wright D, et al. Development of a fatigue scale. J Psychosom Res. 1993;37(2):147–53.CrossRefPubMedGoogle Scholar
  44. 44.
    Cella M, Chalder T. Measuring fatigue in clinical and community settings. J Psychosom Res. 2010;69(1):17–22.CrossRefPubMedGoogle Scholar
  45. 45.
    Hjollund NH, Andersen JH, Bech P. Assessment of fatigue in chronic disease: a bibliographic study of fatigue measurement scales. Health Qual Life Outcomes. 2007;5:12.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46(10):1121–3.CrossRefPubMedGoogle Scholar
  47. 47.
    Piper BF, Dibble SL, Dodd MJ, Weiss MC, Slaughter RE, Paul SM. The revised piper fatigue scale: psychometric evaluation in women with breast cancer. Oncol Nurs Forum. 1998;25(4):677–84.PubMedGoogle Scholar
  48. 48.
    Matza LS, Murray LT, Phillips GA, Konechnik TJ, Dennehy EB, Bush EN, et al. Qualitative research on fatigue associated with depression: content validity of the fatigue associated with depression questionnaire (FAsD-V2). Patient. 2015;8(5):433–43.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mendoza TR, Wang XS, Cleeland CS, Morrissey M, Johnson BA, Wendt JK, et al. The rapid assessment of fatigue severity in cancer patients: use of the brief fatigue inventory. Cancer. 1999;85(5):1186–96.CrossRefPubMedGoogle Scholar
  50. 50.
    Arlinghaus A, Lombardi DA, Courtney TK, Christiani DC, Folkard S, Perry MJ. The effect of rest breaks on time to injury – a study on work-related ladder-fall injuries in the United States. Scand J Work Environ Health. 2012;38(6):560–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Dawson D, McCulloch K. Managing fatigue: it’s about sleep. Sleep Med Rev. 2005;9(5):365–80.CrossRefPubMedGoogle Scholar
  52. 52.
    Reason J. Human error: models and management. BMJ. 2000;320(7237):768–70.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Dawson D, Chapman J, Thomas MJ. Fatigue-proofing: a new approach to reducing fatigue-related risk using the principles of error management. Sleep Med Rev. 2012;16(2):167–75.CrossRefPubMedGoogle Scholar
  54. 54.
    Martin S. Determining fitness to work at safety-sensitive jobs. BCMJ. 2010;52(1):48–9.Google Scholar
  55. 55.
    Barger LK, Lockley SW, Rajaratnam SM, Landrigan CP. Neurobehavioral, health, and safety consequences associated with shift work in safety-sensitive professions. Curr Neurol Neurosci Rep. 2009;9(2):155–64.CrossRefPubMedGoogle Scholar
  56. 56.
    Blum AB, Shea S, Czeisler CA, Landrigan CP, Leape L. Implementing the 2009 Institute of Medicine recommendations on resident physician work hours, supervision, and safety. Nat Sci Sleep. 2011;3:47–85.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Olson EJ, Drage LA, Auger RR. Sleep deprivation, physician performance, and patient safety. Chest. 2009;136(5):1389–96.CrossRefPubMedGoogle Scholar
  58. 58.
    Czeisler CA. Medical and genetic differences in the adverse impact of sleep loss on performance: ethical considerations for the medical profession. Trans Am Clin Climatol Assoc. 2009;120:249–85.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zahra Banafsheh Alemohammad
    • 1
  • Khosro Sadeghniiat-Haghighi
    • 1
  1. 1.Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical SciencesTehranIran

Personalised recommendations