The Impact of Maternal Obesity and Weight Loss During the Periconceptional Period on Offspring Metabolism

  • L. M. NicholasEmail author
  • I. C. McMillen
Part of the Physiology in Health and Disease book series (PIHD)


The current global obesity epidemic has resulted in more women entering pregnancy with a body mass index in the overweight and obese range. It has been shown that offspring of obese women are at increased risk of obesity and type 2 diabetes in childhood and adult life, thus giving rise to an ‘intergenerational cycle’ of metabolic dysfunction. Importantly, studies in recent years have highlighted that the oocyte and/or early pre-implantation embryo is particularly vulnerable to the effects of maternal obesity resulting in long-lasting endocrine and metabolic effects for the offspring. Investigations into the molecular mechanisms underlying the programming of obesity and insulin resistance in liver, muscle and adipose tissue have highlighted the role of epigenetic changes within these tissues, which are recruited within the developing embryo and/or fetus. The periconceptional period is also an important period for intervention where dietary intervention in overweight/obese women is relatively more feasible. While dieting before pregnancy may have metabolic benefits for the offspring, there are however also metabolic and endocrine costs for the offspring. Thus, we need a better evidence base for the development of dietary interventions in obese women before pregnancy and around the time of conception to maximise the metabolic benefits and minimise the metabolic costs for the next generation.


Maternal obesity Periconceptional period Metabolism 


  1. 1.
    WHO. Global Health Observatory (GHO) data: Overweight and obesity (8 Jan 2016). Available from:
  2. 2.
    Flegal KM, Carroll MD, Ogden CL, Johnson CL (2002) Prevalence and trends in obesity among US adults, 1999-2000. JAMA 288(14):1723–1727PubMedCrossRefGoogle Scholar
  3. 3.
    Kumanyika SK, Obarzanek E, Stettler N, Bell R, Field AE, Fortmann SP et al (2008) Population-based prevention of obesity: the need for comprehensive promotion of healthful eating, physical activity, and energy balance: a scientific statement from American Heart Association Council on Epidemiology and Prevention, Interdisciplinary Committee for prevention (formerly the expert panel on population and prevention science). Circulation 118(4):428–464PubMedCrossRefGoogle Scholar
  4. 4.
    Ogden CL, Yanovski SZ, Carroll MD, Flegal KM (2007) The epidemiology of obesity. Gastroenterology 132(6):2087–2102PubMedCrossRefGoogle Scholar
  5. 5.
    Catalano PM, Ehrenberg HM (2006) The short- and long-term implications of maternal obesity on the mother and her offspring. BJOG 113(10):1126–1133PubMedCrossRefGoogle Scholar
  6. 6.
    Catalano PM (2003) Obesity and pregnancy—the propagation of a viscous cycle? J Clin Endocrinol Metabol 88(8):3505–3506CrossRefGoogle Scholar
  7. 7.
    Pettitt DJ, Nelson RG, Saad MF, Bennett PH, Knowler WC (1993) Diabetes and obesity in the offspring of Pima Indian women with diabetes during pregnancy. Diabetes Care 16(1):310–314PubMedCrossRefGoogle Scholar
  8. 8.
    Silverman BL, Rizzo TA, Cho NH, Metzger BE (1998) Long-term effects of the intrauterine environment: the northwestern university diabetes in pregnancy center. Diabetes Care 21(Suppl 2):B142–B149PubMedGoogle Scholar
  9. 9.
    Federation ID (2013) IDF diabetes Atlas, 6th edn. International Diabetes Federation, BrusselsGoogle Scholar
  10. 10.
    Boney CM, Verma A, Tucker R, Vohr BR (2005) Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115(3):e290–e296PubMedCrossRefGoogle Scholar
  11. 11.
    Dorner G, Plagemann A (1994) Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm Metab Res 26(5):213–221PubMedCrossRefGoogle Scholar
  12. 12.
    Whitaker RC (2004) Predicting preschooler obesity at birth: the role of maternal obesity in early pregnancy. Pediatrics 114(1):e29–e36PubMedCrossRefGoogle Scholar
  13. 13.
