Advertisement

Figures of Light in the Early History of Relativity (1905–1914)

  • Scott A. Walter
Chapter
Part of the Einstein Studies book series (EINSTEIN, volume 14)

Abstract

Albert Einstein’s bold assertion of the form invariance of the equation of a spherical light wave with respect to inertial frames of reference (Einstein, Annalen der Physik 322:891–921) became, in the space of 6 years, the preferred foundation of his theory of relativity. Early on, however, Einstein’s universal light-sphere invariance was challenged on epistemological grounds by Henri Poincaré, who promoted an alternative demonstration of the foundations of relativity theory based on the notion of a light ellipsoid. A third figure of light, Hermann Minkowski’s lightcone also provided a new means of envisioning the foundations of relativity. Drawing in part on archival sources, this paper shows how an informal, international group of physicists, mathematicians, and engineers, including Einstein, Paul Langevin, Poincaré, Hermann Minkowski, Ebenezer Cunningham, Harry Bateman, Otto Berg, Max Planck, Max von Laue, A. A. Robb, and Ludwig Silberstein, employed figures of light during the formative years of relativity theory in their discovery of the salient features of the relativistic worldview.

Notes

Acknowledgements

Key points of this paper were elaborated in discussions with Olivier Darrigol, Tilman Sauer, June Barrow-Green, and David Rowe; their help is much appreciated. The paper benefits from the expert assistance of Kathryn McKee and Fiona Colbert of St. John’s College, whom I thank most kindly. Citations of the Joseph Larmor Correspondence are by permission of the Master and Fellows of St. John’s College, Cambridge. Permission to quote from the Council Minutes of the London Mathematical Society is gratefully acknowledged. I thank the Niedersächsiche Staats- und Universitätsbibliothek Göttingen for authorizing publication of the diagram in Figure 1.9. I am grateful for the support of the Dibner Rare Book and Manuscript Library and to its staff members Lilla Vekerdy and Kirsten van der Veen for their able assistance during my residence in 2013. A preliminary version of the paper was published in 2011 on PhilSci-Archive.

References

  1. Abraham, M. (1905). Theorie der Elektrizität, Volume 2, Elektromagnetische Theorie der Strahlung. Leipzig: Teubner.zbMATHGoogle Scholar
  2. Balàzs, N. L. (1972). The acceptability of physical theories: Poincaré versus Einstein. In L. O’Raifeartaigh (Ed.) General relativity: Papers in Honour of J. L. Synge (pp. 21–34). Oxford: Oxford University Press.Google Scholar
  3. Barrow-Green, J., & Gray, J. (2006). Geometry at Cambridge, 1863–1940. Historia Mathematica, 33(3), 315–356.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Bateman, H. (1908). On conformal transformations of a space of four dimensions and their application to geometrical optics. Report–British Association, 78, 627–629.Google Scholar
  5. Bateman, H. (1909). The conformal transformations of a space of four dimensions and their applications to geometrical optics. Proceedings of the London Mathematical Society, 7, 70–89.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Bateman, H. (1910a). The physical aspect of time. Memoirs and Proceedings, Manchester Literary and Philosophical Society, 54(14), 1–13.zbMATHGoogle Scholar
  7. Bateman, H. (1910b). The relation between electromagnetism and geometry. Philosophical Magazine, 20, 623–628.zbMATHGoogle Scholar
