Increased Bone Fracture After SCI: Can Exercise Reduce Risk?

  • Adina E. Draghici
  • Sandra J. ShefelbineEmail author
Part of the Physiology in Health and Disease book series (PIHD)


Bone density decreases rapidly in spinal cord injured (SCI) individuals to approximately 60 % of normal bone mass within the first 3 years after injury. The loss of bone mass, called disuse osteoporosis, results in low energy fractures, which are prevalent and extremely debilitating in this population. Bones are sensitive to their mechanical environment, promoting formation under high loads and resorption under low loads. In the SCI population, bone becomes osteoporotic solely due to the lack of mechanical stimulus. The bone loss after injury is site specific, occurring particularly at sites rich in trabecular bone, such as proximal tibia and distal femur. Harnessing the mechanosensitivity of human bone has been the central idea of therapeutic interventions to maintain bone mass and ensure bone strength in the SCI population. Numerous studies have investigated activities based training exercises such as passive weight bearing, gait training, isometric functional electrical stimulation (FES), cycling loading, FES-cycling, and FES-rowing. Only a few of these interventions have been effective in maintaining bone health and none of them have led to promoting bone formation. The most promising results in mechanical loading therapies for maintaining bone health are in acute patients. Mechanical interventions in the early stages post-injury might take advantage of the bone’s ability in young, acute SCI individuals to adapt to mechanical load.


Bone Mineral Density Bone Loss Distal Femur Femoral Neck Bone Mineral Density Functional Electrical Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amin S (2010) Mechanical factors and bone health: effects of weightlessness and neurologic injury. Curr Rheumatol Rep 12(3):170–176PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aminmansour B, Asnaashari A, Rezvani M, Ghaffarpasand F, Noorian SMA, Saboori M, Abdollahzadeh P (2015) Effects of progesterone and vitamin D on outcome of patients with acute traumatic spinal cord injury; a randomized, double-blind, placebo controlled study. J Spinal Cord Med 0(0):1–15Google Scholar
  3. Arija-Blázquez A, Ceruelo-Abajo S, Díaz-Merino MS, Godino-Durán JA, Martínez-Dhier L, Martin JLR, Florensa-Vila J (2014) Effects of electromyostimulation on muscle and bone in men with acute traumatic spinal cord injury: a randomized clinical trial. J Spinal Cord Med 37(3):299–309PubMedPubMedCentralCrossRefGoogle Scholar
  4. Asselin P, Spungen AM, Muir JW, Rubin CT, Bauman WA (2011) Transmission of low-intensity vibration through the axial skeleton of persons with spinal cord injury as a potential intervention for preservation of bone quantity and quality. J Spinal Cord Med 34(1):52–59PubMedPubMedCentralCrossRefGoogle Scholar
  5. Astorino TA, Harness ET, Witzke KA (2013) Effect of chronic activity-based therapy on bone mineral density and bone turnover in persons with spinal cord injury. Eur J Appl Physiol 113(12):3027–3037PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barbonetti A, Sperandio A, Micillo A, D’Andrea S, Pacca F, Felzani G, Francavilla S, Francavilla F (2016) Independent association of vitamin D with physical function in people with chronic spinal cord injury. Arch Phys Med Rehabil 97:726–732PubMedCrossRefGoogle Scholar
  7. Bauman WA, Wecht JM, Kirshblum S, Spungen AM, Morrison N, Cirnigliaro C, Schwartz E (2005a) Effect of pamidronate administration on bone in patients with acute spinal cord injury. J Rehabil Res Dev 42(3):305–313PubMedCrossRefGoogle Scholar