    WHO. 10 Facts on obesity (8 Jan 2016). Available from:
  14. 14.
    Zhang S, Rattanatray L, McMillen IC, Suter CM, Morrison JL (2011) Periconceptional nutrition and the early programming of a life of obesity or adversity. Prog Biophys Mol Biol 106(1):307–314PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang S, Rattanatray L, Morrison JL, Nicholas LM, Lie S, McMillen IC (2011) Maternal obesity and the early origins of childhood obesity: weighing up the benefits and costs of maternal weight loss in the periconceptional period for the offspring. Exp Diabetes Res 2011Google Scholar
  16. 16.
    Oteng-Ntim E, Varma R, Croker H, Poston L, Doyle P (2012) Lifestyle interventions for overweight and obese pregnant women to improve pregnancy outcome: systematic review and meta-analysis. BMC Med 10:47PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ et al (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet 377(9765):557–567PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Poston L, Harthoorn LF, Van Der Beek EM (2011) Obesity in pregnancy: implications for the mother and lifelong health of the child. A consensus statement. Pediatr Res 69(2):175–180PubMedCrossRefGoogle Scholar
  19. 19.
    Statistics ABo (2007) Australian social trends. CanberraGoogle Scholar
  20. 20.
    LaCoursiere DY, Bloebaum L, Duncan JD, Varner MW (2005) Population-based trends and correlates of maternal overweight and obesity, Utah 1991-2001. Am J Obstet Gynecol 192(3):832–839PubMedCrossRefGoogle Scholar
  21. 21.
    Borengasser SJ, Zhong Y, Kang P, Lindsey F, Ronis MJ, Badger TM et al (2013) Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring. Endocrinology 154(11):4113–4125PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Flegal KM, Carroll MD, Kit BK, Ogden CL (2012) Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA 307(5):491–497PubMedCrossRefGoogle Scholar
  23. 23.
    Athukorala C, Rumbold AR, Willson KJ, Crowther CA (2010) The risk of adverse pregnancy outcomes in women who are overweight or obese. BMC Pregnancy Childbirth 10:56PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Callaway LK, Prins JB, Chang AM, McIntyre HD (2006) The prevalence and impact of overweight and obesity in an Australian obstetrics population. Med J Aust 184(2):56–59PubMedGoogle Scholar
  25. 25.
    Singh AS, Mulder C, Twisk JWR, Van Mechelen W, Chinapaw MJM (2008) Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev 9(5):474–488PubMedCrossRefGoogle Scholar
  26. 26.
    Kelishadi R (2007) Childhood overweight, obesity, and the metabolic syndrome in developing countries. Epidemiol Rev 29(1):62–76PubMedCrossRefGoogle Scholar
  27. 27.
    Rooney K, Ozanne SE (2011) Maternal over-nutrition and offspring obesity predisposition: targets for preventative interventions. Int J Obes (Lond) 35(7):883–890CrossRefGoogle Scholar
  28. 28.
    Ryan D (2007) Obesity in women: a life cycle of medical risk. Int J Obes (Lond) 31(Suppl 2):S3–S7CrossRefGoogle Scholar
  29. 29.
    Lawlor DA (2013) The society for social medicine John Pemberton Lecture 2011. Developmental overnutrition-an old hypothesis with new importance. Int J Epidemiol 42(1):7–29PubMedCrossRefGoogle Scholar
  30. 30.
    Lawlor DA, Relton C, Sattar N, Nelson SM (2012) Maternal adiposity—a determinant of perinatal and offspring outcomes? Nat Rev Endocrinol 8(11):679–688PubMedCrossRefGoogle Scholar
  31. 31.
    Catalano PM, Kirwan JP, Haugel-de Mouzon S, King J (2003) Gestational diabetes and insulin resistance: role in short- and long-term implications for mother and fetus. J Nutr 133(5 Suppl 2):1674S–1683SPubMedGoogle Scholar
  32. 32.
    Freinkel N (1980) Of pregnancy and progeny. Diabetes 29(12):1023–1035PubMedCrossRefGoogle Scholar
  33. 33.
