Skip to main content

Microencapsulation Technologies

  • Chapter
  • First Online:
Engineering Foods for Bioactives Stability and Delivery

Part of the book series: Food Engineering Series ((FSES))

Abstract

Microencapsulation involves the packaging of a gaseous, liquid or solid substance (i.e., the core or active) within a secondary material in small capsules in the range of about 0.5−2000 μm. Microencapsulation protects and stabilizes the encapsulated substance until it is released at a desired site and time by conditions that trigger its release from the microcapsule. By appropriate formulation and processing, microencapsulated ingredients may be designed to achieve the desired properties that make them superior to the neat bioactive core in the intended application. The design of a microencapsulated ingredient requires a multidisciplinary approach that includes considering the physico-chemical properties of the core and the materials to be used as encapsulants, the design and formulation of the microencapsulated ingredient, and the choice of technology for processing the microcapsules. The technologies available for the microencapsulation of various food bioactives and the properties of selected microencapsulated ingredients are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas S, Wei CD, Hayat K, Xiaoming Z (2012) Ascorbic acid: microencapsulation techniques and trends—a review. Food Rev Int 28:343–374

    Article  CAS  Google Scholar 

  • Akhtar M, Murray BS, Afeisume EI, Khew SH (2013) Encapsulation of flavonoid in multiple emulsion using spinning disc reactor technology. Food Hydrocol 1–6. doi:10.1016/j.foodhyd.2012.12.025

  • Anton N, Benoit JP, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsion templates: a review. J Controlled Release 128:185–199

    Article  CAS  Google Scholar 

  • Augustin MA, Hemar Y (2009) Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev 38:902–912

    Article  CAS  Google Scholar 

  • Augustin MA, Sanguansri L (2012) Challenges in developing delivery systems for food additives, nutraceuticals and dietary supplements. In: Garti N, McClements DJ (eds) Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead Publishing Series in Food Science, Technology and Nutrition, Number 239, Woodhead Publishing, Oxford, pp 19–48

    Google Scholar 

  • Augustin MA, Sanguansri L, Bode O (2006) Maillard reaction products as encapsulants for fish oil powders. J Food Sci 71(2):E25–E32

    Article  CAS  Google Scholar 

  • Barrow CJ, Nolan C, Jin YL (2007) Stabilization of highly unsaturated fatty acids and delivery into foods. Lipid Technol 19:108–111

    Article  CAS  Google Scholar 

  • Bhandari BR, D’Arcy BD, Padukka I (1999) Encapsulation of lemon oil by paste method using b-cyclodextrin: encapsulation efficiency and profile of oil volatiles. J Agric Food Chem 47:5194–5197

    Article  CAS  Google Scholar 

  • Borodi G, Kacso I, Fărcas SI, Bratu I (2009) Inclusion compound of vitamin B6 in b-CD. Physico-chemical and structural investigations. J Phys Conf Ser 182 012003. doi:10.1088/1742-6596/182/1/012003

  • Brennan MA, Derbyshire E, Tiwari BK, Brennan CS (2013) Ready-to-eat snack products: the role of extrusion technology in developing consumer acceptable and nutritious snacks. Int J Food Sci Technol 48:893–902

    Article  CAS  Google Scholar 

  • Chang YC, Chen DGH (2005) Adsorption kinetics and thermodynamics of acid dyes on a carboxy methylated chitosan-conjugated magnetic nano-adsorbent. Macromol Biosci 5:254–261

    Article  CAS  Google Scholar 

  • Chaundy FK, Bower DK, Killbride TK Jr (1992) Process for incorporating a material in a crosslinked gelatin and product there from, US Patent, US 5153177

    Google Scholar 

  • Chávez BE, Ledeboer AM (2007) Drying of probiotics: optimization of formulation and process to enhance storage survival. Drying Technol 25:1193–1201

    Article  Google Scholar 

  • Chen Y, Liu Y (2010) Cyclodextrin-based bioactive supramolecular assemblies. Chem Soc Rev 39:495–505

    Article  CAS  Google Scholar 

  • Chiou D, Langrish TAG (2007) Development and characterization of novel nutraceuticals with spray drying technology. J Food Eng 82:84–91

    Article  Google Scholar 

  • Cho YH, Shim HK, Park J (2003) Encapsulation of fish oil by an enzymatic gelation process using transglutaminase cross-linked proteins. J Food Sci 68:2717

    Article  CAS  Google Scholar 

  • Cohen R, Schwartz B, Peri I, Shimoni E (2011) Improving bioavailability and stability of genistein by complexation with high-amylose corn starch. J Agric Food Chem 59(14):7932–7938

