Advertisement

The Grothendieck Ring of Varieties

  • Antoine Chambert-Loir
  • Johannes Nicaise
  • Julien Sebag
Chapter
Part of the Progress in Mathematics book series (PM, volume 325)

Abstract

In this chapter, we define the Grothendieck ring of varieties over an arbitrary base scheme. This is a ring of virtual varieties up to cut-and-paste relations; it takes a central place in the theory of motivic integration, because (after a suitable localization and/or completion) it serves as the ring where motivic integrals take their values. After the basic definitions in section 1, we define the notion of motivic measures, which are ring morphisms from the Grothendieck ring to other rings with a more explicit structure. Motivic measures are fundamental both for the understanding of Grothendieck ring itself and for extracting geometric information from its elements. Among the motivic measures, we develop in sections 3 and 5 the cohomological and motivic realizations. In sections 5 and 6, we study the main structure theorems for the Grothendieck ring over a field of characteristic zero: the theorems of Bittner and Larsen-Lunts. Bittner’s theorem gives a presentation of the Grothendieck ring in terms of smooth projective varieties and blow-up relations, which is quite useful to construct motivic measures. The theorem of Larsen and Lunts relates equalities in the Grothendieck ring to the notion of stable birational equivalence. In section 4 we discuss a process of dimensional completion for the Grothendieck ring of varieties.

Bibliography

  1. D. Abramovich, K. Karu, K. Matsuki, J. Włodarczyk (2002), Torification and factorization of birational maps. J. Am. Math. Soc. 15(3), 531–572MathSciNetCrossRefGoogle Scholar
  2. Y. André (2004), Une introduction aux motifs (motifs purs, motifs mixtes, périodes). Panoramas et Synthèses 17 (Soc. Math. France)Google Scholar
  3. D. Arapura, S.-J. Kang (2006), Coniveau and the Grothendieck group of varieties. Mich. Math. J. 54(3), 611–622MathSciNetCrossRefGoogle Scholar
  4. J. Ayoub (2007a/2008), Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I. Astérisque 314, x+466 pp.Google Scholar
  5. J. Ayoub (2007b/2008), Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. II. Astérisque 315, vi+364 pp.Google Scholar
  6. A.A. Beĭlinson (1987), On the derived category of perverse sheaves, in K-Theory, Arithmetic and Geometry (Moscow, 1984–1986). Lecture Notes in Mathematics, vol. 1289 (Springer, Berlin), pp. 27–41CrossRefGoogle Scholar
  7. A.A. Beĭlinson, J. Bernstein, P. Deligne (1982), Faisceaux pervers. Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100 (Soc. Math.), pp. 5–171Google Scholar
  8. P. Berthelot (1974), Cohomologie cristalline des schémas de caractéristique p > 0. Lecture Notes in Mathematics, vol. 407 (Springer, Berlin)Google Scholar
  9. P. Berthelot (1986), Géométrie rigide et cohomologie des variétés algébriques de caractéristique p. Mém. Soc. Math. France, vol. 23, pp. 7–32. Introductions aux cohomologies p-adiques (Luminy, 1984)Google Scholar
  10. P. Berthelot (1996), Cohomologie rigide et cohomologie rigide à supports propres. Première partie. Prépublication, IRMAR, Université Rennes 1Google Scholar
  11. P. Berthelot, A. Ogus (1983), F-isocrystals and de Rham cohomology. I. Invent. Math. 72(2), 159–199MathSciNetCrossRefGoogle Scholar
  12. B. Bhatt, P. Scholze (2015), The pro-étale topology for schemes, De la géométrie algébrique aux formes automorphes, I: Une collection d’articles en l’honneur du soixantième anniversaire de Gérard Laumon, ed. by J.-B. Bost, P. Boyer, A. Genestier, L. Lafforgue, S. Lysenko, S. Morel, B.C. Ngô, vol. 369 (American Mathematical Society, Providence), pp. 99–201Google Scholar
  13. E. Bilgin (2014), On the classes of hypersurfaces of low degree in the Grothendieck ring of varieties. Int. Math. Res. Not. 16, 4534–4546. http://dx.doi.org/10.1093/imrn/rnt089. arXiv:1112.2131MathSciNetCrossRefGoogle Scholar