  8. Bauman WA, Spungen AM, Morrison N, Zhang R-L, Schwartz E (2005b) Effect of a vitamin D analog on leg bone mineral density in patients with chronic spinal cord injury. J Rehabil Res Dev 42(5):625–634PubMedCrossRefGoogle Scholar
  9. BeDell KK, Scremin AM, Perell KL, Kunkel CF (1996) Effects of functional electrical stimulation-induced lower extremity cycling on bone density of spinal cord-injured patients. Am J Phys Med Rehabil 75(1):29–34PubMedCrossRefGoogle Scholar
  10. Benlidayi IC, Basaran S, Seydaoglu G, Guzel R (2016) Vitamin D profile of patients with spinal cord injury and post-stroke hemiplegia: all in the same boat. J Back Musculoskelet Rehabil 29(2):205–210CrossRefGoogle Scholar
  11. Bousson V, Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo J-D (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int 17(6):855–864PubMedCrossRefGoogle Scholar
  12. Bramlett HM, Dietrich WD, Marcillo A, Mawhinney LJ, Furones-Alonso O, Bregy A, Peng Y, Wu Y, Pan J, Wang J, Guo XE, Bauman WA, Cardozo C, Qin W (2014) Effects of low intensity vibration on bone and muscle in rats with spinal cord injury. Osteoporos Int 25(9):2209–2219PubMedCrossRefGoogle Scholar
  13. Bubbear JS, Gall A, Middleton FRI, Ferguson-Pell M, Swaminathan R, Keen RW (2011) Early treatment with zoledronic acid prevents bone loss at the hip following acute spinal cord injury. Osteoporos Int 22(1):271–279PubMedCrossRefGoogle Scholar
  14. Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J 13(Suppl):S101–S112PubMedGoogle Scholar
  15. Burghardt AJ, Link TM, Majumdar S (2011) High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop 469(8):2179–2193PubMedPubMedCentralCrossRefGoogle Scholar
  16. Carbone LD, Chin AS, Burns SP, Svircev JN, Hoenig H, Heggeness M, Bailey L, Weaver F (2014) Mortality after lower extremity fractures in men with spinal cord injury. J Bone Miner Res 29(2):432–439PubMedCrossRefGoogle Scholar
  17. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7(2):137–145PubMedCrossRefGoogle Scholar
  18. Cheung AM, Adachi JD, Hanley DA, Kendler DL, Davison KS, Josse R, Brown JP, Ste-Marie L-G, Kremer R, Erlandson MC, Dian L, Burghardt AJ, Boyd SK (2013) High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep 11(2):136–146PubMedPubMedCentralCrossRefGoogle Scholar
  19. Clark JM, Jelbart M, Rischbieth H, Strayer J, Chatterton B, Schultz C, Marshall R (2007) Physiological effects of lower extremity functional electrical stimulation in early spinal cord injury: lack of efficacy to prevent bone loss. Spinal Cord 45(1):78–85PubMedCrossRefGoogle Scholar
  20. Comarr AE, Hutchinson RH, Bors E (1962) Extremity fractures of patients with spinal cord injuries. Am J Surg 103:732–739PubMedCrossRefGoogle Scholar
  21. Dauty M, Perrouin Verbe B, Maugars Y, Dubois C, Mathe JF (2000) Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone 27(2):305–309PubMedCrossRefGoogle Scholar
  22. Davis R, Sanborn C, Nichols D, Bazett-Jones DM, Dugan EL (2010) The effects of whole body vibration on bone mineral density for a person with a spinal cord injury: a case study. Adapt Phys Activ Q 27(1):60–72PubMedCrossRefGoogle Scholar
  23. de Bruin ED, Frey-Rindova P, Herzog RE, Dietz V, Dambacher MA, Stüssi E (1999) Changes of tibia bone properties after spinal cord injury: effects of early intervention. Arch Phys Med Rehabil 80(2):214–220PubMedCrossRefGoogle Scholar
  24. de Bruin ED, Herzog R, Rozendal RH, Michel D, Stüssi E (2000a) Estimation of geometric properties of cortical bone in spinal cord injury. Arch Phys Med Rehabil 81(2):150–156PubMedCrossRefGoogle Scholar
