Advertisement

The Environment of Space Exploration

  • Arnauld E. Nicogossian
Chapter

Abstract

Understanding the nature of the space environment is as important for physicians, astronauts, life scientists, and aeronautical engineers, as it is for planetary and physical scientists. Designing spacecraft, safe crew living quarters, personal protective systems, work procedures, and exploration systems has and will continue to benefit from robotic exploratory missions. Robotic missions inform aerospace engineers as to the function, design and performance of crewed systems for future exploration missions. The complexity of planetary human space missions will continue to increase in the future as we venture farther and for longer periods of time into our Solar System. Practitioners of space medicine must be prepared to use the knowledge gathered from robotic missions to identify challenges and hazards to address the health risks for future human expeditions and potential settlements beyond the confines of the biosphere. Future crews’ exposure to space hazards, notably radiation, and possibly to new ecosystems, require special and careful planning. The future of human space exploration is coupled with scientific curiosity based on robotic missions and also by the direction provided by the U.S. President’s space policy. Commercial aspirations for exploring and prospecting for resources of our Solar System are poorly defined and will require international agreements to be addressed by the United Nations. Astrobiology, planetary protection, and ethical considerations are also discussed. This chapter provides a short review of our Solar System, and discusses prospective destinations, intended to inform physicians, biomedical engineers, and mission planners interested in space medicine. Some of the mentioned destinations are in the planning stages by different space agencies, and by commercial entities. The fields of planetary sciences and space physics continue to make newer discoveries, which might not have been captured in this chapter. For a more in-depth scientific and technical review of our Solar System and the Universe, interested readers should consult appropriate scientific publications.

Keywords

Biosphere Dwarf planets Exoplanets Exploration Gaseous planets Minor planets Solar system Terrestrial planets Kuiper Belt Oort Cloud Asteroid belt Circumstellar habitable zone Comets Meteoroids Ethics of exploration Astrobiology International agreements Planetary protections Quarantine Forward and back contamination Water and ice Extraterrestrial resources Giant planets International Astronomical Union COSPAR UN Magnetosphere Cryovolcanism 

Notes

Acknowledgments

The author wishes to acknowledge the significant contributions to prior versions of this chapter by Peter Alf, Michael B. Duke, Douglas P. Blanchard, and Stephanie L. Roy.

Supplementary material

270970_4_En_2_MOESM1_ESM.pdf (2 mb)
Ch 2_ Space Exploration Environments (PDF 2089 kb)

