Overview of Normal Sleep



In this chapter, a brief overview of normal sleep is given for a clearer understanding of subsequent chapters dealing with basic science, technical considerations, and clinical aspects. After a short historical perspective of sleep and sleep medicine, the chapter succinctly summarizes the definition of sleep, sleep architecture, the ontogeny and phylogeny of sleep, sleep habits and need, dreams, circadian sleep–wake rhythm, chronobiology, cytokines, immune system and sleep factors, and ending with theories of the functions of sleep.


Sleep architecture Ontogeny Phylogeny Circadian rhythm Cytokines The glymphatic system 


  1. 1.
    Borbely A (1984) Secrets of sleep. Basic Books, New YorkGoogle Scholar
  2. 2.
    Wolpert S (1982) A new history of India. Oxford University Press, New York, p 48Google Scholar
  3. 3.
    Mazumda S (1979) Ramayana. Deva Shahittya Kutir, CalcuttaGoogle Scholar
  4. 4.
    Parkes JD (1985) Sleep and its disorders. Saunders, Philadelphia, p 314Google Scholar
  5. 5.
    Thorpy MJ (2011) History of sleep medicine. In: Montagna P, Chokroverty S (eds) Sleep disorders. Handbook of clinical neurology, vol 98, pp 3–25Google Scholar
  6. 6.
    Ishimori K (1909) True causes of sleep—a hypnogenic substance as evidenced in the brain of sleep-deprived animals. Igakkai Zasshi (Tokyo) 23:429Google Scholar
  7. 7.
    Legendre R, Pieron H (1913) Recherches sur le besoin de sommeil consecutif a une veille prolongée. Z Allerg Physiol 14:235Google Scholar
  8. 8.
    Caton R (1875) The electric currents of the brain. Br Med J 2:278Google Scholar
  9. 9.
    Berger H (1929) Uber das Elektroenkephalogramm des Menschen. Arch Psychiatr Nervenkrankheiten 87:527CrossRefGoogle Scholar
  10. 10.
    Loomis AL, Harvey EN, Hobart GA (1937) Cerebral states during sleep, as studied by human brain potentials. J Exp Physiol 21:127Google Scholar
  11. 11.
    Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility and concomitant phenomena during sleep. Science 118:273PubMedCrossRefGoogle Scholar
  12. 12.
    Jouvet M, Michel F (1959) Correlations electromyographique du sommeil chez le chat decortique et mesencephalique chronique. C R Seances Soc Biol Fil (Paris) 153:422Google Scholar
  13. 13.
    Berger RJ (1961) Tonus of extrinsic laryngeal muscles during sleep and dreaming. Science 840:134Google Scholar
  14. 14.
    Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring systems for sleep stages of human subjects. UCLA Brain Information Service/Brain Research Institute, Los AngelesGoogle Scholar
  15. 15.
    American Academy of Sleep Medicine (2007) The AASM manual 2007 for the scoring of sleep and associated events: rules, terminology and technical specifications. American Academy of Sleep Medicine, WestchesterGoogle Scholar
  16. 16.
    Gastaut H, Tassinari C, Duron B (1965) Étude polygraphique des manifestations épisodiques (hypniques et respiratoires) du syndrome de Pickwick. Rev Neurol 112:568PubMedGoogle Scholar
  17. 17.
    Jung R, Kuhlo W (1965) Neurophysiological studies of abnormal night sleep and the Pickwickian syndrome. Prog Brain Res 18:140PubMedCrossRefGoogle Scholar
  18. 18.
    Lugaresi E, Tassinari CA, Coccagna et al (1965) Rilievi poligrafici sui fenomeni motori della sindrome delle gambe senza riposo. Riv Neurol 35:550Google Scholar
  19. 19.
    Kuhlo W, Doll E, Franck MC (1969) Erfolgreiche Behandlung eines Pickwick-Syndroms durch eine Dauertrachealkanüle. Dtsch Med Wochenschr 94:1286–1290Google Scholar
  20. 20.
    Chokroverty S, Barrocas M, Sharp JT, Barron KD (1969) Obesity-hypoventilation syndrome: a polygraphic study. Trans Am Neurol Assoc 94:240–242Google Scholar
  21. 21.
    Motta A, Guilleminault C (1978) Effects of oxygen administration in sleep-induced apneas. In: Guilleminault C, Dement WD (eds) Sleep apnea syndrome. Liss, New York, p 137Google Scholar
  22. 22.
    Guilleminault C, Tilkian A, Dement WC (1976) The sleep apnea syndrome. Annu Rev Med 27:465–484Google Scholar
  23. 23.
    Sullivan CE, Issa FG, Berthon-Jones M et al (1981) Reveresal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 1:862PubMedCrossRefGoogle Scholar
  24. 24.
    DeLecea L, Kilduff TS, Peyron C et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95:322CrossRefGoogle Scholar
  25. 25.
    Sakurai T, Amemiya A, Ishii M et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573PubMedCrossRefGoogle Scholar
  26. 26.
    Lin L, Faraco J, Li R et al (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365PubMedCrossRefGoogle Scholar
  27. 27.
    Chemelly RM, Willie JT, Sinton CM et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437CrossRefGoogle Scholar
  28. 28.
    Hara J, Beuckmann CT, Nambu T et al (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:345PubMedCrossRefGoogle Scholar
  29. 29.
    Nishino S, Ripley B, Overeem S et al (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355:39PubMedCrossRefGoogle Scholar
  30. 30.
    Thannical TC, Moore RY, Nienhuis R et al (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469CrossRefGoogle Scholar
  31. 31.