  25. de Bruin ED, Dietz V, Dambacher MA, Stüssi E (2000b) Longitudinal changes in bone in men with spinal cord injury. Clin Rehabil 14(2):145–152PubMedCrossRefGoogle Scholar
  26. Dudley-Javoroski S, Shields RK (2012) Regional cortical and trabecular bone loss after spinal cord injury. J Rehabil Res Dev 49(9):1365–1376PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dudley-Javoroski S, Saha PK, Liang G, Li C, Gao Z, Shields RK (2012) High dose compressive loads attenuate bone mineral loss in humans with spinal cord injury. Osteoporos Int 23(9):2335–2346PubMedCrossRefGoogle Scholar
  28. Dudley-Javoroski S, Petrie MA, McHenry CL, Amelon RE, Saha PK, Shields RK (2015) Bone architecture adaptations after spinal cord injury: impact of long-term vibration of a constrained lower limb. Osteoporos Int 27:1149–1160PubMedPubMedCentralCrossRefGoogle Scholar
  29. Edwards WB, Schnitzer TJ, Troy KL (2014a) Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury. Osteoporos Int 25(3):1005–1015PubMedCrossRefGoogle Scholar
  30. Edwards WB, Schnitzer TJ, Troy KL (2014b) Reduction in proximal femoral strength in patients with acute spinal cord injury. J Bone Miner Res 29(9):2074–2079PubMedCrossRefGoogle Scholar
  31. Edwards WB, Schnitzer TJ, Troy KL (2014c) The mechanical consequence of actual bone loss and simulated bone recovery in acute spinal cord injury. Bone 60:141–147PubMedCrossRefGoogle Scholar
  32. Engelke K, Lang T, Khosla S, Qin L, Zysset P, Leslie WD, Shepherd JA, Schousboe JT (2015) Clinical use of quantitative computed tomography (QCT) of the hip in the management of osteoporosis in adults: the 2015 ISCD official positions-part I. J Clin Densitom 18(3):338–358PubMedCrossRefGoogle Scholar
  33. Eser P, de Bruin ED, Telley I, Lechner HE, Knecht H, Stüssi E (2003) Effect of electrical stimulation-induced cycling on bone mineral density in spinal cord-injured patients. Eur J Clin Invest 33(5):412–419PubMedCrossRefGoogle Scholar
  34. Eser P, Frotzler A, Zehnder Y, Wick L, Knecht H, Denoth J, Schiessl H (2004) Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone 34(5):869–880PubMedCrossRefGoogle Scholar
  35. Eser P, Frotzler A, Zehnder Y, Denoth J (2005) Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography. Arch Phys Med Rehabil 86(3):498–504PubMedCrossRefGoogle Scholar
  36. Fournier A, Goldberg M, Green B, Brucker B, Petrofsky J, Eismont F, Quencer R, Sosenko J, Pina I, Shebert R, Kessler K, MacDonald A, Fiore P, Burnett B (1984) A medical evaluation of the effects of computer assisted muscle stimulation in paraplegic patients. Orthopedics 7(7):1129–1133PubMedGoogle Scholar
  37. Frey-Rindova P, de Bruin ED, Stüssi E, Dambacher MA, Dietz V (2000) Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 38(1):26–32PubMedCrossRefGoogle Scholar
  38. Fritton SP, McLeod KJ, Rubin CT (2000) Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J Biomech 33(3):317–325PubMedCrossRefGoogle Scholar
  39. Frotzler A, Coupaud S, Perret C, Kakebeeke TH, Hunt KJ, Donaldson NN, Eser P (2008) High-volume FES-cycling partially reverses bone loss in people with chronic spinal cord injury. Bone 43(1):169–176PubMedCrossRefGoogle Scholar
  40. Garland D, Adkins R, Stewart C (2005) Fracture threshold and risk for osteoporosis and pathologic fractures in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil 11(1):61–69CrossRefGoogle Scholar
  41. Garman R, Rubin C, Judex S (2007) Small oscillatory accelerations, independent of matrix deformations, increase osteoblast activity and enhance bone morphology. PLoS One 2(7):e653PubMedPubMedCentralCrossRefGoogle Scholar