    Bergmann RL, Richter R, Bergmann KE, Plagemann A, Brauer M, Dudenhausen JW (2003) Secular trends in neonatal macrosomia in Berlin: influences of potential determinants. Paediatr Perinat Epidemiol 17(3):244–249PubMedCrossRefGoogle Scholar
  34. 34.
    Jensen DM, Damm P, Sørensen B, Mølsted-Pedersen L, Westergaard JG, Ovesen P et al (2003) Pregnancy outcome and prepregnancy body mass index in 2459 glucose-tolerant Danish women. Am J Obstet Gynecol 189(1):239–244PubMedCrossRefGoogle Scholar
  35. 35.
    May R (2007) Prepregnancy weight, inappropriate gestational weight gain, and smoking: relationships to birth weight. Am J Hum Biol 19(3):305–310PubMedCrossRefGoogle Scholar
  36. 36.
    Sebire NJ, Jolly M, Harris JP, Wadsworth J, Joffe M, Beard RW et al (2001) Maternal obesity and pregnancy outcome: a study of 287 213 pregnancies in London. Int J Obes (Lond) 25(8):1175–1182CrossRefGoogle Scholar
  37. 37.
    Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X (2013) Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta-analysis. PLoS One 8(4)Google Scholar
  38. 38.
    Petitt DJ, Baird HB, Aleck KA (1983) Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N Engl J Med 308(5):242–245CrossRefGoogle Scholar
  39. 39.
    Pettitt DJ, Bennett PH, Knowler WC (1985) Gestational diabetes mellitus and impaired glucose tolerance during pregnancy. Long-term effects on obesity and glucose tolerance in the offspring. Diabetes 34(Suppl 2):119–122CrossRefGoogle Scholar
  40. 40.
    Silverman BL, Rizzo T, Green OC, Cho NH, Winter RJ, Ogata ES et al (1991) Long-term prospective evaluation of offspring of diabetic mothers. Diabetes 40(Suppl 2):121–125PubMedCrossRefGoogle Scholar
  41. 41.
    Parsons TJ, Power C, Manor O (2001) Fetal and early life growth and body mass index from birth to early adulthood in 1958 British cohort: longitudinal. Br Med J 323(7325):1331–1335CrossRefGoogle Scholar
  42. 42.
    Kubo A, Ferrara A, Windham GC, Greenspan LC, Deardorff J, Hiatt RA et al (2014) Maternal hyperglycemia during pregnancy predicts adiposity of the offspring. Diabetes Care 37(11):2996–3002PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Buckley AJ, Keserü B, Briody J, Thompson M, Ozanne SE, Thompson CH (2005) Altered body composition and metabolism in the male offspring of high fat-fed rats. Metabolism 54(4):500–507PubMedCrossRefGoogle Scholar
  44. 44.
    Cerf ME, Williams K, Nkomo XI, Muller CJ, Du Toit DF, Louw J et al (2005) Islet cell response in the neonatal rat after exposure to a high-fat diet during pregnancy. Am J Physiol Regul Integr Comp Physiol 288(5):R1122–R1128PubMedCrossRefGoogle Scholar
  45. 45.
    Guo F, Catherine Jen KL (1995) High-fat feeding during pregnancy and lactation affects offspring metabolism in rats. Physiol Behav 57(4):681–686PubMedCrossRefGoogle Scholar
  46. 46.
    Nivoit P, Morens C, Van Assche FA, Jansen E, Poston L, Remacle C et al (2009) Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia 52(6):1133–1142PubMedCrossRefGoogle Scholar
  47. 47.
    Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EHJM et al (2008) Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 51(2):383–392PubMedCrossRefGoogle Scholar
  48. 48.
    Shankar K, Harrell A, Liu X, Gilchrist JM, Ronis MJJ, Badger TM (2008) Maternal obesity at conception programs obesity in the offspring. Am J Physiol Regul Integr Comp Physiol 294(2):R528–R538PubMedCrossRefGoogle Scholar
  49. 49.