    Peyron C, Faraco J, Rogers W et al (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6:991PubMedCrossRefGoogle Scholar
  32. 32.
    Moruzzi G (1964) The historical development of the deafferentation hypothesis of sleep. Proc Am Philos Soc 108:19Google Scholar
  33. 33.
    Hartley D (1749) Observations on man, his frame, his duty, and his expectations. Leake and Frederick, LondonGoogle Scholar
  34. 34.
    Macnish R (1830) The philosophy of sleep E. M’Phun, GlasgowGoogle Scholar
  35. 35.
    Tobler I (1995) Is sleep fundamentally different between mammalian species. Behav Brain Res 69:35PubMedCrossRefGoogle Scholar
  36. 36.
    Mahowald MW, Schenck CH (1991) Status dissociatus: a perspective on states of being. Sleep 14:69PubMedCrossRefGoogle Scholar
  37. 37.
    Ogilvie RD, Harsh JR (eds) (1995) Sleep onset: normal and abnormal processes. American Psychological Association, Washington, D.C.Google Scholar
  38. 38.
    Ogilvie RD (2001) The process of falling asleep: physiological review. Sleep Med Rev 5:247PubMedCrossRefGoogle Scholar
  39. 39.
    Critchley M (1955) The pre-dormitum. Rev Neurol (Paris) 93:101Google Scholar
  40. 40.
    De Lisi L (1932) Su di un fenomeno motorio costante del sonno normale: le mioclonie ipniche fisio—logiche. Riv Pat Ment 39:481Google Scholar
  41. 41.
    Chokroverty S (2003) An overview of normal sleep. In: Chokroverty S, Hening W, Walters A (eds) Sleep and movement disorders. Elsevier Butterworth, Philadelphia, p 23Google Scholar
  42. 42.
    Benson K, Zarcone VP Jr (1979) Phasic events of REM sleep: phenomenology of middle ear muscle activity and periorbital integrated potentials in the same normal population. Sleep 2:199–213Google Scholar
  43. 43.
    Chokroverty S (1980) Phasic tongue movements in human rapid-eye movement in sleep. Neurology 30:665Google Scholar
  44. 44.
    Chokroverty S. Sleep disorders atlas task force of the American sleep disorders association (preliminary report): EEG arousals, scoring rules and examples. Sleep 15:174Google Scholar
  45. 45.
    Terzano MG, Parrino L, Spaggiari MC (1988) The cyclic alternating pattern sequences in the dynamic organization of sleep. Electroencephalogr Clin Neurophysiol 69:437PubMedCrossRefGoogle Scholar
  46. 46.
    Terzano MG, Mancia D, Salati MR et al (1985) The cyclic alternating pattern as a physiologic component of normal NREM sleep. Sleep 8:137PubMedCrossRefGoogle Scholar
  47. 47.
    Terzano MG, Parrino L (2000) Origin and significance of the cyclic alternating pattern (CAP) [Review]. Sleep Med Rev 4:101PubMedCrossRefGoogle Scholar
  48. 48.
    Terzano MG, Parrino L, Smeriari A et al (2002) Atlas, rules and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med 3:187PubMedCrossRefGoogle Scholar
  49. 49.
    Roffwarg HP, Muzzio JN, Dement WC (1966) Ontogenetic development of the human sleep-dream cycle. Science 152:604PubMedCrossRefGoogle Scholar
  50. 50.
    Anders TF (1975) Maturation of sleep patterns in the newborn infant. In: ED Weitzman (ed) Advances in sleep research. Spectrum, New York, p 43Google Scholar
  51. 51.
    Sheldon SH (1996) Evaluating sleep in infants and children. Lippincott, Philadelphia, p 21Google Scholar
  52. 52.
    Scher MS (2008) Ontogeny of EEGsleep from neonatal through infancy periods. Sleep Med 9:615PubMedCrossRefGoogle Scholar
  53. 53.
    Gaultier C (1987) Respiratory adaptation during sleep from the neonatal period to adolescence. In: C Guilleminault (ed) Sleep and its disorders in children. Raven Press, New York, p 67Google Scholar
  54. 54.
    National Institutes of Health Consensus Development Conference (1987) Infantile apnea and home monitoring (NIH publication no. 87-2905). National Institutes of Health, BethesdaGoogle Scholar
  55. 55.
    Katzenberg D, Young T, Finn L et al (1998) A clock polymorphism associated with human diurnal preference. Sleep 21:569PubMedCrossRefGoogle Scholar
  56. 56.
    Robilliard DL, Archer SN, Arendt J et al (2002) The 3111 clock gene polymorphism is not associated with sleep and circadian rhythmicity in phenotypically characterized human subjects. J Sleep Res 11:305PubMedCrossRefGoogle Scholar
  57. 57.
    Gaina A, Sekine M, Kanayama H et al (2006) Morning-evening preference: sleep pattern spectrum and lifestyle habits among Japanese junior high school pupils. Chronobiol Int 23(3):607–621Google Scholar
  58. 58.
    Harrison Y, Horne JA (1995) Should we be taking more sleep? Sleep 18:901–907PubMedCrossRefGoogle Scholar
  59. 59.
    Bonnet MH, Arand DL (1995) We are chronically sleep deprived. Sleep 18:908–911PubMedCrossRefGoogle Scholar
  60. 60.
    Webb WB, Agnew HW Jr (1975) Are we chronically sleep deprived? Bull Psychon Soc 6:47CrossRefGoogle Scholar
  61. 61.
    Bliwise DL, King AC, Harris RB, Haskell WL (1992) Prevalence of self-reported poor sleep in a healthy population aged 50–65. Soc Sci Med 34:49–55Google Scholar
  62. 62.