References

  1. 1.
    Zamanian A, Hardiman C. Electromagnetic radiation and human health: a review of the sources and effects. High frequency electronics. Summit technical media. July 2005.Google Scholar
  2. 2.
    Atri D, Melott AL. Cosmic rays and terrestrial life: a brief review. Astroparticle Physics. 2014;53:186–90. https://arxiv.org/ftp/arxiv/papers/1211/1211.3962.pdf.CrossRefGoogle Scholar
  3. 3.
    Schumm BA. Deep down things. Baltimore, MD: Johns Hopkins University Press; 2004.Google Scholar
  4. 4.
    Borrill J, Kesitalo R, Kisner T. Big bang, big data, big iron: fifteen years of cosmic microwave background data analysis at NERSC. Comput Sci Eng. 2015;17:22.CrossRefGoogle Scholar
  5. 5.
    Astronomy Now; 2016. https://astronomynow.com/category/news/. Accessed 15 Apr 2016.
  6. 6.
    Science Daily: Earth-like planets have Earth-like interiors. https://www.sciencedaily.com/releases/2016/02/160208124245.htm. Accessed 15 Apr 2016.
  7. 7.
    Rosen G. A history of public health. Revised/expanded 1993rd ed. Baltimore, MD: Johns Hopkins University Press; 2015. p. 7–8.Google Scholar
  8. 8.
    Dick SJ, Strick JE. The living universe: NASA and the development of astrobiology. New Brunswick, NJ: Rutgers University Press; 2004.Google Scholar
  9. 9.
    NASA. Asteroid grand challenge. Washington, DC: NASA; 2015. https://www.nasa.gov/content/asteroid-grand-challenge. Accessed 13 Apr 2016.Google Scholar
  10. 10.
    www.thomsonreuters/webofscience. Accessed 13 Apr 2016.
  11. 11.
    Ward-Thompson D, Whitworth AP. An introduction to star formation. Cambridge: Cambridge University Press; 2015.Google Scholar
  12. 12.
    Urquhart JS, Figura CC, Moore TJT, Hoare MG, Lumsden L, Mottram JC, et al. The RMS survey: galactic distribution of massive star formation. MNRAS. 2014;437(2):1791–807.CrossRefGoogle Scholar
  13. 13.
    Chatterjee E, Hansteen V, Carlsson M. Modeling repeatedly flaring delta sunspots. Phys Rev Lett. 2016;116:101101.PubMedCrossRefGoogle Scholar
  14. 14.
    Henbest N, Couper H. Guide to the galaxy. Cambridge: Cambridge University Press; 1994.Google Scholar
  15. 15.
    Baker DN. Severe space weather events—understanding societal and economic impacts: a workshop report. Washington, DC: The National Academy Press; 2008.Google Scholar
  16. 16.
    Strughold H. The green and the red planet: a physiological study of the possibility of life on Mars. Albuquerque, NM: University of New Mexico Press; 1953.Google Scholar
  17. 17.
    A magnetic surprise from Venus. Astrobiology; 2012. http://www.astrobio.net/topic/solar-system/venus/a-magnetic-surprise-from-venus/#sthash.RywmmJWk.dpuf Accessed 15 Apr 2016.
  18. 18.
    Raines JM, DiBraccio GA, Cassidy TA, Delcourt DC, Fujimoto M, Jia X, et al. Plasma sources in planetary magnetospheres: Mercury. Space Sci Rev. 2015;192(1-4):91–144.CrossRefGoogle Scholar
  19. 19.
    Denevi BW, Robinson MS, Solomon SC, Murchie SL, Blewett DT, Domingue DL, et al. The evolution of Mercury’s crust: a global perspective from MESSENGER. Science. 2009;324(5927):613–8.PubMedGoogle Scholar
  20. 20.
    Neumann GA, Cavanaugh JF, Sun X, Mazarico EM, Smith DE, Zuber MT, et al. Bright and dark polar deposits on Mercury: evidence for surface volatiles. Science. 2013;339(6117):296–300.PubMedCrossRefGoogle Scholar
  21. 21.
    Nittler LR, Starr RD, Weider SZ, McCoy TJ, Boynton WV, Ebel DS, et al. The major-element composition of Mercury’s surface from MESSENGER x-ray spectrometry. Science. 2011;333(6051):1847–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Jessup KL, Marcq E, Mills F, Mahieux A, Limaye S, Wilson C, et al. Coordinated Hubble Space Telescope and Venus Express Observations of Venus' upper cloud deck. Icarus. 2015;258:309–36.CrossRefGoogle Scholar
  23. 23.
    Zhang TL, Lu QM, Baumjohann W, Russell CT, Fedorov A, Barabash S, et al. Magnetic reconnection in the near Venusian magnetotail. Science. 2012;336(6081):567–70.PubMedCrossRefGoogle Scholar
  24. 24.
    Fimmel RO, Colin L, Burgess E. Pioneer Venus (NASA SP-461). Washington, DC: U.S. Government Printing Office; 1983.Google Scholar