    Google Scholar 

  • Comin LM, Temelli F, Saldana MDA (2012) Barley beta-glucan aerogels as a carrier for flax oil via supercritical CO2. J Food Eng 111:626–631

    Article  Google Scholar 

  • de Ciriano MG, Rehecho S, Calvo MI, Cavero RY, Navarro I, Astiasarán I, Ansorena D (2010) Effect of lyophilized water extracts of Melissa officinalis on the stability of algae and linseed oil-in-water emulsion to be used as a functional ingredient in meat products. Meat Sci 85(2):373–377

    Article  Google Scholar 

  • De Kruif CG, Weinbreck F, De Vries R (2004) Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid Interface Sci 9:340–349

    Article  Google Scholar 

  • De Vos P, Faas MM, Spasojevic M, Sikkema J (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20:292–302

    Article  Google Scholar 

  • Del Gaudio P, Colombo P, Colombo G, Russo P, Sonvico F (2005) Mechanisms of formation and disintegration of alginate beads obtained by prilling. Int J Pharm 302:1–9

    Article  Google Scholar 

  • Desorby SA, Netto FM, Labuza TP (1997) Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. J Food Sci 62:1158–1162

    Article  Google Scholar 

  • Devi N, Kakati DK (2013) Smart porous microparticles based on gelatin/sodium alginate polyelectrolyte complex. J Food Eng 117(2):193–204

    Article  CAS  Google Scholar 

  • Dickinson E (2011) Double emulsions stabilized by food biopolymers. Food Biophys 6(1):1–11

    Article  Google Scholar 

  • Djedaini PF, Perly B, Dalbiez J, Michon Q, Rousseau B, Barrier P (2000) Aqueous solution of polyunsaturated fatty acids or derivatives, solubilized and stabilised by formation of complex with gamma-cyclodextrin, used in food, cosmetic or pharmaceutical compositions, WO200053637-A1

    Google Scholar 

  • Dziezak JD (1988) Microencapsulation and encapsulated ingredients. Food Technol 42(4):136–151

    CAS  Google Scholar 

  • Emin MA, Mayer-Miebach E, Schuchmann HP (2012) Retention of β-carotene as a model substance for lipophilic phytochemicals during extrusion cooking. LWT-Food Sci Technol 48:302–307

    Article  CAS  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6:628–647

    Article  CAS  Google Scholar 

  • Fang Z, Bhandari B (2010) Encapsulation of polyphenols a review. Trends Food Sci Technol 21:510–523

    Article  CAS  Google Scholar 

  • Farhang B, Kakuda Y, Corredig M (2012) Encapsulation of ascorbic acid in liposomes prepared with milk fat globule membrane-derived phospholipid. Dairy Sci Technol 92(4):353–366

    Article  CAS  Google Scholar 

  • Garti N, McClements DJ (eds) (2012) Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead Publishing Series in Food Science, Technology and Nutrition, Number 239, Woodhead Publishing, Oxford 612 p

    Google Scholar 

  • Glatter O, Kulkarni C, Chemelli A (2010) New hierarchically organized systems for delivery. Sci Pharm 78:558. doi:10.3797/scipharm.cespt.8.LDD04

    Article  Google Scholar 

  • Gonnet M, Lethuaut L, Boury F (2010) New trends in encapsulation of liposoluble vitamins. J Controlled Release 146:276–290

    Article  CAS  Google Scholar 

  • Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15:330–347

    Article  CAS  Google Scholar 

  • Gouin S (2005) Fluidized bed microencapsulation: thermodynamics of aqueous and ethanolic coating processes. J Microencapsul 22:829–839

    Article  CAS  Google Scholar 

  • Gu YS, Decker EA, McClements DJ (2007a) Application of multi-component biopolymer layers to improve the freeze–thaw stability of oil-in-water emulsions: b-Lactoglobulin–i-carrageenan–gelatin. J Food Eng 80:1246–1254

    Article  CAS  Google Scholar 

  • Gu YS, Decker EA, McClements DJ (2007b) Formation of colloidosomes by adsorption of small charged oil droplets onto the surface of large oppositely charged oil droplets. Food Hydrocolloids 21(4):516–526

    Article  CAS  Google Scholar 

  • Guillot S, Tomsic M, Sagalowicz L, Leser ME, Glatter O (2009) Internally self-assembled particles entrapped in thermoreversible hydrogels. J Colloid Interface Sci 330:175–179

    Article  CAS  Google Scholar 

  • Guitierrez JM, Gonzalez C, Maestro A, Sole I, Pey CM, Nolla J (2003) Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13:245–251