    Hume KI, Van F, Watson A (1998) A field study of age and gender differences in habitual adult sleep. J Sleep Res 7:85PubMedCrossRefGoogle Scholar
  63. 63.
    Reyner LA, Horne JA, Reyner A (1995) Gender-and-age-related differences in sleep determined by home-recorded sleep logs and actimetry from 400 adults. Sleep 18:127PubMedGoogle Scholar
  64. 64.
    Ferrara M, Gennaro LD (2001) How much sleep do we need. Sleep Med Rev 5:155PubMedCrossRefGoogle Scholar
  65. 65.
    Kleitman N (1963) Sleep and wakefulness, rev edn. University of Chicago Press, ChicagoGoogle Scholar
  66. 66.
    Benoit O, Foret J, Bouard G (1983) The time course of slow-wave sleep and REM sleep in habitual long and short sleepers: effect of prior wakefulness. Hum Neurobiol 2:91PubMedGoogle Scholar
  67. 67.
    Webb WB, Agnew HW (1970) Sleep stage characteristics of long and short sleepers. Science 168:146PubMedCrossRefGoogle Scholar
  68. 68.
    Kripke DF, Simons RN, Garfinkel L, Hammond EC (1979) Short and long sleep and sleeping pills. Is increased mortality associated? Arch Gen Psychiatry 36(1):103–116Google Scholar
  69. 69.
    Kripke DF, Garfinkel L, Wingard DL, Klauber MR, Marler MR (2002) Mortality associated with sleep duration and insomnia. Arch Gen Psychiatry 59(2):131–136Google Scholar
  70. 70.
    Grandner MA, Hale L, Moore M, Patel NP (2010) Mortality associated with short sleep duration: The evidence, the possible mechanisms, and the future. Sleep Med Rev 14(3):191–203PubMedCrossRefGoogle Scholar
  71. 71.
    Hublin C, Partinen M, Koskenvuo M, Kaprio J (2007) Sleep and mortality: a population-based 22-year follow-up study. Sleep 30(10):1245–1253Google Scholar
  72. 72.
    Heslop P, Smith GD, Metcalfe C, Macleod J, Hart C (2002) Sleep duration and mortality: the effect of short or long sleep duration on cardiovascular and all-cause mortality in working men and women. Sleep Med 3(4):305–314Google Scholar
  73. 73.
    Taub JM, Berger RJ (1976) Effects of acute sleep pattern alteration depend upon sleep duration. Physiol Psychol 4:412CrossRefGoogle Scholar
  74. 74.
    Taub JM, Berger RJ (1969) Extended sleep and performance: the Rip Van Winkle effect. Psychon Sci 16:204CrossRefGoogle Scholar
  75. 75.
    Kamdar BB, Kaplan KA, Kazirian EJ, Dement WC (2004) The impact of extended sleep on daytime alertness, vigilance and mood. Sleep Med 5:441PubMedCrossRefGoogle Scholar
  76. 76.
    Dement WC (2005) Sleep extension: getting as much extra sleep as possible. Clin Sports Med 24:251PubMedCrossRefGoogle Scholar
  77. 77.
    Freud S (1955) The interpretation of dreams. Basic Books, New York (originally published in 1900)Google Scholar
  78. 78.
    Foulkes D (1996) Dream research: 1953–1993. Sleep 19:609PubMedCrossRefGoogle Scholar
  79. 79.
    Tang H, Sharma N, Whyte KF (2006) Lucid dreaming during multiple sleep latency test (MSLT). Sleep Med 7:462PubMedCrossRefGoogle Scholar
  80. 80.
    Hobson JA, McCarley RW (1977) The brain as a dream state generator: an activation synthesis hypothesis of the dream process. Am J Psychiatry 134:1335PubMedCrossRefGoogle Scholar
  81. 81.
    Koukkou M, Lehmann D (1980) Psychophysiologie des Traumens und der Neurosentherapie: das Zustands-Wechsel-Modell, eine Synopsis. Fortschr Neurol Psychiatr 48:324CrossRefGoogle Scholar
  82. 82.
    Jouvet M (1978) Le sommeil paradoxal, est-il responsable d’une programmation genetique de cerveau. C R Seances Soc Biol Fil 172:9PubMedGoogle Scholar
  83. 83.
    Crick F, Mitchison G (1983) The function of dream sleep. Nature 304:111PubMedCrossRefGoogle Scholar
  84. 84.
    Zepelin H (1994) Mammalian sleep. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. Saunders, Philadelphia, p 69Google Scholar
  85. 85.
    Tauber ES (1974) Phylogeny of sleep. In: Weitzman ED (ed) Advances in sleep research, vol I. Spectrum, Flushing, p 133Google Scholar
  86. 86.
    Tobler I, Horne J (1983) Phylogenetic approaches to the functions of sleep. In: Koella WP (ed) Sleep 1982. Karger, Basel, p 126Google Scholar
  87. 87.
    Tobler I (1984) Evolution of the sleep process: a phylogenetic approach. Exp Brain Res 8(Suppl):227Google Scholar
  88. 88.
    Lyamin OL, Manger PR, Mukhametov LM et al (2000) Rest and activity states in a gray whale. J Sleep Res 9:261PubMedCrossRefGoogle Scholar
  89. 89.
    Mukhametov LM (1984) Sleep in marine mammals. Exp Brain Res 8(Suppl):S227CrossRefGoogle Scholar
  90. 90.
    Lyamin OI, Mukhametov IM, Siegel JM et al (2002) Unihemisphere slow wave sleep and the state of the eyes in a white whale. Behav Brain Res 129:125PubMedCrossRefGoogle Scholar
  91. 91.