  8. Bateman, H. (1910c). The transformations of the electrodynamical equations. Proceedings of the London Mathematical Society, 8, 223–264.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Bateman, H. (1912). Some geometrical theorems connected with Laplace’s equation and the equation of wave motion. American Journal of Mathematics, 34, 325–360.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Berg, O. (1910). Das Relativitätsprinzip der Elektrodynamik. Abhandlungen der Fries’schen Schule, 3, 333–382.Google Scholar
  11. Bergson, H. (1922). Durée et simultanéité : à propos de la théorie d’Einstein. Paris: Alcan.zbMATHGoogle Scholar
  12. Blumenthal, O. (Ed.). (1913). Das Relativitätsprinzip; Eine Sammlung von Abhandlungen. Leipzig: Teubner.Google Scholar
  13. Born, M. (1909). Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips. Annalen der Physik, 335, 1–56.zbMATHCrossRefGoogle Scholar
  14. Born, M. (1912). Besprechung von Max Laue, Das Relativitätsprinzip. Physikalische Zeitschrift, 13, 175–176.Google Scholar
  15. Born, M. (1914). Besprechung von Max Weinstein, Die Physik der bewegten Materie und die Relativitätstheorie. Physikalische Zeitschrift, 15, 676.Google Scholar
  16. Born, M. (1920). Die Relativitätstheorie Einsteins und ihre physikalischen Grundlagen. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  17. Born, M. (1959). Erinnerungen an Hermann Minkowski zur 50. Wiederkehr seines Todestages. Naturwissenschaften, 46(17), 501–505.CrossRefGoogle Scholar
  18. Bridgman, P. W. (1916). Tolman’s principle of similitude. Physical Review, 8, 423–431.CrossRefGoogle Scholar
  19. Briginshaw, A. J. (1979). The axiomatic geometry of space-time: An assessment of the work of A. A. Robb. Centaurus, 22(4), 315–323.MathSciNetzbMATHCrossRefGoogle Scholar
  20. Bromwich, T. J. I. (1901). Conformal space transformations. Proceedings of the London Mathematical Society, 33(749), 185–192.MathSciNetzbMATHGoogle Scholar
  21. Brown, H. R. (2005). Physical relativity: Space-time structure from a dynamical perspective. Oxford: Oxford University Press.zbMATHCrossRefGoogle Scholar
  22. Bucherer, A. H. (1907). On a new principle of relativity in electromagnetism. Philosophical Magazine, 13, 413–420.zbMATHGoogle Scholar
  23. Bucherer, A. H. (1908a). Messungen an Becquerelstrahlen; die experimentelle Bestätigung der Lorentz-Einsteinschen Theorie. Physikalische Zeitschrift, 9, 755–762.zbMATHGoogle Scholar
  24. Bucherer, A. H. (1908b). On the principle of relativity and on the electromagnetic mass of the electron; a reply to Mr. E. Cunningham. Philosophical Magazine, 15, 316–318.zbMATHGoogle Scholar
  25. Buchwald, J. Z. (1985). From Maxwell to microphysics. Chicago: University of Chicago Press.Google Scholar
  26. Cat, J. (2016). Images and logic of the light cone: Tracking Robb’s postulational turn in physical geometry. Revista de Humanidades de Valparaiso, 4(8), 43–105.CrossRefGoogle Scholar
  27. Cunningham, E. (1907). On the electromagnetic mass of a moving electron. Philosophical Magazine, 14:538–547.zbMATHGoogle Scholar
  28. Cunningham, E. (1910). The principle of relativity in electrodynamics and an extension thereof. Proceedings of the London Mathematical Society, 8, 77–98.MathSciNetCrossRefGoogle Scholar
  29. Cunningham, E. (1911). The principle of relativity. Report–British Association, 81:236–245.Google Scholar
  30. Cunningham, E. (1914). The principle of relativity. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  31. Cuvaj, C. (1970). A history of relativity: The role of Henri Poincaré and Paul Langevin. PhD thesis, Yeshiva University, New York.Google Scholar
  32. Darrigol, O. (1995). Henri Poincaré’s criticism of fin de siècle electrodynamics. Studies in History and Philosophy of Modern Physics, 26, 1–44.MathSciNetzbMATHCrossRefGoogle Scholar
  33. Darrigol, O. (1996). The electrodynamic origins of relativity theory. Historical Studies in the Physical and Biological Sciences, 26(2), 241–312.CrossRefGoogle Scholar