  42. Giangregorio LM, Hicks AL, Webber CE, Phillips SM, Craven BC, Bugaresti JM, McCartney N (2005) Body weight supported treadmill training in acute spinal cord injury: impact on muscle and bone. Spinal Cord 43(11):649–657PubMedCrossRefGoogle Scholar
  43. Gibbons RS, McCarthy ID, Gall A, Stock CG, Shippen J, Andrews BJ (2014) Can FES-rowing mediate bone mineral density in SCI: a pilot study. Spinal Cord 52(Suppl 3):S4–S5PubMedCrossRefGoogle Scholar
  44. Gifre L, Vidal J, Carrasco J, Portell E, Puig J, Monegal A, Guañabens N, Peris P (2014) Incidence of skeletal fractures after traumatic spinal cord injury: a 10-year follow-up study. Clin Rehabil 28(4):361–369PubMedCrossRefGoogle Scholar
  45. Goemaere S, Van Laere M, De Neve P, Kaufman JM (1994) Bone mineral status in paraplegic patients who do or do not perform standing. Osteoporos Int 4(3):138–143PubMedCrossRefGoogle Scholar
  46. Goktepe AS, Tugcu I, Yilmaz B, Alaca R, Gunduz S (2008) Does standing protect bone density in patients with chronic spinal cord injury? J Spinal Cord Med 31(2):197–201PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gordon KE, Wald MJ, Schnitzer TJ (2013) Effect of parathyroid hormone combined with gait training on bone density and bone architecture in people with chronic spinal cord injury. PM R 5(8):663–671PubMedCrossRefGoogle Scholar
  48. Hangartner TN, Rodgers MM, Glaser RM, Barre PS (1994) Tibial bone density loss in spinal cord injured patients: effects of FES exercise. J Rehabil Res Dev 31(1):50–61PubMedGoogle Scholar
  49. Hartkopp A, Murphy RJ, Mohr T, Kjaer M, Biering-Sørensen F (1998) Bone fracture during electrical stimulation of the quadriceps in a spinal cord injured subject. Arch Phys Med Rehabil 79(9):1133–1136PubMedCrossRefGoogle Scholar
  50. Jiang S-D, Jiang L-S, Dai L-Y (2006a) Mechanisms of osteoporosis in spinal cord injury. Clin Endocrinol (Oxf) 65(5):555–565CrossRefGoogle Scholar
  51. Jiang S-D, Dai L-Y, Jiang L-S (2006b) Osteoporosis after spinal cord injury. Osteoporos Int 17(2):180–192PubMedCrossRefGoogle Scholar
  52. Johnston TE, Marino RJ, Oleson CV, Schmidt-Read M, Leiby BE, Sendecki J, Singh H, Modlesky CM (2016) Musculoskeletal effects of 2 functional electrical stimulation cycling paradigms conducted at different cadences for people with spinal cord injury: a pilot study. Arch Phys Med Rehabil 97:1413–1422PubMedCrossRefGoogle Scholar
  53. Judex S, Carlson KJ (2009) Is bone’s response to mechanical signals dominated by gravitational loading? Med Sci Sports Exerc 41(11):2037–2043PubMedCrossRefGoogle Scholar
  54. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4(6):368–381PubMedCrossRefGoogle Scholar
  55. Kaya K, Aybay C, Ozel S, Kutay N, Gokkaya O (2006) Evaluation of bone mineral density in patients with spinal cord injury. J Spinal Cord Med 29(4):396–401PubMedPubMedCentralCrossRefGoogle Scholar
  56. Keaveny TM, Hoffmann PF, Singh M, Palermo L, Bilezikian JP, Greenspan SL, Black DM (2008) Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res 23(12):1974–1982PubMedPubMedCentralCrossRefGoogle Scholar
  57. Keaveny TM, McClung MR, Wan X, Kopperdahl DL, Mitlak BH, Krohn K (2012) Femoral strength in osteoporotic women treated with teriparatide or alendronate. Bone 50(1):165–170PubMedCrossRefGoogle Scholar
  58. Kiratli BJ, Smith AE, Nauenberg T, Kallfelz CF, Perkash I (2000) Bone mineral and geometric changes through the femur with immobilization due to spinal cord injury. J Rehabil Res Dev 37(2):225–233PubMedGoogle Scholar
