Advertisement

String Theory and Spacetime Geometry

  • Matthias R. GaberdielEmail author
Chapter
Part of the Einstein Studies book series (EINSTEIN, volume 14)

Abstract

The basic ideas underlying string theory are described, first for the example of bosonic string theory and then for superstrings. In the supersymmetric case it is explained how one can read off the topology of the spacetime geometry from the superconformal world-sheet description, and to which extent this identification is ambiguous (mirror symmetry). I also explain how open strings (and the associated D-branes) can be included into this framework, and how, at least for certain classes of Calabi-Yau backgrounds, they can be elegantly described in terms of matrix factorisations of the superpotential.

Notes

Acknowledgements

I thank my collaborators Marco Baumgartl, Ilka Brunner, Stefan Fredenhagen and Christoph Keller for enjoyable collaborations on which some of this work is based. My research has been partially supported by the Swiss National Science Foundation, as well as the Marie Curie network ‘Constituents, Fundamental Forces and Symmetries of the Universe’ (MRTN-CT-2004-005104).

References

  1. Aganagic, M., & Beem, C. (2011). The geometry of D-brane superpotentials. Journal of High Energy Physics, 1112, 060. arXiv:0909.2245 [hep-th].Google Scholar
  2. Ashok, S. K., Dell’Aquila, E., Diaconescu, D. E., & Florea, B. (2004). Obstructed D-branes in Landau-Ginzburg orbifolds. Advances in Theoretical and Mathematical Physics, 8, 427. arXiv:hep-th/0404167.MathSciNetCrossRefGoogle Scholar
  3. Bajnok, Z., & Janik, R. A. (2009). Four-loop perturbative Konishi from strings and finite size effects for multiparticle states. Nuclear Physics B, 807, 625. arXiv:0807.0399 [hep-th].MathSciNetCrossRefGoogle Scholar
  4. Baumgartl, M., Brunner, I., & Gaberdiel, M. R. (2007). D-brane superpotentials and RG flows on the quintic. Journal of High Energy Physics, 0707, 061. arXiv:0704.2666 [hep-th].MathSciNetCrossRefGoogle Scholar
  5. Baumgartl, M., Brunner, I., & Plencner, D. (2012). D-brane moduli spaces and superpotentials in a two-parameter model. Journal of High Energy Physics, 1203, 039. arXiv:1201.4103 [hep-th].Google Scholar
  6. Baumgartl, M., Brunner, I., & Soroush, M.: D-brane superpotentials (2011). Geometric and worldsheet approaches. Nuclear Physics B, 843, 602. arXiv:1007.2447 [hep-th].Google Scholar
  7. Baumgartl, M., & Wood, S. (2008). Moduli webs and superpotentials for five-branes. Journal of High Energy Physics, 0906, 052. arXiv:0812.3397 [hep-th].MathSciNetCrossRefGoogle Scholar
  8. Beisert, N., Eden, B., & Staudacher, M. (2007). Transcendentality and crossing. Journal of Statistical Mechanics: Theory and Experiment, 0701, P021. arXiv:hep-th/0610251.Google Scholar
  9. Bergman, O., & Gaberdiel, M. R. (1998). Stable non-BPS D-particles. Physics Letters B, 441, 133. arXiv:hep-th/98055.MathSciNetCrossRefGoogle Scholar
  10. Berkovits, N. (2000). Super-Poincare covariant quantization of the superstring. Journal of High Energy Physics, 0004, 018. arXiv:hep-th/0001035.MathSciNetCrossRefGoogle Scholar
  11. Bern, Z., Carrasco, J. J., Dixon, L. J., Johansson, H., Kosower, D. A., & Roiban, R. (2007). Three-Loop superfiniteness of N=8 supergravity. Physical Review Letters, 98, 161303. arXiv:hep-th/0702112.Google Scholar
  12. Blumenhagen, R., Kors, B., Lüst, D., & Stieberger, S. (2007). Four-dimensional string compactifications with D-branes, orientifolds and fluxes. Physics Reports, 445, 1. arXiv:hep-th/0610327.MathSciNetCrossRefGoogle Scholar
  13. Brunner, I., Douglas, M. R., Lawrence, A. E., & Römelsberger, C. (2000). D-branes on the quintic. Journal of High Energy Physics, 0008, 015. arXiv:hep-th/9906200.MathSciNetCrossRefGoogle Scholar
  14. Brunner, I., Herbst, M., Lerche, W., & Scheuner, B. (2006). Landau-Ginzburg realization of open string TFT. Journal of High Energy Physics, 0611, 043. arXiv:hep-th/ 0305133.MathSciNetCrossRefGoogle Scholar
  15. Candelas, P., De La Ossa, X. C., Green, P. S., & Parkes, L. (1991). A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nuclear Physics B, 359, 21.MathSciNetCrossRefGoogle Scholar