  34. Darrigol, O. (2000). Electrodynamics from Ampère to Einstein. Oxford: Oxford University Press.zbMATHGoogle Scholar
  35. Darrigol, O. (2014). Physics and necessity: Rationalist pursuits from the Cartesian past to the quantum present. Oxford: Oxford University Press.CrossRefGoogle Scholar
  36. Darrigol, O. (2015). Poincaré and light. In B. Duplantier & V. Rivasseau (Eds.), Henri Poincaré, 1912–2012. Progress in mathematical physics (Vol. 67, pp. 1–50). Berlin: Springer.zbMATHGoogle Scholar
  37. Du Pasquier, L.-G. (1922). Le principe de la relativité et les théories d’Einstein. Paris: Doin.zbMATHGoogle Scholar
  38. Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322, 891–921.zbMATHCrossRefGoogle Scholar
  39. Einstein, A. (1907). Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik, 4, 411–462.Google Scholar
  40. Frank, P. G. (1911). Das Verhalten der elektromagnetischen Feldgleichungen gegenüber linearen Transformationen. Annalen der Physik, 340, 599–607.zbMATHCrossRefGoogle Scholar
  41. Frank, P. G. (1947). Einstein: His life and times. New York: Knopf.Google Scholar
  42. Galison, P. (1979). Minkowski’s spacetime: From visual thinking to the absolute world. Historical Studies in the Physical Sciences, 10, 85–121.CrossRefGoogle Scholar
  43. Galison, P. (2003). Einstein’s clocks and Poincaré’s maps: Empires of time. New York: Norton.zbMATHGoogle Scholar
  44. Goldberg, S. (1970). In defense of Ether: The British response to Einstein’s special theory of relativity 1905–1911. Historical Studies in the Physical Sciences, 2, 89–125.CrossRefGoogle Scholar
  45. Gray, J. (1989). Ideas of space: Euclidean, non-Euclidean and relativistic (2nd ed.). Oxford: Clarendon.zbMATHGoogle Scholar
  46. Gray, J. (2013). Henri Poincaré: A scientific biography. Princeton: Princeton University Press.zbMATHGoogle Scholar
  47. Guillaume, E. (1921). Expression mono et polyparametrique du temps dans la theorie de la relativité. In H. Villat (Ed.), Comptes rendus du Congrès international des mathématiciens: Strasbourg, 22–30 septembre 1920 (pp. 594–602). Toulouse: Edouard Privat.Google Scholar
  48. Guillaume, E. (1922). Un résultat des discussions de la théorie de la relativité d’Einstein au Collège de France. Revue générale des sciences pures et appliquées, 33, 322–324.Google Scholar
  49. Heilbron, J. L. (1963). Interview with Dr. Ebenezer Cunningham. http://www.aip.org/history/catalog/icos/4565.html Google Scholar
  50. Heilbron, J. L. (1986). The dilemmas of an upright man: Max Planck as spokesman for German science. Berkeley: University of California Press.Google Scholar
  51. Hirosige, T. (1968). Theory of relativity and the ether. Japanese Studies in the History of Science, 7, 37–53.Google Scholar
  52. Holton, G. (1965). The metaphor of space-time events in science. Eranos Jahrbuch, 34, 33–78.Google Scholar
  53. Hunt, B. J. (1986). Experimenting on the ether: Oliver J. Lodge and the great whirling machine. Historical Studies in the Physical Sciences, 16, 111–134.CrossRefGoogle Scholar
  54. Hunt, B. J. (1988). The origins of the FitzGerald contraction. British Journal for the History of Science, 21(1), 67–76.MathSciNetCrossRefGoogle Scholar
  55. Jammer, M. (1979). Some foundational problems in the special theory of relativity. In G. Toraldo di Francia (Ed.), Problems in the foundations of physics. Proceedings of the international school of physics “Enrico Fermi” (Vol. 72, pp. 202–236). Amsterdam: North-Holland.Google Scholar
  56. Janssen, M., & Mecklenburg, M. (2006). From classical to relativistic mechanics: Electromagnetic models of the electron. In V.F. Hendricks, K.F. Jørgenson, J. Lützen, & S.A. Pedersen (Eds.), Interactions: Mathematics, physics and philosophy, 1860–1930 (pp. 65–134). Dordrecht: Springer.CrossRefGoogle Scholar