  25. 25.
    Basilevsky AT, Head JW. The surface of Venus. Rep Prog Phys. 2003;66(10):1699.CrossRefGoogle Scholar
  26. 26.
    Sagan CE. Pale blue dot: a vision of the human future in space. 1st ed. New York, NY: Random House; 1994.Google Scholar
  27. 27.
    Genda H. Origin of Earth’s oceans: an assessment of the total amount, history and supply of water. Geochem J. 2016;50(1):27–42.CrossRefGoogle Scholar
  28. 28.
    Genda H, Ikoma M. Origin of the ocean on the Earth: early evolution of water D/H in a hydrogen-rich atmosphere. Icarus. 2008;194(1):42–52.CrossRefGoogle Scholar
  29. 29.
    Schmandt B, Jacobsen SD, Becker TW, Liu Z, Dueker KG. Dehydration melting at the top of the lower mantle. Science. 2014;344(6189):1265–8.PubMedCrossRefGoogle Scholar
  30. 30.
    www.nasa.gov. Accessed 11 Jan 2016.
  31. 31.
    NASA Standard 3001-Volume 2 (section 6.2.1.2). https://standards.nasa.gov/standard/nasa/nasa-std-3001-vol-2.
  32. 32.
    Nicogossian AE, Huntoon CL, Pool S, editors. Space physiology and medicine. 3rd ed. Philadelphia, PA: Lea & Febiger; 1994.Google Scholar
  33. 33.
    Davis JR, Johnson R, Stepanek P, Fogarty JA, editors. Aerospace medicine. 4th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2008.Google Scholar
  34. 34.
    Rocket aerodynamics. NASA. https://spaceflightsystems.grc.nasa.gov/education/rocket/rktaero.html. Accessed 13 Apr 2016.
  35. 35.
    Jenkins DR. Dressing for altitude. US aviation pressure suits—Wiley Post to Space Shuttle. Washington, DC: NASA; 2012. https://www.nasa.gov/pdf/683215main_DressingAltitude-ebook.pdf.Google Scholar
  36. 36.
    Kittinger JW, Caidin M. The long, lonely leap. New York, NY: E. P. Dutton; 1961.Google Scholar
  37. 37.
    Space launch system. NASA. https://www.nasa.gov/sites/…/SLS-Fact-Sheet_aug2014-finalv3.pdf. Accessed 13 Apr 2016.
  38. 38.
    Mohler SR, Nicogossian AE, McCormack PD, Mohler Jr SR. Tumbling and spaceflight: the Gemini VIII experience. Aviat Space Environ Med. 1990;61(1):62–6.PubMedGoogle Scholar
  39. 39.
    Bailey JV. Radiation protection and instrumentation. In: Johnston RS, Berry CA, Dietlein LF, editors. SP-368 biomedical results of Apollo. Washington, DC: NASA; 1975.Google Scholar
  40. 40.
    Launius RD, Jenkins DR. Coming home: reentry and recovery from space, NASA SP-2011-593. Washington, DC: NASA Government Printing Office; 2012.Google Scholar
  41. 41.
    Stroud KJ, Klaus D. Spacecraft design considerations for piloted reentry and landing. Washington, DC: NASA; 2006. http://ntrs.nasa.gov/search.jsp?R=20080026216. Accessed Apr 15 2016.Google Scholar
  42. 42.
    Barratt MR, Pool SL. Principles of clinical medicine for space flight. New York, NY: Springer; 2008.CrossRefGoogle Scholar
  43. 43.
    The first spacewalk. BBC News. 2014. www.bbc.co.uk/news/special/2014/newsspec_9035/index.html. Accessed 13 Apr 2016.
  44. 44.
    Golding FC, Griffiths P, Hempleman HV, Paton WD, Walter DN. Decompression sickness during construction of the Dartford Tunnel. Br J Ind Med. 1960;17(7):167–80.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Beech M, Steel D. On the definition of the term meteoroid. Q J R Astr Soc. 1995;36(3):281–4.Google Scholar
  46. 46.
    Krot AN, Keil K, Scott ERD, Goodrich CA, Weisberg MK. 1.05 Classification of meteorites. In: Holland HD, Turekian KK, editors. Treatise on geochemistry. Amsterdam: Elsevier; 2007. p. 83–128.Google Scholar
  47. 47.
    Pizzarello S. The chemistry of life’s origin: a carbonaceous meteorite perspective. Acc Chem Res. 2006;39(4):231–2.PubMedCrossRefGoogle Scholar
  48. 48.
    Christiansen EL. Design and performance equations for advanced meteoroid and debris shields. Int J Impact Eng. 1993;14(1):145–56.CrossRefGoogle Scholar
  49. 49.
    Orbital debrisfrequently asked questions (2012) NASA orbital debris program office. http://orbitaldebris.jsc.nasa.gov/faqs.html. Accessed 15 Apr 2016.
  50. 50.
    Hartman WK. Moon origin: the impact-trigger hypothesis. In: Hartman WK, Phillips RJ, Taylor GJ, editors. Origin of the Moon. Houston, TX: Lunar and Planetary Institute; 1986. p. 579–608.Google Scholar