  14. C. Birkenhake, H. Lange (2004), Complex Abelian Varieties, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302 (Springer, Berlin)Google Scholar
  15. F. Bittner (2004), The universal Euler characteristic for varieties of characteristic zero. Compos. Math. 140(4), 1011–1032MathSciNetCrossRefGoogle Scholar
  16. M.V. Bondarko (2009), Differential graded motives: weight complex, weight filtrations and spectral sequences for realizations; Voevodsky versus Hanamura. J. Inst. Math. Jussieu 8(1), 39–97MathSciNetCrossRefGoogle Scholar
  17. A. Borel (1991), Linear Algebraic Groups, 2nd edn. (Springer, New York)CrossRefGoogle Scholar
  18. L. Borisov (2014), Class of the affine line is a zero divisor in the grothendieck ring. arXiv:1412.6194Google Scholar
  19. L. Borisov, A. Căldăraru (2009), The Pfaffian-Grassmannian derived equivalence. J. Algebraic Geom. 18(2), 201–222MathSciNetCrossRefGoogle Scholar
  20. B. Chiarellotto (1998), Weights in rigid cohomology. applications to unipotent F-isocrystals. Ann. Sci. École Norm. Sup. 31(5), 683–715MathSciNetzbMATHGoogle Scholar
  21. B. Chiarellotto, B. Le Stum (1999), Pentes en cohomologie rigide et F-isocristaux unipotents. Manuscripta Math. 100(4), 455–468MathSciNetCrossRefGoogle Scholar
  22. B. Chiarellotto, B. Le Stum (2002), A comparison theorem for weights. J. Reine Angew. Math. 546, 159–176MathSciNetzbMATHGoogle Scholar
  23. P. Colmez, J.-P. Serre (eds.) (2001), Correspondance Grothendieck-Serre. Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 2 (Société Mathématique de France, Paris)Google Scholar
  24. P. Deligne (1971a), Théorie de Hodge. I. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1 (Gauthier-Villars, Paris), pp. 425–430Google Scholar
  25. P. Deligne (1971b), Théorie de Hodge II. Publ. Math. Inst. Hautes Études Sci. 40, 5–57MathSciNetCrossRefGoogle Scholar
  26. P. Deligne (1974a), La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math., 43, 273–307MathSciNetCrossRefGoogle Scholar
  27. P. Deligne (1974b), Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. 44, 5–77CrossRefGoogle Scholar
  28. P. Deligne (1977), Cohomologie étale — SGA IV \(\frac{1} {2}\). Lecture Notes in Mathematics, vol. 569 (Springer, Berlin). Avec la collaboration de J.-F. Boutot, A. Grothendieck, L. Illusie et J.-L. VerdierGoogle Scholar
  29. P. Deligne (1980), La conjecture de Weil, II. Publ. Math. Inst. Hautes Études Sci. 52, 137–252MathSciNetCrossRefGoogle Scholar
  30. M. Demazure (1969–1970), Motifs des variétés algébriques. Séminaire Bourbaki 12, 19–38Google Scholar
  31. M. Demazure, P. Gabriel (1970), Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs (North-Holland Publishing Company, Amsterdam)zbMATHGoogle Scholar
  32. T. Ekedahl (1983), Sur le groupe fondamental d’une variété unirationnelle. C. R. Acad. Sci. Paris Sér. I Math. 297(12), 627–629MathSciNetzbMATHGoogle Scholar
  33. T. Ekedahl (1990), On the adic formalism, in The Grothendieck Festschrift, Volume II. Progress in Mathematics, vol. 87 (Birkhäuser, Boston), pp. 197–218Google Scholar
  34. T. Ekedahl (2009), The Grothendieck group of algebraic stacks. arXiv:0903.3143Google Scholar
  35. T. Ekedahl (2010), Is the Grothendieck ring of varieties reduced? MathOverflow. http://mathoverflow.net/questions/37737/is-the-grothendieck-ring-of-varieties-reduced
  36. H. Esnault (2003), Varieties over a finite field with trivial Chow group of 0-cycles have a rational point. Invent. Math. 151(1), 187–191. arXiv:math.AG/0207022MathSciNetCrossRefGoogle Scholar
  37. J.-Y. Étesse, B. Le Stum (1993), Fonctions L associées aux F-isocristaux surconvergents. I. Interprétation cohomologique. Math. Ann. 296(3), 557–576zbMATHGoogle Scholar