  57. Jungnickel, C., & McCormmach, R. (1986). Intellectual mastery of nature: Theoretical physics from Ohm to Einstein. Chicago: University of Chicago Press.zbMATHGoogle Scholar
  58. Kastrup, H. A. (2008). On the advancements of conformal transformations and their associated symmetries in geometry and theoretical physics. Annalen der Physik, 17(9), 691–704.MathSciNetzbMATHGoogle Scholar
  59. Kennedy, W. L. (2005). On Einstein’s 1905 electrodynamics paper. Studies in History and Philosophy of Modern Physics, 36(1), 61–65.MathSciNetzbMATHCrossRefGoogle Scholar
  60. Klein, M. J., Kox, A. J., & Schulmann, R. (Eds.). (1993). The collected papers of Albert Einstein, volume 5, the Swiss years: Correspondence, 1902–1914. Princeton: Princeton University Press.Google Scholar
  61. Kormos Buchwald, D., Sauer, T., Rosenkranz, Z., Illy, J., & Holmes, V. I. (Eds.). (2006). The collected papers of Albert Einstein, volume 10, the Berlin years: Correspondence, May–December 1920. Princeton: Princeton University Press.Google Scholar
  62. Kox, A. J. (Ed). (2008). The scientific correspondence of H.A. Lorentz (Vol. 1). Berlin: Springer.zbMATHGoogle Scholar
  63. Langevin, P. (1905). Sur l’origine des radiations et l’inertie électromagnétique. Journal de physique théorique et appliquée, 4, 165–183.CrossRefGoogle Scholar
  64. Langevin, P. (1906). The relations of the physics of electrons to the other branches of science. In H. J. Rogers (Ed.), Congress of arts and science, universal exposition, St. Louis, 1904, volume 4: Physics, chemistry, astronomy, sciences of the Earth, pages 121–156. Houghton, Mifflin & Co., Boston.Google Scholar
  65. Larmor, J. (1900). Æther and matter. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  66. Larmor, J. (1938). Alfred Arthur Robb 1873–1936. Obituary Notices of Fellows of the Royal Society, 2, 315–321.CrossRefGoogle Scholar
  67. Laue, M. (1903). Über die Interferenzerscheinungen an planparallelen Platten. PhD thesis, University of Berlin, Berlin.Google Scholar
  68. Laue, M. (1907). Die Mitführung des Lichtes durch bewegte Körper nach dem Relativitätsprinzip. Annalen der Physik, 328, 989–990.zbMATHCrossRefGoogle Scholar
  69. Laue, M. (1908). Die Wellenstrahlung einer bewegten Punktladung nach dem Relativitätsprinzip. Berichte der Deutschen Physikalischen Gesellschaft, 10, 838–844.zbMATHGoogle Scholar
  70. Laue, M. (1911a). Das Relativitätsprinzip. Braunschweig: Vieweg.zbMATHGoogle Scholar
  71. Laue, M. (1911b). Zur Dynamik der Relativitätstheorie. Annalen der Physik, 340, 524–542.zbMATHCrossRefGoogle Scholar
  72. Laue, M. (1912). Zwei Einwände gegen die Relativitätstheorie und ihre Widerlegung. Physikalische Zeitschrift, 13, 118–120.zbMATHGoogle Scholar
  73. Lémeray, M. (1912). Sur un théorème de M. Einstein. Comptes rendus hebdomadaires de l’Académie des sciences de Paris, 155, 1224–1227.zbMATHGoogle Scholar
  74. Lie, S., & Scheffers, G. (1893). Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen. Leipzig: Teubner.Google Scholar
  75. Liénard, A. (1898). Champ électrique et magnétique produit par une charge concentrée en un point et animée d’un mouvement quelconque. Éclairage électrique, 16, 5–14, 53–59, 106–112.Google Scholar
  76. Lorentz, H. A. (1897). Ueber den Einfluss magnetischer Kräfte auf die Emission des Lichtes. Annalen der Physik, 299, 278–284.zbMATHCrossRefGoogle Scholar
  77. Lorentz, H. A. (1904). Electromagnetic phenomena in a system moving with any velocity less than that of light. Proceedings of the Section of Sciences, Koninklijke Akademie van Wetenschappen te Amsterdam, 6, 809–831.Google Scholar