    Hartse KM (2011) The phylogeny of sleep. In: Montagna P, Chokroverty S (eds) Handbook of clinical neurology: sleep disorders. Elsevier, Amsterdam, p 97Google Scholar
  92. 92.
    Allison T, Van Twyver H, Goff WR (1972) Electrophysiological studies of the echidna, Tachyglossus aculeatus. I. Waking and sleep. Arch Ital Biol 110:145PubMedGoogle Scholar
  93. 93.
    Berger RJ, Nicol SC, Andersen NA, Phillips NH (1995) Paradoxical sleep in the echidna. Sleep Res 24A:199Google Scholar
  94. 94.
    Siegel JM, Manger PR, Nienhuis R et al (1996) The echidna Tachyglossus aculeatus combines REM and NREM aspects in a single sleep state: implications for the evolution of sleep. J Neurosci 16:3500PubMedGoogle Scholar
  95. 95.
    Zepelin H, Rechtschaffen A (1974) Mammalian sleep, longevity and energy metabolism. Brain Behav Evol 10:425PubMedCrossRefGoogle Scholar
  96. 96.
    Mukhametov LM, Supin AY, Poliakova IG (1977) Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Res 124:581CrossRefGoogle Scholar
  97. 97.
    Rial R, González J, Gené L et al (2013) Asymmetric sleep in apneic human patients. Am J Physiol Regul Integr Comp Physiol 304(3):R232–R237Google Scholar
  98. 98.
    Swarnkar V, Abeyratne UR, Hukins C (2007) Inter-hemispheric asynchrony of the brain during events of apnoea and EEG arousals. Physiol Meas 28(8):869–880Google Scholar
  99. 99.
    Lyamin OI, Mukhametov IM, Siegel JM (2004) Relationship between sleep and eye state in cetaceans and pinnipeds. Arch Ital Biol 142:557PubMedGoogle Scholar
  100. 100.
    Flannigan WF Jr (1972) Behavioral states and electroencephalogram of reptiles. In: Chase MH (ed) The sleeping brain: perspectives in brain sciences, vol 14. UCLA Brain Information Service/Brain Research Institute, Los AngelesGoogle Scholar
  101. 101.
    de Mairan JJ (1731) Observation botanique. In: Histoire de l’Academie Royale des Sciences. Imprimerie Royale, Paris, p 35Google Scholar
  102. 102.
    Pittendrigh CS (1960) Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol 25:159PubMedCrossRefGoogle Scholar
  103. 103.
    Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harb Symp Quant Biol 25:11PubMedCrossRefGoogle Scholar
  104. 104.
    Halberg F (1959) Physiologic 24-hour periodicity: general and procedural considerations with reference to the adrenal cycle. Z Vitaminforschung Morm Fermentforschung 10:225Google Scholar
  105. 105.
    Aschoff J (1965) Circadian rhythms in man. Science 148:1427PubMedCrossRefGoogle Scholar
  106. 106.
    Miller JD, Morin LP, Schwartz WJ, Moore RY (1996) New insights into the mammalian circadian clock. Sleep 19:641PubMedCrossRefGoogle Scholar
  107. 107.
    Moore-Ede M, Sulzman FM, Fuller CA (1982) The clocks that time us. Harvard University Press, CambridgeGoogle Scholar
  108. 108.
    Wever RA (1979) The circadian system of man: results of experiments under temporal isolation. Springer, New YorkGoogle Scholar
  109. 109.
    Czeisler CA, Gooley JJ (2007) Sleep and circadian rhythms in humans. Cold Spring Harb Symp Quant Biol 72:579PubMedCrossRefGoogle Scholar
  110. 110.
    Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesion in the rat. Brain Res 42:201PubMedCrossRefGoogle Scholar
  112. 112.
    Lydic R, Schoene WC, Czeisler CA et al (1980) Suprachiasmatic region of the human hypothalamus: homolog to the primate circadian pacemaker. Sleep 2:355PubMedCrossRefGoogle Scholar
  113. 113.
    Moore RY, Lenn NJ (1972) A retinohypothalamic projection in the rat. J Comp Neurol 146:1PubMedCrossRefGoogle Scholar
  114. 114.
    Schwartz WJ (1997) Understanding circadian clocks: from c-Fos to fly balls. Ann Neurol 41:289PubMedCrossRefGoogle Scholar
  115. 115.
    Ralph MR, Joyner AL, Lehman MN (1993) Culture and transplantation of the mammalian circadian pacemaker. J Biol Rhythms 8:S83PubMedGoogle Scholar
  116. 116.
    Murphy PJ, Campbell SS (1996) Physiology of the circadian system in animals and humans. J Clin Neurophysiol 13:2PubMedCrossRefGoogle Scholar
  117. 117.
    Moore RY, Silver R (1998) Suprachiasmatic nucleus organization. Chronobial Int 15:475CrossRefGoogle Scholar
  118. 118.
    Inouye ST, Shibata S (1994) Neurochemical organization of circadian rhythm in the suprachiasmatic nucleus. Neurosci Res 20:109PubMedCrossRefGoogle Scholar
  119. 119.
    Kronauer RE, Czeisler CA, Pilato SF et al (1982) Mathematical model of the human circadian system with two interacting oscillators. Am J Physiol 242:R3PubMedGoogle Scholar
  120. 120.
    Daan S, Beersma DGM, Borbely AA (1984) The timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246:R161PubMedGoogle Scholar
  121. 121.
    Schibler U, Ripperger J, Brown SA (2003) Peripheral circadian oscillators in mammals: time and food. J Biol Rhythms 18:250PubMedCrossRefGoogle Scholar
  122. 122.