  59. Kunkel CF, Scremin AM, Eisenberg B, Garcia JF, Roberts S, Martinez S (1993) Effect of ‘standing’ on spasticity, contracture, and osteoporosis in paralyzed males. Arch Phys Med Rehabil 74(1):73–78PubMedGoogle Scholar
  60. Lai C, Chang W, Chan W, Peng C, Shen L, Chen J, Chen S (2010) Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury. J Rehabil Med 42(2):150–154PubMedCrossRefGoogle Scholar
  61. Lala D, Craven BC, Thabane L, Papaioannou A, Adachi JD, Popovic MR, Giangregorio LM (2014) Exploring the determinants of fracture risk among individuals with spinal cord injury. Osteoporos Int 25(1):177–185PubMedCrossRefGoogle Scholar
  62. Lanyon LE (1996) Using functional loading to influence bone mass and architecture: objectives, mechanisms, and relationship with estrogen of the mechanically adaptive process in bone. Bone 18(1 Suppl):37S–43SPubMedCrossRefGoogle Scholar
  63. Lazo MG, Shirazi P, Sam M, Giobbie-Hurder A, Blacconiere MJ, Muppidi M (2001) Osteoporosis and risk of fracture in men with spinal cord injury. Spinal Cord 39(4):208–214PubMedCrossRefGoogle Scholar
  64. Logan WC, Sloane R, Lyles KW, Goldstein B, Hoenig HM (2008) Incidence of fractures in a cohort of veterans with chronic multiple sclerosis or traumatic spinal cord injury. Arch Phys Med Rehabil 89(2):237–243PubMedCrossRefGoogle Scholar
  65. Manske SL, Liu-Ambrose T, Cooper DML, Kontulainen S, Guy P, Forster BB, McKay HA (2009) Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction. Osteoporos Int 20(3):445–453PubMedCrossRefGoogle Scholar
  66. Messina C, Bandirali M, Sconfienza LM, D’Alonzo NK, Di Leo G, Papini GDE, Ulivieri FM, Sardanelli F (2015) Prevalence and type of errors in dual-energy x-ray absorptiometry. Eur Radiol 25(5):1504–1511PubMedCrossRefGoogle Scholar
  67. Modlesky CM, Majumdar S, Narasimhan A, Dudley GA (2004) Trabecular bone microarchitecture is deteriorated in men with spinal cord injury. J Bone Miner Res 19(1):48–55PubMedCrossRefGoogle Scholar
  68. Moran de Brito CM, Battistella LR, Saito ET, Sakamoto H (2005) Effect of alendronate on bone mineral density in spinal cord injury patients: a pilot study. Spinal Cord 43(6):341–348PubMedCrossRefGoogle Scholar
  69. Morse LR, Battaglino RA, Stolzmann KL, Hallett LD, Waddimba A, Gagnon D, Lazzari AA, Garshick E (2009a) Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporos Int 20(3):385–392PubMedCrossRefGoogle Scholar
  70. Morse LR, Giangregorio L, Battaglino RA, Holland R, Craven BC, Stolzmann KL, Lazzari AA, Sabharwal S, Garshick E (2009b) VA-based survey of osteoporosis management in spinal cord injury. PM R 1(3):240–244PubMedPubMedCentralCrossRefGoogle Scholar
  71. Needham-Shropshire BM, Broton JG, Klose KJ, Lebwohl N, Guest RS, Jacobs PL (1997) Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 3. Lack of effect on bone mineral density. Arch Phys Med Rehabil 78(8):799–803PubMedCrossRefGoogle Scholar
  72. Nottage WM (1981) A review of long-bone fractures in patients with spinal cord injuries. Clin Orthop 155:65–70Google Scholar
  73. Rodgers MM, Glaser RM, Figoni SF, Hooker SP, Ezenwa BN, Collins SR, Mathews T, Suryaprasad AG, Gupta SC (1991) Musculoskeletal responses of spinal cord injured individuals to functional neuromuscular stimulation-induced knee extension exercise training. J Rehabil Res Dev 28(4):19–26PubMedCrossRefGoogle Scholar
  74. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412(6847):603–604PubMedCrossRefGoogle Scholar
  75. Rubin C, Turner AS, Mallinckrodt C, Jerome C, McLeod K, Bain S (2002) Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 30(3):445–452PubMedCrossRefGoogle Scholar