  78. Lorentz, H. A. (1909). The theory of electrons and its application to the phenomena of light and radiant heat. New York: Columbia University Press.zbMATHGoogle Scholar
  79. Lorentz, H. A. (1916). The theory of electrons and its application to the phenomena of light and radiant heat (2nd ed.). Leipzig: Teubner.zbMATHGoogle Scholar
  80. Lorenz, L. V. (1867). On the identity of the vibrations of light with electrical currents. Philosophical Magazine, 34(230), 287–301.Google Scholar
  81. Maltese, G., & Orlando, L. (1995). The definition of rigidity in the special theory of relativity and the genesis of the general theory of relativity. Studies in History and Philosophy of Modern Physics, 26(3), 263–306.MathSciNetzbMATHCrossRefGoogle Scholar
  82. Manegold, K.-H. (1970). Universität, Technische Hochschule und Industrie. Berlin: Duncker & Humblot.Google Scholar
  83. Martínez, A. A. (2009). Kinematics: The lost origins of Einstein’s relativity. Baltimore: Johns Hopkins University Press.zbMATHGoogle Scholar
  84. McCrea, W. H. (1978). Ebenezer Cunningham. Bulletin of the London Mathematical Society, 10(1), 116–126.MathSciNetzbMATHCrossRefGoogle Scholar
  85. Miller, A. I. (1973). A study of Henri Poincaré’s ‘Sur la dynamique de l’électron’. Archive for History of Exact Sciences, 10, 207–328.MathSciNetCrossRefGoogle Scholar
  86. Miller, A. I. (1976). On Einstein, light quanta, radiation and relativity in 1905. American Journal of Physics, 44(10), 912–923.MathSciNetCrossRefGoogle Scholar
  87. Miller, A. I. (1981). Albert Einstein’s special theory of relativity: Emergence (1905) and early interpretation. Reading, MA: Addison-Wesley.Google Scholar
  88. Minkowski, H. (1908). Die Grundgleichungen für die electromagnetischen Vorgänge in bewegten Körpern. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 1908, 53–111.zbMATHGoogle Scholar
  89. Minkowski, H. (1909). Raum und Zeit. Jahresbericht der deutschen Mathematiker-Vereinigung, 18, 75–88.zbMATHGoogle Scholar
  90. Minkowski, H. (1915). Das Relativitätsprinzip. Jahresbericht der deutschen Mathematiker-Vereinigung, 24, 372–382.zbMATHGoogle Scholar
  91. Neumann, C. G. (1870). Ueber die Principien der Galilei-Newton’schen Theorie. Leipzig: Teubner.zbMATHGoogle Scholar
  92. Newman, E. T., & Price, R. H. (2010). The Lorentz transformation: Simplification through complexification. American Journal of Physics, 78(1), 14–19.CrossRefGoogle Scholar
  93. Norton, J. D. (1992). Einstein, Nordström and the early demise of Lorentz-covariant theories of gravitation. Archive for History of Exact Sciences, 45, 17–94.MathSciNetzbMATHCrossRefGoogle Scholar
  94. Penrose, R. (1959). The apparent shape of a relativistically moving sphere. Proceedings of the Cambridge Philosophical Society, 55, 137–139.MathSciNetCrossRefGoogle Scholar
  95. Planck, M. (1907). Zur Dynamik bewegter Systeme. Sitzungsberichte der königliche preußischen Akademie der Wissenschaften, 29, 542–570.zbMATHGoogle Scholar
  96. Planck, M. (1910). Acht Vorlesungen über theoretische Physik. Leipzig: Hirzel.zbMATHGoogle Scholar
  97. Poincaré, H. (1891). Sur la théorie des oscillations hertziennes. Comptes rendus hebdomadaires de l’Académie des sciences de Paris, 113, 515–519.zbMATHGoogle Scholar
  98. Poincaré, H. (1901). Électricité et optique: la lumière et les théories électrodynamiques. Paris: Carré et Naud.zbMATHGoogle Scholar
  99. Poincaré, H. (1904). L’état actuel et l’avenir de la physique mathématique. Bulletin des sciences mathématiques, 28, 302–324.zbMATHGoogle Scholar
  100. Poincaré, H. (1905a). Science and hypothesis. London: Walter Scott.zbMATHGoogle Scholar