  51. 51.
    Dominei B. Without the Moon, would there be life on Earth? New York, NY: Scientific American; 2009. http://www.scientificamerican.com/article/moon-life-tides/.Google Scholar
  52. 52.
    Bibring JP, Chaumont J, Langevin Y, Maurette M, Burlingame AL, Wszolek PC. Simulation of lunar carbon chemistry: I. Solar wind contribution. Proceedings of fifth lunar conference. Geochim Cosmochim Acta Suppl. 1974;5(2):1747–62.Google Scholar
  53. 53.
    India Space Programs and exploration handbook. Volume 1 strategic information and development. International Business Publications USA. 2011. p. 122.Google Scholar
  54. 54.
    Ahmadli G, Schnabel R, Jokuszies A, Vogt PM, Zier U, Mirastschijski U. [Impact of Martian and Lunar dust simulants on cellular inflammation in human skin wounds ex vivo]. (Article in German). Handchir Mikrochir Plast Chir. 2014;46(6):361–8.PubMedCrossRefGoogle Scholar
  55. 55.
    James JT, Lam CW, Santana PA, Scully RR. Estimate of safe human exposure levels for lunar dust based on comparative benchmark dose modeling. Inhal Toxicol. 2013;25(5):243–56.PubMedCrossRefGoogle Scholar
  56. 56.
    Gaier JR. The effects of lunar dust on EVA systems during the Apollo missions. NASA/TM—2005-213610. http://history.nasa.gov/alsj/TM-2005-213610.pdf.
  57. 57.
    Johnson RD, Holbrow C. Space settlements: a design study (NASA SP-413). Washington, DC: U.S. Government Printing Office; 1977.Google Scholar
  58. 58.
    Mendell W. Lunar bases and space activities of the 21st century. Houston, TX: Lunar and Planetary Institute; 1985.Google Scholar
  59. 59.
    Arya SA, Rajasekhar RP, Thangjam G, Kumar A, Kiran Kumar AS. Detection of potential site for future human habitability on the Moon using Chandrayaan-1 data. Curr Sci. 2011;100(4):425.Google Scholar
  60. 60.
    Arnold WH, Bowen S, Fine K, Kaplan D, Kolm M, Kolm H, et al. Mass drivers: 1. Electrical design. In: Billingham J, Gilbreath W, editors. Space resources and space settlements (NASA SP-428). Washington, DC: US Government Printing Office; 1979. p. 87–100.Google Scholar
  61. 61.
    Duke MB, Mendell WW, Roberts BB. Toward a lunar base programme. Space Policy. 1985;1(1):49–68.CrossRefGoogle Scholar
  62. 62.
    Crawford IA, Anand M, Cockell CS, Falcke H, Green DA, Jaumann R, et al. Back to the Moon: the scientific rationale for resuming lunar surface exploration. Planet Sci. 2012;74(1):3–14.CrossRefGoogle Scholar
  63. 63.
    Pontin MK. Mining the Moon. MIT Technology Review. 23 Aug 2007. https://www.technologyreview.com/s/408558/mining-the-moon/.Google Scholar
  64. 64.
    Dong Y, Fang X, Brain DA, McFadden JP, Halekas JS, Connerney JE, et al. Strong plume fluxes at Mars observed by MAVEN: an important planetary ion escape channel. Geophys Res Lett. 2015;42(21):8942–50.CrossRefGoogle Scholar
  65. 65.
    Harada Y, Halekas JS, McFadden JP, Mitchell DL, Mazelle C, Connerney JEP, et al. Magnetic reconnection in the near-Mars magnetotail: MAVEN observations. Geophys Res Lett. 2015;42(21):8838–45.CrossRefGoogle Scholar
  66. 66.
    Lapen TJ, Righter M, Brandon AD, Debaille V, Beard BL, Shafer JT, et al. A younger age for ALH84001 and its geochemical link to shergottite sources in Mars. Science. 2010;328(5976):347–51.PubMedCrossRefGoogle Scholar
  67. 67.
    Davila AF, Willson D, Coates JD, McKay CP. Perchlorate on Mars: a chemical hazard and a resource for humans. Int J Astrobiol. 2013;12(4):321–5.CrossRefGoogle Scholar
  68. 68.
    Hickman JW, Wilhite A, Stanley D, Komar D. Optimization of the Mars ascent vehicle for human space exploration. J Spacecraft Rockets. 2010;47(2):361–70.CrossRefGoogle Scholar
  69. 69.
    Shoemaker EM, Helin EF. Populations of planet-crossing asteroids and the relation of Apollo objects to main-belt asteroids and comets. In: Delsemme AH, editor. Comets, asteroids, meteorites: interrelations, evolution, and origins. Toledo, OH: Toledo University Press; 1977. p. 297–300.Google Scholar
  70. 70.