  38. E. Freitag, R. Kiehl (1988), Étale cohomology and the Weil Conjecture. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 13 (Springer, Berlin). Translated from the German by Betty S. Waterhouse and William C. Waterhouse, With an historical introduction by J.A. DieudonnéGoogle Scholar
  39. W. Fulton (1998), Intersection Theory, 2nd edn. (Springer, Berlin)CrossRefGoogle Scholar
  40. P. Gabriel, M. Zisman (1967), Calculus of Fractions and Homotopy Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35 (Springer, New York)CrossRefGoogle Scholar
  41. H. Gillet, C. Soulé (1996), Descent, motives and K-theory. J. Reine Angew. Math. 478, 127–176MathSciNetzbMATHGoogle Scholar
  42. H. Gillet, C. Soulé (2009), Motivic weight complexes for arithmetic varieties. J. Algebra 322(9), 3088–3141MathSciNetCrossRefGoogle Scholar
  43. M. Gromov (1999), Endomorphisms of symbolic algebraic varieties. J. Eur. Math. Soc. 1(2), 109–197MathSciNetCrossRefGoogle Scholar
  44. A. Grothendieck (1968), Crystals and the de Rham cohomology of schemes, in Dix exposés sur la cohomologie des schémas. Advanced Studies in Pure Mathematics (North-Holland, Amsterdam), pp. 306–358Google Scholar
  45. A. Grothendieck, J. Dieudonné (1960), Éléments de géométrie algébrique. I. Le langage des schémas. Publ. Math. Inst. Hautes Études Sci. 4, 228. Quoted as (ÉGA I)CrossRefGoogle Scholar
  46. A. Grothendieck (1972–1973), Cohomologie ℓ-adique et fonctions L. Lecture Notes in Mathematics, vol. 589 (Springer, Berlin). Quoted as (SGA V)Google Scholar
  47. A. Grothendieck, M. Artin, J.-L. Verdier (1972–1973a), Théorie des topos et cohomologie étale des schémas. Lecture Notes in Mathematics, vols. 269–270–305 (Springer, Berlin). Quoted as (SGA IV)Google Scholar
  48. F. Guillén, V. Navarro Aznar (2002), Un critère d’extension des foncteurs définis sur les schémas lisses. Publ. Math. Inst. Hautes Études Sci. 95, 1–91CrossRefGoogle Scholar
  49. V. Guletskiĭ, C. Pedrini (2002), The Chow motive of the Godeaux surface, in Algebraic Geometry (de Gruyter, Berlin), pp. 179–195Google Scholar
  50. H. Hironaka (1964), Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. Math. (2) 79, 109–203, 205–326CrossRefGoogle Scholar
  51. R. Hotta, K. Takeuchi, T. Tanisaki (2008), D-Modules, Perverse Sheaves, and Representation Theory. Progress in Mathematics, vol. 236 (Birkhäuser Boston, Inc., Boston) Translated from the 1995 Japanese edition by TakeuchiGoogle Scholar
  52. A. Huber (1995), Mixed Motives and Their Realization in Derived Categories. Lecture Notes in Mathematics, vol. 1604 (Springer, Berlin)Google Scholar
  53. A. Huber (1997), Mixed perverse sheaves for schemes over number fields. Compos. Math. 108(1), 107–121MathSciNetCrossRefGoogle Scholar
  54. L. Illusie, Y. Laszlo, F. Orgogozo (eds.) (2014), Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents, Astérisque, vols. 363–364, Société Mathématique de France, Paris. Séminaire à l’École polytechnique 2006–2008. With the collaboration of Frédéric Déglise, Alban Moreau, Vincent Pilloni, Michel Raynaud, Joël Riou, Benoît Stroh, Michael Temkin and Weizhe Zheng.Google Scholar
  55. A. Ito, M. Miura, S. Okawa, K. Ueda (2016), The class of the affine line is a zero divisor in the grothendieck ring: via g2-Grassmannians. arXiv:1606.04210Google Scholar
  56. F. Ivorra, J. Sebag (2012), Géométrie algébrique par morceaux, K-équivalence et motifs. Enseign. Math. (2), 58, 375–403MathSciNetCrossRefGoogle Scholar
  57. F. Ivorra, J. Sebag (2013), Nearby motives and motivic nearby cycles. Selecta Math. (N.S.) 19(4), 879–902MathSciNetCrossRefGoogle Scholar
  58. U. Jannsen (1992), Motives, numerical equivalence, and semi-simplicity. Invent. Math. 107, 447–452MathSciNetCrossRefGoogle Scholar
  59. N.M. Katz (1979), Slope filtration of F-crystals. Journées de Géométrie algébrique de Rennes Astérisque 63, pp. 113–164, Soc. Math. FranceGoogle Scholar