  101. Poincaré, H. (1905b). Sur la dynamique de l’électron. Comptes rendus hebdomadaires de l’Académie des sciences de Paris, 140, 1504–1508.zbMATHGoogle Scholar
  102. Poincaré, H. (1906). Sur la dynamique de l’électron. Rendiconti del circolo matematico di Palermo, 21, 129–176.zbMATHCrossRefGoogle Scholar
  103. Poincaré, H. (1907). La relativité de l’espace. Année psychologique, 13, 1–17.CrossRefGoogle Scholar
  104. Poincaré, H. (1908a). La dynamique de l’électron. Revue générale des sciences pures et appliquées, 19, 386–402.zbMATHGoogle Scholar
  105. Poincaré, H. (1908b). Science et méthode. Paris: Flammarion.zbMATHGoogle Scholar
  106. Poincaré, H. (1909). La mécanique nouvelle. Revue scientifique, 12, 170–177.zbMATHGoogle Scholar
  107. Poincaré, H. (1913). La dynamique de l’électron. Paris: Dumas.zbMATHGoogle Scholar
  108. Poincaré, H. (1953). Les limites de la loi de Newton. Bulletin astronomique, 17(3), 21–269.Google Scholar
  109. Pyenson, L. (1979). Physics in the shadow of mathematics: The Göttingen electron-theory seminar of 1905. Archive for History of Exact Sciences, 21(1), 55–89.MathSciNetzbMATHCrossRefGoogle Scholar
  110. Renn, J. (2007). The third way to general relativity. In J. Renn (Ed.), The genesis of general relativity, volume 3, gravitation in the twilight of classical physics: Between mechanics, field theory, and astronomy. The genesis of general relativity (pages 21–75). Berlin: Springer.Google Scholar
  111. Reynolds, W. F. (1993). Hyperbolic geometry on a hyperboloid. American Mathematical Monthly, 100, 442–455.MathSciNetzbMATHCrossRefGoogle Scholar
  112. Ribaucour, A. (1870). Sur la déformation des surfaces. Comptes rendus hebdomadaires de l’Académie des sciences de Paris, 70, 330–333.zbMATHGoogle Scholar
  113. Robb, A. A. (1904). Beiträge zur Theorie des Zeemaneffektes. PhD thesis, Georg-Augusta Universität Göttingen, Leipzig.zbMATHCrossRefGoogle Scholar
  114. Robb, A. A. (1911). Optical geometry of motion: A new view of the theory of relativity. Cambridge: W. Heffer and Sons.zbMATHGoogle Scholar
  115. Rohrlich, F. (2007). Classical charged particles (3rd ed.). Singapore: World Scientific.zbMATHCrossRefGoogle Scholar
  116. Rosser, W. G. V. (1967). Introductory relativity. London: Butterworth.Google Scholar
  117. Rowe, D. E. (1989). Klein, Hilbert, and the Göttingen mathematical tradition. In K. M. Olesko (Ed.), Science in Germany. Osiris (Vol. 5, pp. 186–213). Philadelphia: History of Science Society.MathSciNetzbMATHCrossRefGoogle Scholar
  118. Rowe, D. E. (1999). The Göttingen response to general relativity and Emmy Noether’s theorems. In J. Gray (Ed.), The symbolic universe: Geometry and physics, 1890–1930 (pp. 189–233). Oxford: Oxford University Press.Google Scholar
  119. Rowe, D. E. (2008). Max von Laue’s role in the relativity revolution. Mathematical Intelligencer, 30(3), 54–60.MathSciNetzbMATHCrossRefGoogle Scholar
  120. Rowe, D. E. (2009). A look back at Hermann Minkowski’s Cologne lecture ‘Raum und Zeit’. Mathematical Intelligencer, 31(2), 27–39.MathSciNetzbMATHCrossRefGoogle Scholar
  121. Sánchez-Ron, J. M. (1987). The reception of special relativity in Great Britain. In T. F. Glick (Ed.), The comparative reception of relativity. Boston studies in the philosophy of science (pp. 27–58). Dordrecht: Reidel.CrossRefGoogle Scholar
  122. Searle, G. F. C. (1897). On the steady motion of an electrified ellipsoid. Philosophical Magazine, 44, 329–341.zbMATHGoogle Scholar
  123. Seelig, C. (1960). Albert Einstein: Leben und Werk eines Genies unserer Zeit. Zürich: Europa Verlag.Google Scholar
  124. Silberstein, L. (1914). The theory of relativity. London: Macmillan.zbMATHGoogle Scholar