    Gaffey MJ, Helin EF, O'Leary B. An assessment of near-Earth asteroid resources. In: Billingham J, Gilbreath W, editors. Space resources and space settlements (NASA SP-428). Washington, DC: U.S. Government Printing Office; 1979. p. 191–204.Google Scholar
  71. 71.
    Spohn T, Breuer D, Johnson T, editors. Encyclopedia of the solar system. 3rd ed. Amsterdam: Elsevier; 2014.Google Scholar
  72. 72.
    Ingersoll AP. Jupiter and Saturn. Scientific American. 1981;245:90–108.CrossRefGoogle Scholar
  73. 73.
    Morrison D, Samz J. Voyager to Jupiter (NASA SP-439). Washington, DC: U.S. Government Printing Office; 1980.Google Scholar
  74. 74.
    Wittenberg LJ, Santarius JF, Kulcinski GI. Lunar source of 3He for commercial fusion power. Fusion Technol. 1986;10(2):167–8.Google Scholar
  75. 75.
    Treiman AH, Bish DL, Vaniman DT, Chipera SJ, Blake DF, Ming DW, et al. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater). J Geophys Res Planets. 2016;121(1):75–106.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Mustard JF, Murchie SL, Pelkey SM, Ehlmann BL, Milliken RE, Grant JA, et al. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature. 2008;454(7202):305–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Hanson B. Minerals over Mars. Science. 2005;307(5715):1574.CrossRefGoogle Scholar
  78. 78.
    Carter J, Poulet F, Bibring J-P, Mangold N, Murchie S. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J Geophys Res Planets. 2013;118(4):831–58.CrossRefGoogle Scholar
  79. 79.
    Martín-Torres FJ, Zorzano MP, Valentín-Serrano P, Harri AM, Genzer M, Kemppinen O, et al. Transient liquid water and water activity at Gale crater on Mars. Nat Geosci. 2015;8:357–61.CrossRefGoogle Scholar
  80. 80.
    Lewis JS. Asteroid mining 101: wealth for the new space economy. Moffett Field, CA: Deep Space Industries; 2014.Google Scholar
  81. 81.
    Roush TL, Pollack JB, Witteborn FC, Bregman JD, Simpson JP. Ice and minerals on Callisto: a reassessment of the reflectance spectra. Icarus. 1990;86(2):355–82.CrossRefGoogle Scholar
  82. 82.
    McCord TB, Hansen GB, Hibbitts CA. Hydrated salt minerals on Ganymede’s surface: evidence of an ocean below. Science. 2001;292(5521):1523–5.PubMedCrossRefGoogle Scholar
  83. 83.
    McCord TB, Orlando TM, Teeter G, Hansen GB, Sieger MT, Petrik NG, et al. Thermal and radiation stability of the hydrated salt minerals epsomite, mirabilite, and natron under Europa environmental conditions. J Geophys Res Planets. 2001;106(E2):3311–9.CrossRefGoogle Scholar
  84. 84.
    Johnson RE, Leblanc F, Yakshinskiy BV, Madey TE. Energy distributions for desorption of sodium and potassium from ice: the Na/K ratio at Europa. Icarus. 2002;156(1):136–42.CrossRefGoogle Scholar
  85. 85.
    Brown RH, Clark RN, Buratti BJ, Cruikshank DP, Barnes JW, Mastrapa RM, et al. Composition and physical properties of Enceladus’ surface. Science. 2006;311(5766):1425–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Zolotov MY. An oceanic composition on early and today’s Enceladus. Geophys Res Lett. 2007;34(23), L23203.CrossRefGoogle Scholar
  87. 87.
    Cottini V, Nixon CA, Jennings DE, Anderson CM, Gorius N, Bjoraker GL, et al. Water vapor in Titan’s stratosphere from Cassini CIRS far-infrared spectra. Icarus. 2012;220(2):855–62.CrossRefGoogle Scholar
  88. 88.
    Choi CQ. The chance for life on Io. Astrobiology Magazine. 10 Jun 2010. www.astrobio.net/news-exclusive/the-chance-for-life-on-io/. Accessed 23 May 2016.
  89. 89.
    Smith BA. Voyager 1 finds answers, new riddles. Aviat Week Space Technol. 1980;133(2):16–20.Google Scholar
  90. 90.
    Morales-Juberías R, Sayanagi KM, Simon AA, Fletcher LN, Cosentino RG. Meandering shallow atmospheric jet as a model of Saturn’s north-polar hexagon. Astrophys J Lett. 2015;806(1):L18.CrossRefGoogle Scholar
  91. 91.
    Fuller J. Saturn ring seismology: evidence for stable stratification in the deep interior of Saturn. Icarus. 2014;242:283–96.CrossRefGoogle Scholar
  92. 92.
    Brilliantov N, Krapivsky P, Bodrova A, Spahn F, Hayakawa H, Stadnichuk V, et al. Size distribution of particles in Saturn’s rings from aggregation and fragmentation. PNAS. 2015;112(31):9536–41.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Stone EC, Miner ED. Voyager 1 encounter with the Saturnian system. Science. 1981;212(4491):159–63.PubMedCrossRefGoogle Scholar