  16. Candelas, P., Horowitz, G. T., Strominger, A., & Witten, E. (1985). Vacuum configurations for superstrings. Nuclear Physics B, 258, 46.MathSciNetCrossRefGoogle Scholar
  17. Douglas, M. R., & Kachru, S. (2007). Flux compactification. Reviews of Modern Physics, 79, 733. arXiv:hep-th/0610102.MathSciNetCrossRefGoogle Scholar
  18. Fischler, W., & Susskind, L. (1986a). Dilaton tadpoles, string condensates and scale invariance. Physics Letters B, 171, 383.MathSciNetCrossRefGoogle Scholar
  19. Fischler, W., & Susskind, L. (1986b). Dilaton tadpoles, string condensates and scale invariance 2. Physics Letters B, 173, 262.MathSciNetCrossRefGoogle Scholar
  20. Fredenhagen, S., Gaberdiel, M. R., & Keller, C. A. (2007). Bulk induced boundary perturbations. Journal of Physics A, 40, F17. arXiv:hep-th/0609034.MathSciNetCrossRefGoogle Scholar
  21. Gates, S. J., Hull, C. M., & Rocek, M. (1984). Twisted multiplets and new supersymmetric nonlinear sigma models. Nuclear Physics B, 248, 157.MathSciNetCrossRefGoogle Scholar
  22. Gepner, D. (1988). Space-time supersymmetry in compactified string theory and superconformal models. Nuclear Physics B, 296, 757.MathSciNetCrossRefGoogle Scholar
  23. Goddard, P., Goldstone, J., Rebbi, C., & Thorn, C. B. (1973). Quantum dynamics of a massless relativistic string. Nuclear Physics B, 56, 109.CrossRefGoogle Scholar
  24. Goddard, P., & Thorn, C. B. (1972). Compatibility of the dual pomeron with unitarity and the absence of ghosts in the dual resonance model. Physics Letters B, 40, 235.CrossRefGoogle Scholar
  25. Green, M. B., Schwarz, J. H., & Witten, E. (1987). Superstring theory I & II. Cambridge: Cambridge University Press.Google Scholar
  26. Greene, B. R., Vafa, C., & Warner, N. P. (1989). Calabi-Yau manifolds and renormalization group flows. Nuclear Physics B, 324, 371.MathSciNetCrossRefGoogle Scholar
  27. Gualtieri, M. (2004). Generalized complex geometry. Oxford University DPhil thesis. arXiv:math.DG/0401221.Google Scholar
  28. Hitchin, N. (2003). Generalized Calabi-Yau manifolds. The Quarterly Journal of Mathematics, 54, 281–308. arXiv:math.DG/0209099.MathSciNetCrossRefGoogle Scholar
  29. Kapustin, A., & Li, Y. (2003). D-branes in Landau-Ginzburg models and algebraic geometry. Journal of High Energy Physics, 0312, 005. arXiv:hep-th/0210296MathSciNetCrossRefGoogle Scholar
  30. Keller, C. A. (2007). Brane backreactions and the Fischler-Susskind mechanism in conformal field theory. Journal of High Energy Physics, 0712, 046. arXiv:0709.1076 [hep-th].MathSciNetCrossRefGoogle Scholar
  31. Lerche, W., Vafa, C., & Warner, N.P. (1989). Chiral rings in N=2 superconformal theories. Nuclear Physics B, 324, 427.MathSciNetCrossRefGoogle Scholar
  32. Orlov, D. (2004). Triangulated categories of singularities and D-branes in Landau-Ginzburg models. Proceedings of the Steklov Institute of Mathematics, 3(246), 227–248. arXiv:math/0302304.Google Scholar
  33. Polchinski, J. (1995). Dirichlet-branes and Ramond-Ramond charges. Physical Review Letters, 75, 4724. arXiv:hep-th/9510017.MathSciNetCrossRefGoogle Scholar
  34. Polchinski, J. (1998). String theory I & II. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  35. Recknagel, A., & Schomerus, V. (1998). D-branes in Gepner models. Nuclear Physics B, 531, 185. arXiv:hep-th/9712186.MathSciNetCrossRefGoogle Scholar
  36. Sen, A., & Zwiebach, B. (2000). Tachyon condensation in string field theory. Journal of High Energy Physics, 0003, 002. arXiv:hep-th/9912249.MathSciNetCrossRefGoogle Scholar
  37. Strominger, A., & Vafa, C. (1996). Microscopic origin of the Bekenstein-Hawking entropy. Physics Letters B, 379, 99. arXiv:hep-th/9601029.MathSciNetCrossRefGoogle Scholar
  38. Walcher, J. (2007). Opening mirror symmetry on the quintic. Communications in Mathematical Physics, 276, 671. arXiv:hep-th/0605162.MathSciNetCrossRefGoogle Scholar
  39. Witten, E. (1991). Mirror manifolds and topological field theory. In S. T. Yau (Ed.), Mirror symmetry I (p. 121). Providence, RI: American Mathematical Society. arXiv:hep-th/9112056.Google Scholar
  40. Zwiebach, B. (2004). A first course in string theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikETH ZürichZürichSwitzerland

Personalised recommendations