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Haynes LC, Levine H, Finley JW (1991) Liposome composition for the stabilization of oxidisable substances. US 5015483

    Google Scholar 

  • Huq T, Khan A, Khan RA, Riedl B, Lacroix M (2013) Encapsulation of probiotic bacteria in biopolymeric system. Crit Rev Food Sci Nutr 53(9):909–916

    Article  CAS  Google Scholar 

  • Jones OG, McClements DJ (2008) Stability of biopolymer particles formed by heat treatment of β-lactoglobulin/beet pectin electrostatic complexes. Food Biophys 3:191–197

    Article  Google Scholar 

  • Jones OG, McClements DJ (2010) Functional biopolymeric particles: design, fabrication, and applications. Comp Rev Food Sci Food Saf 9:374–397

    Article  CAS  Google Scholar 

  • Jones OG, McClements DJ (2011) Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein–polysaccharide complexes. Adv Colloid Interface Sci 167:49–62

    Article  CAS  Google Scholar 

  • Kasper JC, Friess W (2011) The freezing step in lyophilization: physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur J Pharm Biopharm 78(2):248–263

    Article  CAS  Google Scholar 

  • Killeit U (1994) Vitamin retention in extrusion cooking. Food Chem 49:149–155

    Article  Google Scholar 

  • Kim SJ, Park GB, Kang CB, Park SD, Jung MY, Kim JO, Ha YL (2000) Improvement of oxidative stability of conjugated linoleic acid (CLA) by microencapsulation in cyclodextrins. J Agric Food Chem 48:3922

    Article  CAS  Google Scholar 

  • Kuang SS, Oliveira JC, Crean AM (2010) Microencapsulation as a toll for incorporating bioactive ingredients into food. Crit Rev in Food Sci Nutr 50:951–968

    Article  CAS  Google Scholar 

  • Labell F (2002) New, precise methods for encapsulation. Prepared Foods 55–56

    Google Scholar 

  • Lamprecht A, Schafer U, Lehr CM (2001) Influences of process parameters on preparation of microparticle used as a carrier system for ω-3 unsaturated fatty acid ethyl esters used in supplementary nutrition. J Microencapsul 18:347

    Article  CAS  Google Scholar 

  • Lesmes U, Barchechath J, Shimoni E (2008) Continuous dual feed homogenization for the production of starch inclusion complexes for controlled release of nutrients. Innovative Food Sci & Emerging Technol 9(4):507–515

    Google Scholar 

  • Levića S, Raca V, Manojlovićb V, Rakića V, Bugarskib B, Flockc T, Krzyczmonikd KE, Nedovića V (2011) Limonene encapsulation in alginate/poly (vinyl alcohol). Procedia Food Sci 1:1816–1821

    Article  Google Scholar 

  • Liu C (2013) Liposomes as food ingredients and nutraceutical delivery systems. Agro FOOD Ind Hi-Tech 24(2):68–71

    Google Scholar 

  • Maherani B, Arab-Tehrany E, Mozafari MR, Gaiani C, Linder M (2011) Liposomes: a review of manufacturing techniques and targeting strategies. Curr Nanosci 7:436–452

    Article  CAS  Google Scholar 

  • Markman G, Livney YD (2012) Maillard-conjugate based core-shell co-assemblies for nanoencapsulation of hydrophobic nutraceuticals in clear beverages. Food Funct 3(3):262–270

    Google Scholar 

  • Mason NS, Sparks RE (1987) Method for coating particles or liquid droplets. US4675140 A

    Google Scholar 

  • McClements DJ, Li Y (2010) Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv Colloid Interface Sci 159:213–228

    Article  CAS  Google Scholar 

  • McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51(4):285–330

    Article  CAS  Google Scholar 

  • McClements DJ, Decker EA, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49(6):577–606

    Article  CAS  Google Scholar 

  • Mohan A, McClements DJ, Udenigwe CC (2016) Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: influence of peptide molecular weight. Food Chem 213:143–148

    Google Scholar 

  • Murugesan R, Orsat V (2012) Spray drying for the production of nutraceutical ingredients—a review. Food Bioprocess Technol 5:3–14

    Article  Google Scholar 

  • Nazzaro F, Orlando P, Fratianni F, Coppola R (2012) Microencapsulation in food science and biotechnology. Curr Opin Biotechnol 23:182–186