  94. 94.
    Cook JC, Desch C, Steven J, Roush TL, Trujillo CA, Geballe TR. Near-infrared spectroscopy of Charon: possible evidence for cryovolcanism on Kuiper belt objects. Astrophys J. 2007;663(2):1406–19.CrossRefGoogle Scholar
  95. 95.
    Jewitt DC, Luu J. Crystalline water ice on the Kuiper belt object (50000) Quaoar. Nature. 2004;432(7018):731–3.PubMedCrossRefGoogle Scholar
  96. 96.
    Neveu M, Desch SJ, Shock EL, Glein CR. Prerequisites for explosive cryovolcanism on dwarf planet-class Kuiper belt objects. Icarus. 2015;246:48–64.CrossRefGoogle Scholar
  97. 97.
    Lopes RMC, Kirk RL, Mitchell KL, LeGall A, Barnes JW, Hayes A, et al. Cryovolcanism on Titan: new results from Cassini RADAR and VIMS. J Geophys Res Planets. 2013;118(3):416–35.CrossRefGoogle Scholar
  98. 98.
    Lunine JI, Hörst SM. Organic chemistry on the surface of Titan. Rend Fis Acc Lincei. 2011;22:183–9.CrossRefGoogle Scholar
  99. 99.
    Showalter MR, Lissauer JJ. The second ring-moon system of Uranus: discovery and dynamics. Science. 2006;311(5763):973–7.PubMedCrossRefGoogle Scholar
  100. 100.
    (No authors listed) Hubble discovers new rings and moons around Uranus. Spaceflight now. 2005. http://www.spaceflightnow.com/news/n0512/22uranus/. Accessed 19 May 2016.
  101. 101.
    Hesman BE, Davis GR, Matthews HE, Orton GS. The abundance profile of CO in Neptune’s atmosphere. Icarus. 2007;186(2):342–53.CrossRefGoogle Scholar
  102. 102.
    Masters A. Magnetic reconnection at Neptune’s magnetopause. J Geophys Res Space Phys. 2015;120(1):479–93.CrossRefGoogle Scholar
  103. 103.
    Holler BJ, Young LA, Grundy CB. On the surface composition of Triton’s southern latitudes. On the surface composition of Triton’s southern latitudes. Washington, DC: NASA; 2015. http://arxiv.org/pdf/1508.05924.pdf.Google Scholar
  104. 104.
    Agnor CB, Hamilton DP. Neptune’s capture of its moon Triton in a binary–planet gravitational encounter. Nature. 2006;441(7090):192–4.PubMedCrossRefGoogle Scholar
  105. 105.
    Moore JM, McKinnon WB, Spencer JR, Howard AD, Schenk PM, Beyer RA, et al. New Horizons Science Team. The geology of Pluto and Charon through the eyes of New Horizons. Science. 2016;351(6279):1284–93.PubMedCrossRefGoogle Scholar
  106. 106.
    Sagan C, Khare B. Tholins: organic chemistry of interstellar grains and gas. Nature. 1979;277(5692):102–7.CrossRefGoogle Scholar
  107. 107.
    NASA. Science papers reveal new aspects of Pluto and its Moons. 17 Mar 2016. http://www.nasa.gov/feature/science-papers-reveal-new-aspects-of-pluto-and-its-moons. Accessed 19 May 2016.
  108. 108.
    Jacob A. First images of possible clouds in Pluto’s skies. New Sci. 2016;229:3064–9.Google Scholar
  109. 109.
    Sicardy B, Talbot J, Meza E, Camargo JIB, Desmars J, Gault D, et al. Pluto’s atmosphere from the 2015 June 29 ground-based stellar occultation at the time of the New Horizon’s flyby. Astrophys J Lett. 2016;819(2):L38.CrossRefGoogle Scholar
  110. 110.
    Weaver HA, Buie MW, Buratti BJ, Grundy WM, Lauer TR, Olkin CB, et al. The small satellites of Pluto as observed by New Horizons. Science. 2016;351(6279):aae0030.PubMedCrossRefGoogle Scholar
  111. 111.
    Sheppard S, Trujillo C. A Sedna-like body with a perihelion of 80 astronomical units. Nature. 2014;507(7493):471–4.PubMedCrossRefGoogle Scholar
  112. 112.
    Beatty K. V774104: Solar system’s most distant object. Sky & Telescope. 21 Nov 2015. http://www.skyandtelescope.com/astronomy-news/v774104-most-distant-solar-system-object-11212015/. Accessed 14 Apr 2016.Google Scholar
  113. 113.
    Feng FB, Bailer-Jones CAL. Finding the imprints of stellar encounters in long-period comets. Month Notices R Astronom Soc. 2015;454(3):3267–76.CrossRefGoogle Scholar
  114. 114.
    Izidoro A, de Souza TK, Winter OC, Haghighipour N. A compound model for the origin of Earth’s water. Astrophys J. 2013;767(1):54–74.CrossRefGoogle Scholar
  115. 115.