  125. Sommerfeld, A. (1913). Anmerkungen zu Minkowski, Raum und Zeit. In O. Blumenthal (Ed.), Das Relativitätsprinzip; Eine Sammlung von Abhandlungen (pp. 69–73). Leipzig: Teubner.Google Scholar
  126. Sommerfeld, A. (1919). Atombau und Spektrallinien. Braunschweig: Vieweg.zbMATHGoogle Scholar
  127. Sommerfeld, A. (1948). Vorlesungen über theoretische Physik, Bd. 3: Elektrodynamik. Wiesbaden: Dieterich.zbMATHGoogle Scholar
  128. Stachel, J., Cassidy, D. C., Renn, J., & Schulmann, R. (Eds.). (1989). The collected papers of Albert Einstein, volume 2, the Swiss years: Writings, 1900–1909. Princeton: Princeton University Press.Google Scholar
  129. Staley, R. (1998). On the histories of relativity: The propagation and elaboration of relativity theory in participant histories in Germany, 1905–1911. Isis, 89(2), 263–299.MathSciNetzbMATHCrossRefGoogle Scholar
  130. Sternberg, S. (1986). Imagery in scientific thought by Arthur I. Miller. Mathematical Intelligencer, 8(2), 65–74.MathSciNetGoogle Scholar
  131. Tanner, J. R. (Ed.). (1917). The historical register of the University of Cambridge, being a supplement to the calendar with a record of university offices, honours and distinctions to the year 1910. Cambridge: Cambridge University Press.Google Scholar
  132. Thomson, J. J. (1893). Notes on recent researches in electricity and magnetism: Intended as a sequel to Professor Clerk-Maxwell’s treatise on electricity and magnetism. Oxford: Clarendon.zbMATHGoogle Scholar
  133. Timerding, H. E. (1912). Über ein einfaches geometrisches Bild der Raumzeitwelt Minkowskis. Jahresbericht der deutschen Mathematiker-Vereinigung, 21, 274–285.zbMATHGoogle Scholar
  134. Timerding, H. E. (1915). Über die Raumzeitvektoren und ihre geometrische Behandlung. In K. Bergwitz (Ed.), Festschrift Julius Elster und Hans Geistel zum sechzigsten Geburtstage: Arbeiten aus den Gebieten der Physik, Mathematik, Chemie (pp. 514–520). Braunschweig: Vieweg.Google Scholar
  135. Tolman, R. C. (1910). The second postulate of relativity. Physical Review 31, 26–40.Google Scholar
  136. Tolman, R. C. (1914). The principle of similitude. Physical Review, 3, 244–255.zbMATHCrossRefGoogle Scholar
  137. Torretti, R. (1996). Relativity and geometry (2nd ed.). New York: Dover Publications.zbMATHGoogle Scholar
  138. von Ignatowsky, W. S. (1909). Die Vektoranalysis und Anwendung in der theoretischen Physik. Leipzig: Teubner.zbMATHGoogle Scholar
  139. von Ignatowsky, W. S. (1910). Einige allgemeine Bemerkungen zum Relativitätsprinzip. Berichte der Deutschen Physikalischen Gesellschaft, 12(20), 788–796.zbMATHGoogle Scholar
  140. von Laue, M. (1913a). Das Relativitätsprinzip. Jahrbücher der Philosophie, 1, 99–128.zbMATHGoogle Scholar
  141. von Laue, M. (1913b). Das Relativitätsprinzip (2nd ed.). Braunschweig: Vieweg.zbMATHGoogle Scholar
  142. von Laue, M. (1947). Geschichte der Physik. Bonn: Universitäts-Verlag.zbMATHGoogle Scholar
  143. von Laue, M. (1952). Mein physikalischer Werdegang; eine Selbstdarstellung. In H. Hartmann (Ed.), Schöpfer des neuen Weltbildes: Große Physiker unserer Zeit (pp. 178–207). Bonn: Athenäum-Verlag.Google Scholar
  144. von Laue, M. (1955). Die Relativitätstheorie: die spezielle Relativitätstheorie (6th ed.). Braunschweig: Vieweg.zbMATHGoogle Scholar
  145. von Laue, M. (1961). Aufsätze und Vorträge. Braunschweig: Vieweg.Google Scholar
  146. Walter, S. A. (1999a). Minkowski, mathematicians, and the mathematical theory of relativity. In H. Goenner, J. Renn, T. Sauer, & J. Ritter (Eds.), The expanding worlds of general relativity, Einstein studies (Vol. 7, pp. 45–86). Boston: Birkhäuser.CrossRefGoogle Scholar
  147. Walter, S. A. (1999b). The non-Euclidean style of Minkowskian relativity. In J. Gray (Ed.), The symbolic universe: Geometry and physics, 1890–1930 (pp. 91–127). Oxford: Oxford University Press.Google Scholar