  60. N.M. Katz, W. Messing (1974), Some consequences of the Riemann hypothesis for varieties over finite fields. Invent. Math. 23, 73–77MathSciNetCrossRefGoogle Scholar
  61. S.-I. Kimura (2005), Chow groups are finite dimensional, in some sense. Math. Ann. 331(1), 173–201MathSciNetCrossRefGoogle Scholar
  62. S.L. Kleiman (1968), Algebraic cycles and the Weil conjectures. Dix exposés sur la cohomologie des schémas. Advanced Studies in Pure Mathematics, vol. 3 (North-Holland, Amsterdam), pp. 359–386Google Scholar
  63. J. Kollár (1997), Quotient spaces modulo algebraic groups. Ann. Math. 145(1), 33–79MathSciNetCrossRefGoogle Scholar
  64. J. Kollár (1989), Flops. Nagoya Math. J. 113, 15–36MathSciNetzbMATHGoogle Scholar
  65. J. Krajíček, T. Scanlon (2000), Combinatorics with definable sets: Euler characteristics and Grothendieck rings. Bull. Symb. Log. 6(3), 311–330MathSciNetCrossRefGoogle Scholar
  66. M. Larsen, V.A. Lunts (2003), Motivic measures and stable birational geometry. Mosc. Math. J. 3(1), 85–95, 259. arXiv:math.AG/0110255Google Scholar
  67. B. Le Stum (2007), Rigid Cohomology. Cambridge Tracts in Mathematics, vol. 172 (Cambridge University Press, Cambridge)Google Scholar
  68. Q. Liu, J. Sebag (2010), The Grothendieck ring of varieties and piecewise isomorphisms. Math. Z. 265(2), 321–342MathSciNetCrossRefGoogle Scholar
  69. S. Mac Lane (1998), Categories for the Working Mathematician, 2nd edn. Graduate Texts in Mathematics, vol. 5 (Springer, New York)Google Scholar
  70. J.I. Manin (1968), Correspondences, motifs and monoidal transformations. Mat. Sb. (N.S.) 77(119), 475–507Google Scholar
  71. N. Martin (2016), The class of the affine line is a zero divisor in the Grothendieck ring: an improvement. C. R. Math. Acad. Sci. Paris 354(9), 936–939MathSciNetCrossRefGoogle Scholar
  72. P. Monsky, G. Washnitzer (1968), Formal cohomology I. Ann. Math. 88, 181–217MathSciNetCrossRefGoogle Scholar
  73. S. Morel (2012), Complextes mixtes sur un schéma de type fini sur Q. https://web.math.princeton.edu/~smorel/sur_Q.pdf
  74. J.P. Murre, J. Nagel, C.A.M. Peters (2013), Lectures on the Theory of Pure Motives. University Lecture Series, vol. 61 (American Mathematical Society, Providence)Google Scholar
  75. Y. Nakkajima (2012), Weight filtration and slope filtration on the rigid cohomology of a variety in characteristic p > 0, in Mém. Soc. Math. France, vols. 130–131 (American Mathematical Society, Providence)zbMATHGoogle Scholar
  76. N. Naumann (2007), Algebraic independence in the Grothendieck ring of varieties. Trans. Am. Math. Soc. 359(4), 1653–1683 [electronic]MathSciNetCrossRefGoogle Scholar
  77. A. Neeman (2001), Triangulated Categories. Annals of Mathematics Studies, vol. 148 (Princeton University Press, Princeton)Google Scholar
  78. J. Nicaise (2011a), Motivic invariants of algebraic tori. Proc. Am. Math. Soc. 139(4), 1163–1174CrossRefGoogle Scholar
  79. J. Nicaise (2011b), A trace formula for varieties over a discretely valued field. J. Reine Angew. Math. 650, 193–238MathSciNetzbMATHGoogle Scholar
  80. J. Nicaise, J. Sebag (2011), The Grothendieck ring of varieties, in Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry, Volume I. London Mathematical Society. Lecture Note Series, vol. 383 (Cambridge University Press, Cambridge), pp. 145–188Google Scholar
  81. M.V. Nori (2002), Constructible sheaves, in Algebra, Arithmetic and Geometry, Parts I, II (Mumbai, 2000). Tata Institute of Fundamental Research Studies in Mathematics, vol. 16 (Tata Institute of Fundamental Research, Bombay), pp. 471–491Google Scholar
  82. J.-P. Olivier (1968a), Anneaux absolument plats universels et épimorphismes à buts réduits. Séminaire Samuel. Algèbre commutative (1967/1968), Exposé No. 6. http://www.numdam.org/item?id=SAC_1967-1968__2__A6_0
  83. J.-P. Olivier (1968b), Le foncteur T. globalisation du foncteur t. Séminaire Samuel. Algèbre commutative (1967/1968), Exposé No. 9. http://www.numdam.org/item?id=SAC_1967-1968__2__A9_0
