Conformal Infinity – Development and Applications

  • Jörg Frauendiener
Part of the Einstein Studies book series (EINSTEIN, volume 14)


The notion of conformal infinity grew out of the desire to describe graviational waves in a coordinate independent way. In a sense it abstracts the notion of a far-field in electrodynamics in a geometric way. This contribution describes the development of this idea from the earliest attempts to geometrically capture the notion of gravitational radiation by Felix Pirani to the rigorous definition by Roger Penrose which is universally accepted today. The usefulness of the concept is demonstrated with some applications.



The author is very grateful to the organisers of the conference ‘Beyond Einstein’ for the opportunity to present the material of this contribution. Furthermore, it is a pleasure to thank Ted Newman, Roger Penrose and Engelbert Schücking for sharing their memories of the development of the subject.


  1. Andersson, L., Chruściel, P. T., & Friedrich, H. (1992). On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations. Communications in Mathematical Physics, 149, 587–612.MathSciNetCrossRefGoogle Scholar
  2. Ashtekar, A. (1987). Asymptotic quantization. Naples: Bibliopolis.zbMATHGoogle Scholar
  3. Beck, G. (1925). Zur Theorie binärer Gravitationsfelder. Zeitschrift für Physik, 33, 713–728.CrossRefGoogle Scholar
  4. Bičák, J., & Schmidt, B. G. (1989). Asymptotically flat radiative space-times with boost-rotation symmetry. Physical Review D: Particles and Fields, 40, 1827–1853.MathSciNetCrossRefGoogle Scholar
  5. Bondi, H. (1957). Plane gravitational waves in general relativity. Nature, 179, 1072–1073.CrossRefGoogle Scholar
  6. Bondi, H., Pirani, F. A. E., & Robinson, I. (1959). Gravitational waves in general relativity III. Exact plane waves. Proceedings of the Royal Society of London A, 251, 519–533.MathSciNetCrossRefGoogle Scholar
  7. Bondi, H., van der Burg, M. G. J., & Metzner, A. W. K. (1962). Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems. Proceedings of the Royal Society of London A, 269, 21–52.MathSciNetCrossRefGoogle Scholar
  8. Bonnor, W. B., & Rotenberg, M. A. (1966). Gravitational waves from isolated sources. Proceedings of the Royal Society of London A, 289, 247–274.MathSciNetCrossRefGoogle Scholar
  9. Christodoulou, D. (1991). Nonlinear nature of gravitation and gravitational-wave experiments. Physical Review Letters, 67, 1486–1489.MathSciNetCrossRefGoogle Scholar
  10. Christodoulou, D., & Klainermann, S. (1993). The global nonlinear stability of the Minkowski space. Princeton: Princeton University Press.Google Scholar
  11. Chruściel, P. T., & Delay, E. (2002). Existence of non-trivial, vacuum, asymptotically simple space-times. Classical and Quantum Gravity, 19, L71–L79.CrossRefGoogle Scholar
  12. Corvino, J. (2000). Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Communications in Mathematical Physics, 214, 137–189.MathSciNetCrossRefGoogle Scholar
  13. Cutler, C., & Wald, R. M. (1989). Existence of radiating Einstein-Maxwell solutions which are c on all of \({\mathcal {I}}^-\) and \({\mathcal {I}}^+\). Classical and Quantum Gravity, 6, 453–466.MathSciNetCrossRefGoogle Scholar
  14. Dixon, W. G. (1970). Analysis of the Newman-Unti integration procedure for asymptotically flat space-times. Journal of Mathematical Physics, 11, 1238–1248.MathSciNetCrossRefGoogle Scholar
  15. Einstein, A. (1916). Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 49, 769–822.CrossRefGoogle Scholar
  16. Einstein, A. (1918). Über Gravitationswellen (pp. 154–167). Berlin: Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften.zbMATHGoogle Scholar
  17. Einstein, A., & Rosen, N. (1937). On gravitational waves. Journal of the Franklin Institute, 223, 43–54.MathSciNetCrossRefGoogle Scholar
  18. Frauendiener, J. (1989). Geometric description of energy-momentum pseudotensors. Classical Quantum Gravity, 6, L237–L241.MathSciNetCrossRefGoogle Scholar
  19. Frauendiener, J. (1992). Note on the memory effect. Classical Quantum Gravity, 9, 1639–1641.MathSciNetCrossRefGoogle Scholar