    Meierhenrich UJ, Munoz Caro GM, Barbier B, Brack A, Thiemann W, Goesmann F, et al. Amino acid formation on interstellar dust particles EGS – AGU – EUG joint assembly, abstracts from the meeting held in Nice, France, 6–11 Apr 2003, abstract #5100.Google Scholar
  116. 116.
    (No authors listed) Amino acids? Interstellar molecules are branching out. Source: Max-Planck-Gesellschaft. Science Daily, 25 Sept 2014. https://www.sciencedaily.com/releases/2014/09/140925141222.htm
  117. 117.
    David L. Moon microbe mystery finally solved. Space.com. 2 May 2011. http://www.space.com/11536-moon-microbe-mystery-solved-apollo-12.html.
  118. 118.
    Sagan D. The Goldilocks paradox: thermodynamics and Gaia. In: Abstracts guide, 2nd Chapman conference on the Gaia Hypothesis. American Geophysical Union, Valencia, Spain, 19–23 Jun 2000, American Geophysical Union, Washington, DC.Google Scholar
  119. 119.
    Joseph RG, Schield J, Wikramamasinghe C. The evolution of life from space: astrobiology, viruses, microbiology, genetics. New York, NY: Cosmology Science Publishers; 2013.Google Scholar
  120. 120.
    Wickramasinghe C, editor. Biological big bang. New York, NY: Cosmology Science Publishers; 2012. ASIN: B007BGLEOC.Google Scholar
  121. 121.
    Wickramasinghe C, Vaidya PG. In: Joseph R, editors. Diseases from space: astrobiology, viruses, microbiology, meteors, comets, evolution. Cosmology Science Publishers. 2014. ISBN/10: 1938024184.Google Scholar
  122. 122.
    Bada JL, Lazcano A. Stanley Miller’s 70th birthday. Origin Life Evol Biosphere. August 2000;30(2):107–12.Google Scholar
  123. 123.
    Kaufman M. First contact: scientific breakthroughs in the hunt for life beyond Earth. New York, NY: Simon & Schuster; 2012.Google Scholar
  124. 124.
    Leuko S, Rettberg P, Pontifex AL, Burns BP. On the response of halophilic archaea to space conditions. Life. 2014;4(1):66–76.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Billingham JS, Garber J, Dick SJ, Denning KE, Wason PK, Raybeck D, et al. Archeology, anthropology and interstellar communications, NASA SP 2013-4413. Washington, DC: NASA; 2014.Google Scholar
  126. 126.
    NASA’s Journey to Mars. Pioneering next steps in space exploration. http://www.nasa.gov/sites/default/files/atoms/files/journey-to-mars-next-steps-20151008_508.pdf. Accessed 15 Apr 2016.
  127. 127.
    NASA. The vision for space exploration. www.nasa.gov/externalflash/Vision/main.html. Accessed 15 Apr 2016.
  128. 128.
    Rapp D. Human missions to Mars: enabling technologies for exploring the red planet. Chichester: Springer-Praxis Books; 2008.Google Scholar
  129. 129.
    Wooster PD, Braun RD, Ahn J, Putnam ZR. Trajectory options for human Mars missions. www.ssdl.gatech.edu/papers/conferencePapers/AIAA-2006-6308.pdf. Accessed 15 Apr 2016.
  130. 130.
    Pellis NR. Ethics in space medicine: holocaust Beginnings, the present, and the future. In: Rubenfeld S, Benedict S, editors. Human subjects research after the Holocaust. New York, NY: Springer International Publishing; 2014. p. 217–24.Google Scholar
  131. 131.
    Ball JR, Evans Jr CH, editors. Safe passage: astronaut care for exploration missions. Washington, DC: National Academy Press; 2001.Google Scholar
  132. 132.
    Stough R, Nicogossian A, Lugg DJ, Zimmerman T, Mutone-Smith D, et al. Medical and health policy formulation for human exploration of the Solar System, Part 1: Ethical considerations in scarce resource allocation for health and medical systems development and operations report. Center for the study of international medical policies and practices, George Mason University, 30 Mar 2006. www.csimpp.gmu.edu/pdfs/reports/FinalReportPartI.pdf.
  133. 133.
    Kahn J, McCoy MA (eds). Health standards for long duration and exploration spaceflight: ethics principles, responsibilities, and decision framework. Institute of Medicine of the National Academies. Report Brief: Apr 2014. http://www.nationalacademies.org/hmd/~/media/Files/Report%20Files/2014/Long-Duration-Spaceflight/Long-Duration-Spaceflight-RB.pdf.Google Scholar
  134. 134.