    Taylor PD, McConnell J, Khan IY, Holemans K, Lawrence KM, Asare-Anane H et al (2005) Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rats fed a fat-rich diet in pregnancy. Am J Physiol Regul Integr Comp Physiol 288(1):R134–R139PubMedCrossRefGoogle Scholar
  50. 50.
    Volpato AM, Schultz A, Magalhães-da-Costa E, Correia MLDG, Águila MB, Mandarim-de-Lacerda CA (2012) Maternal high-fat diet programs for metabolic disturbances in offspring despite leptin sensitivity. Neuroendocrinology 96:272–284PubMedCrossRefGoogle Scholar
  51. 51.
    Frayn KN (2000) Visceral fat and insulin resistance—Causative or correlative? Br J Nutr 83(Suppl 1):S71–S77PubMedGoogle Scholar
  52. 52.
    Yamashita S, Nakamura T, Shimomura I, Nishida M, Yoshida S, Kotani K et al (1996) Insulin resistance and body fat distribution: contribution of visceral fat accumulation to the development of insulin resistance and atherosclerosis. Diabetes Care 19(3):287–291PubMedCrossRefGoogle Scholar
  53. 53.
    Shelley P, Martin-Gronert MS, Rowlerson A, Poston L, Heales SJR, Hargreaves IP et al (2009) Altered skeletal muscle insulin signaling and mitochondrial complex II-III linked activity in adult offspring of obese mice. Am J Physiol Regul Integr Comp Physiol 297(3):R675–R681PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Oben JA, Mouralidarane A, Samuelsson AM, Matthews PJ, Morgan ML, McKee C et al (2010) Maternal obesity during pregnancy and lactation programs the development of offspring non-alcoholic fatty liver disease in mice. J Hepatol 52(6):913–920PubMedCrossRefGoogle Scholar
  55. 55.
    McMillen IC, Adam CL, Muhlhausler BS (2005) Early origins of obesity: programming the appetite regulatory system. J Physiol 565(1):9–17PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lewis DS, Bertrand HA, McMahan CA (1986) Preweaning food intake influences the adiposity of young adult baboons. J Clin Invest 78(4):899–905PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    DiGiacomo JE, Hay WW Jr (1990) Effect of hypoinsulinemia and hyperglycemia on fetal glucose utilization. Am J Physiol Endocrinol Metab 259(4):E506–E512Google Scholar
  58. 58.
    Ford SP, Tuersunjiang N (2013) Maternal obesity: how big an impact does it have on offspring prenatally and during postnatal life? Expert Rev Endocrinol Metab 8(3):261–273CrossRefGoogle Scholar
  59. 59.
    Hay WW Jr, DiGiacomo JE, Meznarich HK, Hirst K, Zerbe G (1989) Effects of glucose and insulin on fetal glucose oxidation and oxygen consumption. Am J Physiol Endocrinol Metab 256(6):E704–E713Google Scholar
  60. 60.
    Anthony RV, Scheaffer AN, Wright CD, Regnault TR (2003) Ruminant models of prenatal growth restriction. Reprod Suppl 61:183–194PubMedGoogle Scholar
  61. 61.
    Mühlhäusler BS, McMillen IC, Rouzaud G, Findlay PA, Marrocco EM, Rhind SM et al (2004) Appetite regulatory neuropeptides are expressed in the sheep hypothalamus before birth. J Neuroendocrinol 16(6):502–507PubMedCrossRefGoogle Scholar
  62. 62.
    Long NM, Rule DC, Zhu MJ, Nathanielsz PW, Ford SP (2012) Maternal obesity upregulates fatty acid and glucose transporters and increases expression of enzymes mediating fatty acid biosynthesis in fetal adipose tissue depots. J Anim Sci 90(7):2201–2210PubMedCrossRefGoogle Scholar
  63. 63.
    Ford SP, Zhang L, Zhu M, Miller MM, Smith DT, Hess BW et al (2009) Maternal obesity accelerates fetal pancreatic β-cell but not α-cell development in sheep: prenatal consequences. Am J Physiol Regul Integr Comp Physiol 297(3):R835–R843PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Zhang L, Long NM, Hein SM, Ma Y, Nathanielsz PW, Ford SP (2011) Maternal obesity in ewes results in reduced fetal pancreatic β-cell numbers in late gestation and decreased circulating insulin concentration at term. Domest Anim Endocrinol 40(1):30–39PubMedCrossRefGoogle Scholar
  65. 65.