  20. Frauendiener, J. (2000). Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. III. On the determination of radiation. Classical Quantum Gravity, 17, 373–387.MathSciNetCrossRefGoogle Scholar
  21. Frauendiener, J. (2004). Conformal infinity. Living Reviews in Relativity, 7, 1. Scholar
  22. Friedrich, H. (1979). On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations. In M. Walker (Ed.), Proceedings of the third Gregynog relativity workshop, gravitational radiation theory. Max-Planck Green Report, MPI-PAE/Astro 204, Oktober 1979.Google Scholar
  23. Friedrich, H. (1986). On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. Communications in Mathematical Physics, 107, 587–609.MathSciNetCrossRefGoogle Scholar
  24. Friedrich, H. (1992). Asymptotic structure of space-time. In A. I. Janis & John R. Porter (Eds.), Recent advances in general relativity. Boston: Birkhäuser Inc.Google Scholar
  25. Friedrich, H. (1995). Einstein equations and conformal structure: Existence of anti-de Sitter-type space-times. Journal of Geometry and Physics, 17, 125–184.MathSciNetCrossRefGoogle Scholar
  26. Friedrich, H. (1998a). Einstein’s equation and conformal structure. In Huggett et al. (1998).Google Scholar
  27. Friedrich, H. (1998b). Einstein’s equation and geometric asymptotics. In N. Dadhich & J. Narlikar (Eds.), Gravitation and relativity: At the turn of the millennium. Proceedings of the GR-15 conference. Pune, India: IUCAA.Google Scholar
  28. Friedrich, H. (1998c). Gravitational fields near space-like and null infinity. Journal of Geometry and Physics, 24, 83–163.MathSciNetCrossRefGoogle Scholar
  29. Friedrich, H. (2002). Conformal Einstein evolution. In J. Frauendiener & H. Friedrich (Eds.), The conformal structure of space-time: Geometry, analysis, numerics (Vol. 604, pp. 1–50), Lecture notes in physics. Heidelberg: SpringerGoogle Scholar
  30. Friedrich, H. (2003). Conformal geodesics on vacuum space-times. Communications in Mathematical Physics, 235, 513–543.MathSciNetCrossRefGoogle Scholar
  31. Friedrich, H. (2004). Smoothness at null-infinity and the structure of initial data. In P. Chruściel & H. Friedrich (Eds.), The Einstein equations and the large scale behaviour of gravitational fields: 50 years of the Cauchy problem in General Relativity. Basel: Birkhäuser.Google Scholar
  32. Geroch, R. (1977). Asymptotic structure of space-time. In F. P. Esposito & L. Witten (Eds.), Asymptotic Structure of space-time. New York: Plenum Press.CrossRefGoogle Scholar
  33. Huggett, S. A., Mason, L. J., Tod, K. P., Tsou, S. S., & Woodhouse, N. M. J. (Eds.) (1998). The geometric universe: Science, geometry and the work of roger penrose. Oxford: Oxford University Press.zbMATHGoogle Scholar
  34. Jordan, P., Ehlers, J., & Sachs, R. K. (1961). Beiträge zur Theorie der reinen Gravitationsstrahlung. Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse. Akademie der Wissenschaften und der Literatur in Mainz, 1, 1–85.zbMATHGoogle Scholar
  35. Kennefick, D. (1997). Controversies in the history of the radiation reaction problem in general relativity. arXiv gr-qc/9704002.Google Scholar
  36. Klainermann, S., & Nicolò, F. (2003). Peeling properties of asymptotically flat solutions to the Einstein vacuum equations. Classical and Quantum Gravity, 20, 3215–3257.MathSciNetCrossRefGoogle Scholar
  37. Lichnérowicz, A. (1958). Sur les ondes et radiations gravitationnelles. Comptes Rendus de l’Académie des Sciences, 246, 893–896.MathSciNetzbMATHGoogle Scholar
  38. Lindblad, H., & Rodnianski, I. (2005). Global existence for the Einstein vacuum equations in wave coordinates. Communications in Mathematical Physics, 256, 43–110.MathSciNetCrossRefGoogle Scholar
  39. McVittie, G. C. (1955). Gravitational waves and one-dimensional Einsteinian gas-dynamics. Journal of Rational Mechanics and Analysis, 4, 201–220.MathSciNetzbMATHGoogle Scholar
  40. Newman, E. T. (1961a). New approach to the Einstein and Maxwell-Einstein field equations. Journal of Mathematical Physics, 2, 674–676.MathSciNetCrossRefGoogle Scholar
  41. Newman, E. T. (1961b). Some properties of empty space-times. Journal of Mathematical Physics, 2, 324–327.MathSciNetCrossRefGoogle Scholar