    Yoo SH, Yamazaki S, Lowrey PL et al (2004) Period 2: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101:5339PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Cermakian N, Sassone-Corsi P (2002) Environmental stimulus perception and control of circadian clocks. Curr Opin Neurobiol 12:359PubMedCrossRefGoogle Scholar
  124. 124.
    Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271PubMedCrossRefGoogle Scholar
  125. 125.
    Lamont EW, James FO, Boivin DB, Cermakian N (2007) From circadian clock gene expression to pathologies. Sleep Med 8:547PubMedCrossRefGoogle Scholar
  126. 126.
    Turek FW, Vitaterna MH (2011) Molecular neurobiology of circadian rhythms. In: Montagna P, Chokroverty S (eds) Handbook of clinical neurology: sleep disorders. Elsevier, AmsterdamGoogle Scholar
  127. 127.
    Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15:R271PubMedCrossRefGoogle Scholar
  128. 128.
    Kalsbeck A, Palm IF, La Fleur SE et al (2006) SCN outputs and the hypothalamic balance of life. J Biol Rhythms 21:458CrossRefGoogle Scholar
  129. 129.
    Moore RY (2007) Suprachiasmatic nucleus in sleep-wake regulation. Sleep Med 8(Suppl 3):S27CrossRefGoogle Scholar
  130. 130.
    McCarley RW (2007) Neurobiology of REM and NREM sleep. Sleep Med 8:302PubMedCrossRefGoogle Scholar
  131. 131.
    Naylor E, Bergmann BM, Krauski K et al (2000) The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci 20:8138PubMedGoogle Scholar
  132. 132.
    Jones CR, Campbell SS, Zone SE et al (1999) Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med 5:1062PubMedCrossRefGoogle Scholar
  133. 133.
    Toh KL, Jones CR, He Y et al (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040PubMedCrossRefGoogle Scholar
  134. 134.
    Xu Y, Padiath QS, Shapiro RE et al (2005) Functional consequences of a CKI delta mutation causing familial advanced sleep phase syndrome. Nature 434:640PubMedCrossRefGoogle Scholar
  135. 135.
    Archer SN, Robilliard DL, Skene DJ et al (2003) A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26:413PubMedCrossRefGoogle Scholar
  136. 136.
    Ebisawa T, Uchiyama M, Kajimura N et al (2001) Association of structural polymorphisms in the human period 3 gene with delayed sleep phase syndrome. EMBO Rep 2:342PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Kolker DE, Fukuyama H, Huang DS et al (2003) Aging alters circadian and light-induced expression of clock genes in golden hamsters. J Biol Rhythms 18:159PubMedCrossRefGoogle Scholar
  138. 138.
    Kolker DE, Vitaterma MH, Fruechte EM et al (2004) Effects of age on circadian rhythms are similar in wild-type and heterozygous clock mutant mice. Neurobiol Aging 25:517PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Kondratov RV, Kondratova AA, Gorbacheva VY et al (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev 20:1868PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Antoch MP, Gorbacheva VY, Vykhovanets O et al (2008) Disruption of the circadian clock due to the clock mutation has discrete effects on aging and carcinogenesis. Cell Cycle 7:1197PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Ohdo S (2007) Chronopharmacology focused on biological clock. Drug Metab Pharmacokinet 22:3PubMedCrossRefGoogle Scholar
  142. 142.
    White WB, LaRocca GM (2002) Chronopharmacology of cardiovascular therapy. Blood Press Monit 7:199PubMedCrossRefGoogle Scholar
  143. 143.
    Focan C (2002) Chronobiological concepts underlying the chronotherapy of human lung cancer. Chronobiol Int 19:253PubMedCrossRefGoogle Scholar
  144. 144.
    Rich TA, 3rd Shelton CH, Kirichenko A, Straume M (2002) Chronomodulated chemotherapy and irradiation: an idea whose time has come. Chronobiol Int 19:191Google Scholar
  145. 145.
    Lemmer B (2000) Relevance for chronopharmacology in practical medicine. Semin Perinatol 24:280PubMedCrossRefGoogle Scholar
  146. 146.
    Levi F (2000) Therapeutic implications of circadian rhythms in cancer patients. Novartis Found Symp 227:119 (discussion 136)Google Scholar
  147. 147.
    Kraft M, Martin RJ (1995) Chronobiology and chronotherapy in medicine. Dis Mon 41:501CrossRefGoogle Scholar
  148. 148.
    Krueger JM, Majde JA, Rector DM (2011) Cytokines in immune function and sleep regulation. In: Montagna P, Chokroverty S (eds) Handbook of clinical neurology: sleep disorders. Elsevier, Amsterdam, p 229Google Scholar
  149. 149.
    Krueger JM, Obal F Jr (2003) Sleep function. Front Biosci 8:511CrossRefGoogle Scholar
  150. 150.
    Borbely AA, Tobler I (1989) Endogenous sleep-promoting substances and sleep regulation. Physiol Rev 69:605PubMedGoogle Scholar
  151. 151.
    Inoue S (1989) Biology of sleep substances. CRC Press, OrlandoGoogle Scholar
  152. 152.
    Kushikata T, Fang J, Krueger JM (1999) Brain-derived neurotrophic factor enhances spontaneous sleep in rats and rabbits. Am J Physiol 276:R1334PubMedGoogle Scholar
  153. 153.
    ObalJr F, Krueger JM (2003) Biochemical regulation of sleep. Front Biosci 8:520CrossRefGoogle Scholar
  154. 154.
    Takahashi S, Krueger JM (1999) Nerve growth factor enhances sleep in rabbits. Neurosci Lett 264:149PubMedCrossRefGoogle Scholar
  155. 155.