  76. Sabour H, Norouzi Javidan A, Latifi S, Larijani B, Shidfar F, Vafa MR, Heshmat R, Emami Razavi H (2014) Bone biomarkers in patients with chronic traumatic spinal cord injury. Spine J 14(7):1132–1138PubMedCrossRefGoogle Scholar
  77. Sato Y, Maruoka H, Oizumi K (1997) Amelioration of hemiplegia-associated osteopenia more than 4 years after stroke by 1 alpha-hydroxyvitamin D3 and calcium supplementation. Stroke J Cereb Circ 28(4):736–739CrossRefGoogle Scholar
  78. Schultheis L (1991) The mechanical control system of bone in weightless spaceflight and in aging. Exp Gerontol 26(2–3):203–214PubMedCrossRefGoogle Scholar
  79. Shields RK, Dudley-Javoroski S (2006) Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training. J Neurophysiol 95(4):2380–2390PubMedPubMedCentralCrossRefGoogle Scholar
  80. Shields RK, Dudley-Javoroski S, Law LAF (2006) Electrically induced muscle contractions influence bone density decline after spinal cord injury. Spine 31(5):548–553PubMedPubMedCentralCrossRefGoogle Scholar
  81. Slade JM, Bickel CS, Modlesky CM, Majumdar S, Dudley GA (2005) Trabecular bone is more deteriorated in spinal cord injured versus estrogen-free postmenopausal women. Osteoporos Int 16(3):263–272PubMedCrossRefGoogle Scholar
  82. Szollar SM, Martin EM, Sartoris DJ, Parthemore JG, Deftos LJ (1998) Bone mineral density and indexes of bone metabolism in spinal cord injury. Am J Phys Med Rehabil 77(1):28–35PubMedCrossRefGoogle Scholar
  83. Thoumie P, Le Claire G, Beillot J, Dassonville J, Chevalier T, Perrouin-Verbe B, Bedoiseau M, Busnel M, Cormerais A, Courtillon A (1995) Restoration of functional gait in paraplegic patients with the RGO-II hybrid orthosis. A multicenter controlled study. II: Physiological evaluation. Paraplegia 33(11):654–659PubMedCrossRefGoogle Scholar
  84. Uebelhart D, Demiaux-Domenech B, Roth M, Chantraine A (1995) Bone metabolism in spinal cord injured individuals and in others who have prolonged immobilisation. A review. Paraplegia 33(11):669–673PubMedCrossRefGoogle Scholar
  85. Vanleene M, Shefelbine SJ (2013) Therapeutic impact of low amplitude high frequency whole body vibrations on the osteogenesis imperfecta mouse bone. Bone 53(2):507–514PubMedPubMedCentralCrossRefGoogle Scholar
  86. Vasikaran S, Eastell R, Bruyère O, Foldes AJ, Garnero P, Griesmacher A, McClung M, Morris HA, Silverman S, Trenti T, Wahl DA, Cooper C, Kanis JA, IOF-IFCC Bone Marker Standards Working Group (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22(2):391–420PubMedCrossRefGoogle Scholar
  87. Vestergaard P, Krogh K, Rejnmark L, Mosekilde L (1998) Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord 36(11):790–796PubMedCrossRefGoogle Scholar
  88. Wang CM, Chen Y, DeVivo MJ, Huang CT (2001) Epidemiology of extraspinal fractures associated with acute spinal cord injury. Spinal Cord 39(11):589–594PubMedCrossRefGoogle Scholar
  89. Wilmet E, Ismail AA, Heilporn A, Welraeds D, Bergmann P (1995) Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Paraplegia 33(11):674–677PubMedCrossRefGoogle Scholar
  90. Wolff J (1986) The law of bone remodeling. Springer, BerlinCrossRefGoogle Scholar
  91. Wuermser L-A, Beck LA, Lamb JL, Atkinson EJ, Amin S (2015) The effect of low-magnitude whole body vibration on bone density and microstructure in men and women with chronic motor complete paraplegia. J Spinal Cord Med 38(2):178–186PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The American Physiological Society 2016

Authors and Affiliations

  1. 1.Department of BioengineeringNortheastern UniversityBostonUSA

Personalised recommendations