    Article  CAS  Google Scholar 

  • Nii T, Takamura A, Mohri K, Ishii F (2003) Factors affecting physicochemical properties of liposomes prepared with hydrogenated purified egg yolk lecithins by the microencapsulation vesicle method. Colloids Surf B-Interfaces 27(4):323–332

    Google Scholar 

  • Okuro PK, de Matos F, Favaro-Trindada CS (2013) Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technol Biotechnol 51(2):171–182 Special Issue

    CAS  Google Scholar 

  • Pandya Y, Knorr D (1991) Diffusion characteristics and properties of chitosan coacervate capsules. Process Biochem 26:75–81

    Article  CAS  Google Scholar 

  • Patel AR, Heussen PCM, Hazekamp J, Drost E, Velikov KP (2012) Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium. Food Chem 133:423–429

    Article  CAS  Google Scholar 

  • Perrechil FA, Cunha RL (2013) Stabilization of multilayered emulsions by sodium caseinate and κ-carrageenan. Food Hydrocol 30:606–613

    Article  CAS  Google Scholar 

  • Poyato C, Navarro-Blasco I, Calvo MI, Cavero RY, Astiasarán I, Ansorena D (2013) Oxidative stability of O/W and W/O/W emulsions: effect of lipid composition and antioxidant polarity. Food Res Int 51:132–140

    Article  CAS  Google Scholar 

  • Putman M (1986) Vitamin stability in livestock feed production. Feed Compounder 30–35

    Google Scholar 

  • Quek SY, Chok NK, Swedlund P (2007) The physico-chemical properties of spray-dried watermelon powders. Chem Eng Processing 46:386–392

    Article  CAS  Google Scholar 

  • Renard D, Robert P, Lavenant L, Melcion D, Popineau Y, Guéguen J, Duclairoir C, Nakache E, Sanchez C, Schmitt C (2002) Biopolymeric colloidal carriers for encapsulation or controlled release applications. Int J Pharm 242:163–166

    Article  CAS  Google Scholar 

  • Ritzoulis C, Scoutaris N, Papademetriou K, Stavroulias S, Panayiotou C (2005) Milk protein-based emulsion gels for bone tissue engineering. Food Hydrocolloids 19:575–581

    Article  CAS  Google Scholar 

  • Santos DT, Meireles MAA (2013) Micronization and encapsulation of functional pigments using supercritical carbon dioxide. J Food Process Eng 36:36–49

    Article  CAS  Google Scholar 

  • Schmitt C, Turgeon SL (2011) Protein/polysaccharide complexes and coacervates in food systems. Adv Colloid Interface Sci 167:63–70

    Article  CAS  Google Scholar 

  • Schmitt C, Sanchez C, Desobry-Banon S, Hardy J (1998) Structure and technofunctional properties of protein-polysaccharide complexes: a review. Crit Rev Food Sci Nutr 38(8):689–753

    Article  CAS  Google Scholar 

  • Senuma Y, Lowe C, Zweifel Y, Hilborn JG, Marison I (2000) Alginate hydrogel microspheres and microcapsules prepared by spinning disk atomization. Biotechnol Bioeng 67:616–622

    Article  CAS  Google Scholar 

  • Shefer A, Shefer S (2003) Novel encapsulation system provides controlled release of ingredient. Food Technol 57(11):40

    CAS  Google Scholar 

  • Shu B, Yu W, Zhao Y, Liu X (2006) Study on microencapsulation of lycopene by spray-drying. J Food Eng 76:664–669

    Article  CAS  Google Scholar 

  • Shutava TG, Balkundi SS, Lvov YM (2009) (_)-Epigallocatechin gallate/gelatin layer-by-layer assembled films and microcapsules. J Colloid Interface Sci 330:276–283

    Article  CAS  Google Scholar 

  • Silva J, Freixo R, Gibbs P, Texiera P (2011) Spray-drying for the production of dried cultures. Int J Dairy Technol 64:331–335

    Article  Google Scholar 

  • Sleigh S, Barton C (2011) Innovations in delivery methods for nutraceutical food and drinks. Business Insights Ltd, BI00047–001

    Google Scholar 

  • Soeda T, Nakanishi M, Inoue T (2003) Edible microcapsules containing e.g. vitamin(s), fats and oils for addition to dried food such as soup, chewing gum and pouch-packed foods comprise edible hydrophobic core and capsule wall containing transglutaminase as crosslinking agent. US6592916-B2

    Google Scholar 

  • Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ (2005) Nano-emulsions. Curr Opin Colloid Interface Sci 10:102–110