    Yamuy J, Morales FR, Chase MH (1995) Induction of rapid eye movement by microinjection of nerve growth factor into the pontine reticular formation of the cat. Neuroscience 66:9PubMedCrossRefGoogle Scholar
  156. 156.
    Yashuda T, Yoshida H, Garcia-Garcia F et al (2005) Interleukin-1β has a role in cerebral cortical state-dependent electroencephalographic slow-wave activity. Sleep 28:177CrossRefGoogle Scholar
  157. 157.
    Basheer R, Rainnie DG, Porkka-Heiskanen T et al (2001) Adenosine, prolonged wakefulness, and A1-activated NF-κ B DNA binding in the basal forebrain of the rat. Neuroscience 104:731PubMedCrossRefGoogle Scholar
  158. 158.
    Porkka-Heiskanen T, Strecker E, Thakkar M et al (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Dinges DF, Douglas SD, Hamarman S et al (1995) Sleep deprivation and human immune function. Adv Neuroimmunol 5:97PubMedCrossRefGoogle Scholar
  160. 160.
    Toth LA (1995) Sleep, sleep deprivation and infectious diseases: studies in animals. Adv Neuroimmunol 5:79PubMedCrossRefGoogle Scholar
  161. 161.
    Pollmacher T, Mullington J, Korth C, Hinze-Selch D (1995) Influence of host defense activation on sleep in humans. Adv Neuroimmunol 5:155PubMedCrossRefGoogle Scholar
  162. 162.
    Krueger JM, Majde JA (1994) Microbial products and cytokines in sleep and fever regulation. Crit Rev Immunol 14:355–379PubMedCrossRefGoogle Scholar
  163. 163.
    Majde JA, Krueger JM (2005) Links between the innate immune system and sleep. J Allergy Clin Immunol 1188:116Google Scholar
  164. 164.
    Dunn AJ, Wang J, Ando T (1999) Effects of cytokines on cerebral neurotransmission: comparison with the effects of stress. Adv Exp Med Biol 461:117PubMedCrossRefGoogle Scholar
  165. 165.
    Toth LA, Hughes LF (2004) Macrophage participation in influenza-induced sleep enhancement in C57BL/6J mice. Brain Behav Immun 18:375PubMedCrossRefGoogle Scholar
  166. 166.
    Banks WA (2005) Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharmaceut Des 11:973CrossRefGoogle Scholar
  167. 167.
    Dunn AJ (2002) Mechanisms by which cytokines signal the brain. Int Rev Neurobiol 52:43PubMedCrossRefGoogle Scholar
  168. 168.
    Romanovsky A, Almeida MC, Aronoff DM et al (2005) Fever and hypothermia is systematic inflammation: recent discoveries and revisions. Front Biosci 10:2193PubMedCrossRefGoogle Scholar
  169. 169.
    Everson CA, Toth LA (2000) Systemic bacterial invasion induced by sleep deprivation. Am J Physiol Regul Integr Comp Physiol 278:R905PubMedGoogle Scholar
  170. 170.
    Kapsimalis F, Basta M, Varouchakis G et al (2008) Cytokines and pathological sleep. Sleep Med 9:603PubMedCrossRefGoogle Scholar
  171. 171.
    Gami AS, Caples SM, Somers VK (2003) Sleep medicine 2007. Obesity and obstructive sleep apnea. Endocrinol Metab Clin North Am 32:869Google Scholar
  172. 172.
    Fantuzzi G (2005) Adipose tissue, adipokines and inflammation. J Allergy Clin Immunol 115:911PubMedCrossRefGoogle Scholar
  173. 173.
    Paris JM, Somers VK (2004) Obstructive sleep apnea and cardiovascular disease. Mayo Clin Proc 79:1036CrossRefGoogle Scholar
  174. 174.
    Watkins LR, Maier SF (1995) Cytokine-to-brain communication: a review and analysis of alternative mechanisms. Life Sci 57:1011PubMedCrossRefGoogle Scholar
  175. 175.
    Hansen MK, Taishi P, Chen Z, Krueger JM (1998) Vagotomy blocks the induction of interleukin-1 beta mRNA in the brain of rats in response to systematic IL-1 beta. J Neurosci 18:2247PubMedGoogle Scholar
  176. 176.
    Chen L, Duricka D, Nelson S et al (2004) Influenza virus-induced sleep responses in mice with targeted disruptions in neuronal or inducible nitric oxide synthases. J Appl Physiol 97:17PubMedCrossRefGoogle Scholar
  177. 177.
    Obal F, Alt J, Taishi P et al (2003) Sleep in mice with non-functional growth-hormone-releasing hormone receptors. Am J Physiol Regul Integr Comp Physiol 284:R131PubMedCrossRefGoogle Scholar
  178. 178.
    Weikel JC, Wichniak A, Ising M et al (2003) Ghrelin promotes slow-wave sleep in humans. Am J Physiol Endocrinol Metab 284:E407PubMedCrossRefGoogle Scholar
  179. 179.
    Szentirmai E, Kapas L, Krueger JM (2007) Ghrelin microinjection into forebrain sites induces wakefulness and feeding in rats. Am J Physiol Regul Integr Comp Physiol 292:R575PubMedCrossRefGoogle Scholar
  180. 180.
    Steiger A (2007) Ghrelin and sleep-wake regulation. Am J Physiol Regul Integr Comp Physiol 292:R573PubMedCrossRefGoogle Scholar
  181. 181.
    Entzian P, Linnemann K, Schlaak M, Zabel P (1996) Obstructive sleep apnea syndrome and circadian rhythms of hormones and cytokines. Am J Respir Crit Care Med 153:1080PubMedCrossRefGoogle Scholar
  182. 182.