  148. Walter, S. A. (2007). Breaking in the 4-vectors: The four-dimensional movement in gravitation, 1905–1910. In J. Renn & M. Schemmel (Eds.), The genesis of general relativity, volume 3: Theories of gravitation in the twilight of classical physics (pp. 193–252). Berlin: Springer.Google Scholar
  149. Walter, S. A. (2008). Hermann Minkowski’s approach to physics. Mathematische Semesterberichte, 55(2), 213–235.MathSciNetzbMATHCrossRefGoogle Scholar
  150. Walter, S. A. (2009). Hypothesis and convention in Poincaré’s defense of Galilei spacetime. In M. Heidelberger & G. Schiemann (Eds.), The significance of the hypothetical in the natural sciences (pp. 193–219). Berlin: Walter de Gruyter.Google Scholar
  151. Walter, S. A. (2010). Minkowski’s modern world. In V. Petkov (Ed.), Minkowski spacetime: A hundred years later. Fundamental theories of physics (Vol. 165, pp. 43–61). Berlin: Springer.Google Scholar
  152. Walter, S. A. (2011). Henri Poincaré, theoretical physics and relativity theory in Paris. In K.-H. Schlote & M. Schneider (Eds.), Mathematics meets physics: A contribution to their interaction in the 19th and the first half of the 20th century (pp. 213–239). Frankfurt am Main: Harri Deutsch.Google Scholar
  153. Walter, S. A. (2014). Poincaré on clocks in motion. Studies in History and Philosophy of Modern Physics, 47(1), 131–141.MathSciNetzbMATHCrossRefGoogle Scholar
  154. Walter, S. A. (2017). Henri Poincaré’s life, science, and life in science. Historia Mathematica, 44(4), 425–435.CrossRefGoogle Scholar
  155. Walter, S. A. (2018). Poincaré-week in Göttingen, in light of the Hilbert-Poincaré correspondence of 1908–1909. In M. T. Borgato, E. Neuenschwander & I. Passeron (Eds.), Mathematical correspondences and critical editions (pp. 189–202). Basel: Birkhäuser.Google Scholar
  156. Walter, S. A., Bolmont, E., & Coret, A. (Eds.). (2007b). La correspondance d’Henri Poincaré, volume 2: La correspondance entre Henri Poincaré et les physiciens, chimistes et ingénieurs. Basel: Birkhäuser.zbMATHGoogle Scholar
  157. Walter, S. A., Nabonnand, P., & Rollet, L. (Eds.). (2016). Henri Poincaré papers. http://henripoincarepapers.univ-nantes.fr.
  158. Warwick, A. C. (2003). Masters of theory: Cambridge and the rise of mathematical physics. Chicago: University of Chicago.zbMATHCrossRefGoogle Scholar
  159. Weyl, H. (1922). Das Raumproblem. Jahresbericht der deutschen Mathematiker-Vereinigung, 31, 205–221.zbMATHGoogle Scholar
  160. Whittaker, E. T. (1951). A history of the theories of aether and electricity. London: T. Nelson.zbMATHGoogle Scholar
  161. Wiechert, E. (1900). Elektrodynamische Elementargesetze. In J. Bosscha (Ed.), Recueil de travaux offerts par les auteurs à H. A. Lorentz. Archives néerlandaises des sciences exactes et naturelles (Vol. 5, pp. 549–573). The Hague: Nijhoff.Google Scholar
  162. Wiechert, E. (1911). Relativitätsprinzip und Äther. Physikalische Zeitschrift, 12, 689–707, 737–758.zbMATHGoogle Scholar
  163. Williamson, R. B. (1977). Logical economy in Einstein’s ‘on the electrodynamics of moving bodies’. Studies in History and Philosophy of Science, 8(1), 46–60.CrossRefGoogle Scholar
  164. Wright, S. P. (1975). Henri Poincaré: A developmental study of his philosophical and scientific thought. PhD thesis, Harvard University, Cambridge, MA.Google Scholar
  165. Zahar, E. (1997). Poincaré’s philosophy of geometry, or does geometric conventionalism deserve its name? Studies in History and Philosophy of Modern Physics, 28, 183–218.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre François VièteUniversité de NantesNantes CedexFrance

Personalised recommendations