    Article  CAS  Google Scholar 

  • Sparks RE, Jacobs IC, Mason NS (1995) Centrifugal suspension-separation for coating food ingredients. In: Risch SJ, Reineccius GA (eds) Encapsulation and controlled release of food ingredients. American Chemical Society, Washington, DC, pp 87–95

    Chapter  Google Scholar 

  • Takahashi M, Inafuku K, Miyagi T, Oku H, Wada K, Imura T, Kitamoto D (2006) Efficient preparation of liposomes encapsulating food materials using lecithins by a mechanochemical method. J Oleo Sci 56:35–42

    Article  Google Scholar 

  • Takahashi M, Uechi S, Takara K, Asikin Y, Wada K (2009) Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-capsulated curcumin. J Agric Food Chem 57:9141–9146

    Article  CAS  Google Scholar 

  • Taylor TM, Davidson PM (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45:587–605

    Article  CAS  Google Scholar 

  • Tomsic M, Guillot S, Sagalowicz L, Leser ME, Glatter O (2009) Internally self-assembled thermoreversible gelling emulsions: ISAsomes in methylcellulose, K-carrageenan, and mixed hydrogels. Langmuir 25(16):9525–9534

    Article  CAS  Google Scholar 

  • Ubbink J, Krueger J (2006) Physical approaches for the delivery of active ingredients in foods. Trends Food Sci Technol 17:244–254

    Article  CAS  Google Scholar 

  • Weder HG, Weder MA, Andreas S (2000) Use of “nanofood” in foodstuff final products for humans and animals. CA 02331661

    Google Scholar 

  • Weiss J, Takhistov P, McClements JD (2006) Functional materials in food nanotechnology. J Food Sci 71(9):R107–R116

    Article  CAS  Google Scholar 

  • Wooster TJ, Golding M, Sanguansri P (2008) Impact of oil type on nanoemulsion formation and ostwald ripening stability. Langmuir 24(22):12758–12765

    Article  CAS  Google Scholar 

  • Xia F, Hi DD, Jin HY, Zhao YP, Liang JM (2012) Preparation of lutein proliposomes by supercritical anti-solvent technique. Food Hydrocolloids 26:456–463

    Article  CAS  Google Scholar 

  • Yao MF, Xaio H, McClements DJ (2014) Delivery of lipophilic bioactives: assembly, disassembly, and reassembly of lipid nanoparticles. Ann Rev Food Sci Techol 5:53–81

    Google Scholar 

  • Yilmaz G, Jongboom ROJ, Feil H, Hennink WE (2001) Encapsulation of sunflower oil in starch matrices via extrusion: effect of the interfacial properties and processing conditions on the formation of dispersed phase morphologies. Carbohydr Polym 45:403

    Article  CAS  Google Scholar 

  • Ying DY, Phoon MC, Sanguansri L, Weerakkody R, Burgar I, Augustin MA (2010) Microencapsulated Lactobacillus rhamnosus GG powders: relationship of powder physical properties to probiotic survival during storage. J Food Sci 75(9):E588

    Article  CAS  Google Scholar 

  • Yoshii H, Furuta T, Kawasaki K, Hirano H, Funatsa Y, Toyomi A, Nakayama S (1997) Oxidative stability of powdery tridocosahexanoin included in cyclodextrin and its application to fish meal paste. Biosci Biotechnol Biochem 61:1376

    Article  CAS  Google Scholar 

  • Yu H, Huang Q (2010) Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch. Food Chem 119:669–674

    Article  CAS  Google Scholar 

  • Zabar S, Lesmes U, Katz I, Shimoni E, Bianco-Peled, H (2009) Studying different dimensions of amylose-long chain fatt acid complexes: molecular, nano and micro level characteristics. Food Hydrocolloids 23(7):1918–1925

    Google Scholar 

  • Zeeb B, Gibis M, Fischer L, Weiss J (2012) Crosslinking of interfacial layers in multilayered oil-in-water emulsions using laccase: characterization and pH-stability. Food Hydrocolloids 27:126–136

    Article  CAS  Google Scholar 

  • Zou LQ, Zheng BJ, Zhang RJ, Zhang ZP, Liu W, Liu CM, Xiao H, McClements DJ (2016) Food-grade nanoparticles for encapsulation, protection and delivery of curcumin: comparison of lipid, protein, and phospholipid nanoparticles under simulated gastrointestinal conditions. RSC Advances 6(4):3126–3136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Ann Augustin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Augustin, M.A., Sanguansri, L. (2017). Microencapsulation Technologies. In: Roos, Y., Livney, Y. (eds) Engineering Foods for Bioactives Stability and Delivery. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6595-3_4

Download citation

Publish with us

Policies and ethics