    Dinarello CA (1988) The biology of interleukin-1. FASEB J 2:108PubMedGoogle Scholar
  183. 183.
    Szentirmai E, Krueger JM (2006) Obestatin alters sleep in rats. Neurosci Lett 404:222PubMedCrossRefGoogle Scholar
  184. 184.
    Sinton CM, Fitch TE, Gershenfeld HK (1999) The effects of leptin on REM sleep and slow wave delta in rats are reversed by food deprivation. J Sleep Res 8:197PubMedCrossRefGoogle Scholar
  185. 185.
    Dinarello CA (1997) Proinflammatory and anti-inflammatory cytokines as mediators in the pathogenesis of septic shock. Chest 112:321 (Sendash)Google Scholar
  186. 186.
    Bauer J, Hohagen F, Ebert T et al (1994) Interleukin-6 serum levels in healthy persons correspond to the sleep-wake cycle. Clin Invest 72:315CrossRefGoogle Scholar
  187. 187.
    Vgontzas AN, Pejovic S, Zoumakis E et al (2007) Daytime napping after sleep loss decreases sleepiness, improves performance and causes beneficial changes in cortisol and interleukin-6 secretion. Am J Physiol Endocrinol Metab 292:E252Google Scholar
  188. 188.
    Spiegel K, Leproult R, Van Cauter E et al (1999) Impact of sleep debt on metabolic and endocrine function. Lancet 354:1435PubMedCrossRefGoogle Scholar
  189. 189.
    Van Cauter E, Spiegel K (1999) Circadian and sleep control of endocrine secretions. In: Turek FW, See PC (eds) Regulation of sleep and circadian rhythms (lung biology in health and disease), vol 133. Marcel-Dekker, New York, p 397Google Scholar
  190. 190.
    Moruzzi G (1972) The sleep-waking cycle. Ergebn Physiol 64:1PubMedGoogle Scholar
  191. 191.
    Hartmann E (1973) The functions of sleep. Yale University Press, New HavenGoogle Scholar
  192. 192.
    Oswald I (1974) Sleep. Penguin, MiddlesexGoogle Scholar
  193. 193.
    Adam K, Oswald I (1977) Sleep is for tissue restoration. J Roy Coll Phys 11:376Google Scholar
  194. 194.
    Takahashi Y, Kipnis D, Daughaday W (1968) Growth hormone secretion during sleep. J Clin Invest 47:2079PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Sassin JF, Frantz AG, Kapen S et al (1973) The nocturnal rise of human prolactin is dependent on sleep. J Clin Endocrinol Metab 37:436PubMedCrossRefGoogle Scholar
  196. 196.
    Boyar RM, Rosenfeld RS, Kapen S et al (1974) Human puberty: simultaneous augmented secretion of luteinizing hormone and testosterone during sleep. J Clin Invest 54:609PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Weitzman ED, Hellman L (1974) Temporal organization of the 24-hour pattern of the hypothalamic-pituitary axis. In: Ferin M, Halberg F, Richart RM (eds) Biorhythms and human reproduction. Wiley, New York, p 371Google Scholar
  198. 198.
    Drucker-Colin R (1979) Protein molecules and the regulation of REM sleep: possible implications for function. In: Drucker-Colin R, Shkurovich M, Sterman MD (eds) The functions of sleep. Academic, New York, p 99Google Scholar
  199. 199.
    Maquet P (1995) Sleep function (S and cerebral metabolism). Behav Brain Res 69:75PubMedCrossRefGoogle Scholar
  200. 200.
    Nakanishi H, Sun Y, Nakamura RK et al (1997) Positive correlation between cerebral protein synthesis rates and deep sleep in Macaca mulatta. Eur J Neurosci 9:271PubMedCrossRefGoogle Scholar
  201. 201.
    Guzman-Marin R, Suntosova N, Stewart DR et al (2003) Sleep deprivation reduces proliferation of cells in the dentate gyrus of the hippocampus in rats. J Physiol 549:563PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Siegel JM (2005) Clues to the functions of mammalian sleep. Nature 437:1264PubMedCrossRefGoogle Scholar
  203. 203.
    Mahowald MW, Chokroverty S, Kader G, Schenck CH (1997) Sleep disorders. Continuum, vol 3. Williams & Wilkins, Baltimore No 4 (A program of the American Academy of Neurology)Google Scholar
  204. 204.
    Meddis R (1977) The sleep instinct. Routledge, LondonGoogle Scholar
  205. 205.
    Webb WB (1992) Sleep: the gentle tyrant. Anker, BoltonGoogle Scholar
  206. 206.
    McGinty DJ, Harper TM, Fairbanks MK (1974) Neuronal unit activity and the control of sleep states. In: Weitzman E (ed) Advances in sleep research, vol I. Spectrum, New York, p 173Google Scholar
  207. 207.
    McGaugh JL, Gold PE, Van Buskirk RB et al (1975) Modulating influences of hormones and catecholamines on memory storage processes. In: Gispen GH, van Wimersma-Gridanus TB, Bohus B (eds) Hormones, homeostasis and the brain. Elsevier, Amsterdam, p 151Google Scholar
  208. 208.
    Crick F, Mitchison G (1995) REM sleep and neural nets. Behav Brain Res 69:147PubMedCrossRefGoogle Scholar
  209. 209.
    Karni A, Tanne D, Rubenstein BS et al (1994) Dependence on REM sleep of overnight improvement of a perceptual skill. Science 265:679PubMedCrossRefGoogle Scholar
  210. 210.