  42. Newman, E. T. (1976). Heaven and its properties. General Relativity and Gravitation, 7, 107–111.MathSciNetCrossRefGoogle Scholar
  43. Newman, E. T., Kozameh, C. N., & Silva-Ortigoza, G. (2008). On extracting physical content from asymptotically flat sapcetime metrics. Classical and Quantum Gravity, 25, 145001.MathSciNetCrossRefGoogle Scholar
  44. Newman, E. T., & Penrose, R. (1962). An approach to gravitational radiation by a method of spin coefficients. Journal of Mathematical Physics, 3, 566–578. Errata ibid. 4 (1963), 998.Google Scholar
  45. Newman, E. T., & Penrose, R. (1968). New conservation laws for zero rest-mass fields in asymptotically flat space-time. Proceedings of the Royal Society of London A, 305, 175–204.CrossRefGoogle Scholar
  46. Newman, E. T., & Unti, T. W. J. (1962). Behavior of asymptotically flat empty spaces. Journal of Mathematical Physics, 3, 891–901.MathSciNetCrossRefGoogle Scholar
  47. Penrose, R. (1960). A spinor approach to general relativity. Annals of Physics, 10, 171–201.MathSciNetCrossRefGoogle Scholar
  48. Penrose, R. (1963). Asymptotic properties of fields and space-times. Physical Review Letters, 10, 66–68.MathSciNetCrossRefGoogle Scholar
  49. Penrose, R. (1964a). Conformal treatment of infinity. In C. DeWitt & B. DeWitt (Eds.), Relativity, groups and topology. New York: Gordon and BreachGoogle Scholar
  50. Penrose, R. (1964b). The light cone at infinity. In L. Infeld (Ed.), Relativistic theories of gravitation. Oxford: Pergamon PressGoogle Scholar
  51. Penrose, R. (1965). Zero rest-mass fields including gravitation: Asymptotic behaviour. Proceedings of the Royal Society of London A, 284, 159–203.MathSciNetCrossRefGoogle Scholar
  52. Penrose, R. (1999). The central programme of twistor theory. Chaos, Solitons & Fractals, 10, 581–611.MathSciNetCrossRefGoogle Scholar
  53. Penrose, R., & Rindler, W. (1986). Spinors and spacetime (Vol. 2). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  54. Pirani, F. A. E. (1957). Invariant formulation of gravitational radiation theory. Physics Review, 105, 1089–1099.MathSciNetCrossRefGoogle Scholar
  55. Rosen, N. (1937). Plane polarised waves in the general theory of relativity. Physikalische Zeitschrift der Sowjetunion, 12, 366–372.zbMATHGoogle Scholar
  56. Sachs, R. K. (1960). Propagation laws for null and type III gravitational waves. Zeitschrift für Physik, 157, 462–477.CrossRefGoogle Scholar
  57. Sachs, R. K. (1961). Gravitational waves in general relativity VI. The outgoing radiation condition. Proceedings of the Royal Society of London A, 264, 309–338.MathSciNetCrossRefGoogle Scholar
  58. Sachs, R. K. (1962a). Asymptotic symmetries in gravitational theories. Physics Review, 128, 2851–2864.CrossRefGoogle Scholar
  59. Sachs, R. K. (1962b). Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time. Proceedings of the Royal Society of London A, 270, 103–127.MathSciNetCrossRefGoogle Scholar
  60. Sachs, R. K. (1964). Characteristic initial value problem for gravitational theory. In L. Infeld (Ed.), Relativistic theories of gravitation. Oxford: Pergamon Press.Google Scholar
  61. Scheidegger, A. E. (1953). Gravitational motion. Reviews of Modern Physics, 25, 451–468.MathSciNetCrossRefGoogle Scholar
  62. Schmidt, B. G. (1978). Asymptotic structure of isolated systems. In J. Ehlers (Ed.), Isolated gravitating systems in general relativity. New York: Academic PressGoogle Scholar
  63. Taub, A. H. (1951). Empty space-times admitting a three parameter group of motions. Annals of Mathematics, 53, 472–490.MathSciNetCrossRefGoogle Scholar
  64. Trautman, A. (1958a). Boundary conditions at infinity for physical theories. Bulletin de l’Académie Polonaise des Sciences III, 6, 403–406.MathSciNetzbMATHGoogle Scholar
  65. Trautman, A. (1958b). Radiation and boundary conditions in the theory of gravitation. Bulletin de l’Académie Polonaise des Sciences III, 6, 407–412.MathSciNetzbMATHGoogle Scholar
  66. Trautman, A. (1958c). On gravitational radiation damping. Bulletin de l’Académie Polonaise des Sciences III, 6, 627–633.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of OtagoDunedinNew Zealand
  2. 2.Centre of Mathematics for ApplicationsUniversity of OsloBlindernNorway

Personalised recommendations