    NASA Office of Inspector General/Office of Audits. NASA’s efforts to manage health and human performance risks for space exploration. Report No. IG-16-003. 19 Oct 2015. https://oig.nasa.gov/audits/reports/FY16/IG-16-003.pdf. Accessed 15 Apr 2016.
  135. 135.
    Mand C, Gillam L, Delatycki MB, Duncan RE. Predictive genetic testing in minors for late-onset conditions: a chronological and analytical review of the ethical arguments. J Med Ethics. 2012;38(9):519–24.PubMedCrossRefGoogle Scholar
  136. 136.
    Brandt-Rauf PW, Brandt-Rauf SI. Genetic testing in the workplace: ethical, legal, and social implications. Ann Rev Public Health. 2004;25:139–53.CrossRefGoogle Scholar
  137. 137.
    Brandt-Rauf P, Borak J, Deubner D. ACOEM Task Force on Genetic Screening. Genetic screening in the workplace. J Occup Environ Med. 2015;57(3):e17–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Galliott J, editor. Commercial space exploration: ethics, policy and governance (emerging technologies, ethics and international affairs). Farnham: Ashgate Publishing Co; 2015.Google Scholar
  139. 139.
    State support for commercial space activities. Federal Aviation Administration/Commercial Space Transportation. https://www.faa.gov/about/office_org/headquarters_offices/ast/media/State%20Support%20for%20Commercial%20Space%20Activities.pdf. Accessed 15 Apr 2016.
  140. 140.
    Virginia Space Flight Liability and Immunity Act. 2007. https://leg1.state.va.us/cgi-bin/legp504.exe?071+ful+CHAP0893+pdf. Accessed 15 Apr 2016.
  141. 141.
    United Nations Office for Outer Space Affairs. Principles governing the activities of states in the exploration and use of outer space, including the moon and other celestial bodies. http://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/introouterspacetreaty.html. Accessed 15 Apr 2016.
  142. 142.
    Lietchy D. Solari special report: Issues and framework of United States law concerning outer space. 30 Oct 2015. https://solari.com/blog/solari-special-report-issues-and-framework-of-united-states-law-concerning-outer-space/. Accessed 15 Apr 2016.
  143. 143.
    Christoff J. UN wants to regulate space tourism: destinations pulse for March 16, 2016. Travel Pulse. www.travelpulse.com/news/destinations/un-wants-to-regulate-space-tourism-destinations-pulse-for-march-16-2016 Accessed 15 Apr 2016..
  144. 144.
    COSPAR Planetary Protection Policy (20 October 2002; As amended to 24 March 2011) Approved by the Bureau and Council, World Space Council, Houston, Texas, USA. Prepared by the COSPAR/IAU workshop on planetary protection, 4/02, with updates 10/02; 1/08, 4/09, 12/09, 3/11. http://science.nasa.gov/media/medialibrary/2012/05/04/COSPAR_Planetary_Protection_Policy_v3-24-11.pdf.
  145. 145.
    NASA, Office of Planetary Protection. planetaryprotection.nasa.gov/documents. Accessed 15 Apr 2016.Google Scholar
  146. 146.
    Meltzer M. When biospheres collide: a history of NASA’s planetary protection programs. NASA SP 2011-4234. 2011. https://www.nasa.gov/pdf/607072main_WhenBiospheresCollide-ebook.pdf
  147. 147.
    Race MS, Randolph RO. The need for operating guidelines and a decision making framework applicable to the discovery of non-intelligent extraterrestrial Life. Adv Space Res. 2002;30(6):1583–91.CrossRefGoogle Scholar
  148. 148.
    Pass J. Medical astrosociology: ethical dilemmas in space environments. AIAA space 2009 conference & exposition, 14–17 Sept 2009, Pasadena, CA. www.enu.kz/repository/2009/AIAA-2009-6539.pdf. Accessed 15 Apr 2016
  149. 149.
    Gellman RM. Divided loyalties: a physician’s responsibilities in an information age. Soc Sci Med. 1986;23(8):817–26.PubMedCrossRefGoogle Scholar
  150. 150.
    Howe EG. Ethical issues regarding mixed agency of military physicians. Soc Sci Med. 1986;23(8):803–15.PubMedCrossRefGoogle Scholar
  151. 151.
    United States Department of Justice. Privacy Act of 1974. https://www.justice.gov/opcl/privacy-act-1974. Accessed 15 Apr 2016.
  152. 152.

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  1. 1.Distinguished Research Professor, Schar School of Policy and GovernmentGeorge Mason UniversityArlingtonUSA

Personalised recommendations