    Stickgold R, Walker MP (2007) Sleep-dependent memory consolidation and reconsolidation. Sleep Med 8:331PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Walker MP, Stickgold R (2005) Sleep-dependent motor memory plasticity in the human brain. Neuroscience 133:911PubMedCrossRefGoogle Scholar
  212. 212.
    Hu P, Stylos-Allan M, Walker MP (2006) Sleep facilitates consolidation of emotional declarative memory. Psychol Sci 17:891PubMedCrossRefGoogle Scholar
  213. 213.
    Ellenbogen JM, Payne JD, Stickgold R (2006) The role of sleep in declarative memory consolidation: passive, permissive, active or none. Curr Opin Neurobiol 16:716PubMedCrossRefGoogle Scholar
  214. 214.
    Kalia M (2006) Neurobiology of sleep. Metabolism 55(Suppl 2):52Google Scholar
  215. 215.
    Hornung OP, Reger F, Danker-Hopfe H et al (2007) The relationship between REM sleep and memory consolidation in old age and effect of cholinergic medication. Biol Psychiatry 61:750PubMedCrossRefGoogle Scholar
  216. 216.
    Yoo SS, Hu PT, Grujar N et al (2007) A deficit in the ability to form new human memories without sleep. Nat Neurosci 10:385PubMedCrossRefGoogle Scholar
  217. 217.
    Born J, Rasch B, Cais S (2006) Sleep to remember. Neuroscientist 12:410PubMedCrossRefGoogle Scholar
  218. 218.
    Backhaus J, Junghanns K (2006) Daytime naps improve procedural motor memory. Sleep Med 7:508PubMedCrossRefGoogle Scholar
  219. 219.
    Goder R, Scharffetter F, Aldenhoff JB, Fritzer G (2007) Visual declarative memory is associated with non-rapid eye movement sleep and sleep cycles in patients with chronic non-restorative sleep. Sleep Med 8:503PubMedCrossRefGoogle Scholar
  220. 220.
    Vertes R, Siegel JM (2005) Time for the sleep community to take a critical look at the purported role of sleep in memory processing. Sleep 28:1228PubMedCrossRefGoogle Scholar
  221. 221.
    Vertes RP, Eastman KE (2000) The case against memory consolidation in REM sleep. Behav Brain Sci 23:867PubMedCrossRefGoogle Scholar
  222. 222.
    Siegel JM (2001) The REM sleep-memory consolidation hypothesis. Science 294:1058PubMedCrossRefGoogle Scholar
  223. 223.
    Vertes RP (2004) Memory consolidation in sleep: dream or reality. Neuron 44:135PubMedCrossRefGoogle Scholar
  224. 224.
    Smith C, Rose GM (2000) Evaluating the relationship between REM and memory consolidation: a need for scholarship and hypothesis testing. Behav Brain Sci 23:1007CrossRefGoogle Scholar
  225. 225.
    Smith C (2001) Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Med Rev 5:491PubMedCrossRefGoogle Scholar
  226. 226.
    Schabus M, Gruber G, Parapatics S et al (2004) Sleep spindles and their significance for declarative memory consolidation. Sleep 27:1479PubMedCrossRefGoogle Scholar
  227. 227.
    Lavie P, Pratt H, Scharf B et al (1984) Localized pontine lesion: nearly total absence of REM sleep. Neurology 34:118PubMedCrossRefGoogle Scholar
  228. 228.
    Krueger JM, ObalJr F, Kapas L, Fang J (1995) Brain organization and sleep function. Behav Brain Res 69:177PubMedCrossRefGoogle Scholar
  229. 229.
    Kavanau JL (1997) Memory, sleep and the evolution of mechanisms of synaptic efficacy maintenance. Neuroscience 79:7PubMedCrossRefGoogle Scholar
  230. 230.
    Kavanau JL (1997) Origin and evolution of sleep: roles of vision and endothermy. Brain Res Bull 42:245PubMedCrossRefGoogle Scholar
  231. 231.
    Cirelli C, Gutierrez CM, Tononi G (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41:35PubMedCrossRefGoogle Scholar
  232. 232.
    Bach V, Telliez F, Chardon K et al (2011) Thermoregulation in wakefulness and sleep in humans. In: Montagna P, Chorkoverty S (eds) Sleep disorders: handbook of clinical neurology. Elsevier, Amsterdam, p 215Google Scholar
  233. 233.
    Xie L, Kang H, Xu Q et al (2013) Sleep drives metabolic clearance from the adult brain. Science 342:373–377PubMedCrossRefGoogle Scholar
  234. 234.
    Nedergaard M (2013) Neuroscience garbage truck of the brain. Science 340:1529–1530Google Scholar
  235. 235.
    Iliff JJ, Nedergaard M (2013) Is there a cerebral lymphatic system? Stroke 44:S93–S95PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Iliff JJ, Wang M, Zeppenfeld DM et al (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33:18190–18199PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Iliff JJ, Wang M, Liao Y et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147CrossRefGoogle Scholar
  238. 238.
    Kales A, Kales JD (1974) Sleep disorders: recent findings in the diagnosis and treatment of disturbed sleep. N Engl J Med 290:489CrossRefGoogle Scholar
  239. 239.
    Arble DM, Sandoval DA (2013) CNS control of glucose metabolism: response to environmental challenges. Front Neurosci 7:20. doi: 10.3389/fnins.2013.00020 PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Herculano-Houzel S (2013) Sleep it out. Science 342:316–317PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Graduate Medical EducationSeton Hall UniversitySouth OrangeUSA
  2. 2.JFK New Jersey Neuroscience InstituteEdisonUSA
  3. 3.Rutgers Robert Wood Johnson Medical SchoolNew BrunswickUSA

Personalised recommendations