  84. F. Orgogozo (2014), Exposé XIII. Le théorème de finitude, in Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents, ed. by L. Illusie, Y. Laszlo, F. Orgogozo. Astérisque, vols. 363–364 (Société Mathématique de France, Paris), pp. 261–275. Séminaire à l’École polytechnique 2006–2008. With the collaboration of Frédéric Déglise, Alban Moreau, Vincent Pilloni, Michel Raynaud, Joël Riou, Benoît Stroh, Michael Temkin and Weizhe ZhengGoogle Scholar
  85. P. O’Sullivan (2005), The structure of certain rigid tensor categories. C. R. Math. Acad. Sci. Paris 340(8), 557–562MathSciNetCrossRefGoogle Scholar
  86. C.A.M. Peters, J.H.M. Steenbrink (2008), Mixed Hodge structures, in Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 52 (Springer, Berlin)Google Scholar
  87. B. Poonen (2002), The Grothendieck ring of varieties is not a domain. Math. Res. Lett. 9(4), 493–497MathSciNetCrossRefGoogle Scholar
  88. M. Raynaud, Y. Laszlo (2014), Exposé I. Anneaux excellents, in Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents, ed. by L. Illusie, Y. Laszlo, F. Orgogozo Astérisque, vols. 363–364. Société Mathématique de France, Paris, pp. 1–19 Séminaire à l’École polytechnique 2006–2008. With the collaboration of Frédéric Déglise, Alban Moreau, Vincent Pilloni, Michel Raynaud, Joël Riou, Benoît Stroh, Michael Temkin and Weizhe ZhengGoogle Scholar
  89. Z. Reichstein, B. Youssin (2000), Essential dimensions of algebraic groups and a resolution theorem for G-varieties. Can. J. Math. 52(5), 1018–1056. With an appendix by János Kollár and Endre SzabóMathSciNetCrossRefGoogle Scholar
  90. J. Riou (2014), Exposé XVII. Dualité, in Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents, ed. by L. Illusie, Y. Laszlo, F. Orgogozo Astérisque, vols. 363–364, Société Mathématique de France, Paris, pp. 351–453. Séminaire à l’École polytechnique 2006–2008. With the collaboration of Frédéric Déglise, Alban Moreau, Vincent Pilloni, Michel Raynaud, Joël Riou, Benoît Stroh, Michael Temkin and Weizhe ZhengGoogle Scholar
  91. E.A. Rødland (2000), The Pfaffian Calabi-Yau, its mirror, and their link to the Grassmannian G(2, 7). Compos. Math. 122(2), 135–149Google Scholar
  92. M. Saito (1988/1989), Modules de Hodge polarisables. Publ. Res. Inst. Math. Sci. 24(6), 849–995MathSciNetCrossRefGoogle Scholar
  93. M. Saito (1990), Mixed Hodge modules. Publ. Res. Inst. Math. Sci. 26(2), 221–333MathSciNetCrossRefGoogle Scholar
  94. J. Schürmann (2011), Characteristic classes of mixed Hodge modules, in Topology of Stratified Spaces. Mathematical Sciences Research Institute Publications, vol. 58 (Cambridge University Press, Cambridge), pp. 419–470Google Scholar
  95. J. Sebag (2010a), Variations on a question of Larsen and Lunts. Proc. Am. Math. Soc. 138(4), 1231–1242MathSciNetCrossRefGoogle Scholar
  96. J.-P. Serre (2012), Lectures on NX(p). Chapman & Hall/CRC Research Notes in Mathematics, vol. 11 (CRC Press, Boca Raton)Google Scholar
  97. T. Shioda (1977), Some remarks on Abelian varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(1), 11–21MathSciNetzbMATHGoogle Scholar
  98. J.-L. Verdier (1996/1997), Des catégories dérivées des catégories abéliennes. Astérisque 239, xii+253 pp. With a preface by Luc Illusie, Edited and with a note by Georges MaltsiniotisGoogle Scholar
  99. C.A. Weibel (2013), The K-Book: An Introduction to Algebraic K-Theory. Graduate Studies in Mathematics, vol. 145 (American Mathematical Society, Providence)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Antoine Chambert-Loir
    • 1
  • Johannes Nicaise
    • 2
  • Julien Sebag
    • 3
  1. 1.Département de MathématiquesUniversité Paris-Sud OrsayOrsayFrance
  2. 2.Department of MathematicsUniversity of LeuvenHeverleeBelgium
  3. 3.Département de MathématiquesUniversité de Rennes 1RennesFrance

Personalised recommendations