    Du M, Yan X, Tong JF, Zhao J, Zhu MJ (2010) Maternal obesity, inflammation, and fetal skeletal muscle development. Biol Reprod 82(1):4–12PubMedCrossRefGoogle Scholar
  66. 66.
    Tong JF, Yan X, Zhu MJ, Ford SP, Nathanielsz PW, Du M (2009) Maternal obesity downregulates myogenesis and beta-catenin signaling in fetal skeletal muscle. Am J Physiol Endocrinol Metab 296(4):E917–E924PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Long NM, George LA, Uthlaut AB, Smith DT, Nijland MJ, Nathanielsz PW et al (2010) Maternal obesity and increased nutrient intake before and during gestation in the ewe results in altered growth, adiposity, and glucose tolerance in adult offspring. J Anim Sci 88(11):3546–3553PubMedCrossRefGoogle Scholar
  68. 68.
    Mühlhäusler BS, Duffield JA, McMillen IC (2007) Increased maternal nutrition stimulates peroxisome proliferator activated receptor-γ, adiponectin, and leptin messenger ribonucleic acid expression in adipose tissue before birth. Endocrinology 148(2):878–885PubMedCrossRefGoogle Scholar
  69. 69.
    Mühlhäusler BS, Adam CL, Findlay PA, Duffield JA, McMillen IC (2006) Increased maternal nutrition alters development of the appetite-regulating network in the brain. FASEB J 20(8):1257–1259PubMedCrossRefGoogle Scholar
  70. 70.
    Mühlhäusler BS, Duffield JA, McMillen IC (2007) Increased maternal nutrition increases leptin expression in perirenal and subcutaneous adipose tissue in the postnatal lamb. Endocrinology 148(12):6157–6163PubMedCrossRefGoogle Scholar
  71. 71.
    Rattanatray L, Muhlhausler BS, Nicholas LM, Morrison JL, McMillen IC (2014) Impact of maternal overnutrition on gluconeogenic factors and methylation of the phosphoenolpyruvate carboxykinase promoter in the fetal and postnatal liver. Pediatr Res 75(1-1):14–21PubMedCrossRefGoogle Scholar
  72. 72.
    Fernandez-Twinn DS, Alfaradhi MZ, Martin-Gronert MS, Duque-Guimaraes DE, Piekarz A, Ferland-McCollough D et al (2014) Downregulation of IRS-1 in adipose tissue of offspring of obese mice is programmed cell-autonomously through post-transcriptional mechanisms. Mol Metab 3(3):325–333PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Graus-Nunes F, Dalla Corte Frantz E, Lannes WR, da Silva Menezes MC, Mandarim-de-Lacerda CA, Souza-Mello V (2015) Pregestational maternal obesity impairs endocrine pancreas in male F1 and F2 progeny. Nutrition 31(2):380–387PubMedCrossRefGoogle Scholar
  74. 74.
    Li J, Huang J, Li JS, Chen H, Huang K, Zheng L (2012) Accumulation of endoplasmic reticulum stress and lipogenesis in the liver through generational effects of high fat diets. J Hepatol 56(4):900–907PubMedCrossRefGoogle Scholar
  75. 75.
    Adamo KB, Ferraro ZM, Goldfield G, Keely E, Stacey D, Hadjiyannakis S et al (2013) The maternal obesity management (MOM) trial protocol: a lifestyle intervention during pregnancy to minimize downstream obesity. Contemp Clin Trials 35(1):87–96PubMedCrossRefGoogle Scholar
  76. 76.
    Kahn CR (2003) Knockout mice challenge our concepts of glucose homeostasis and the pathogenesis of diabetes. Exp Diabesity Res 4(3):169–182PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: Insights into insulin action. Nat Rev Mol Cell Biol 7(2):85–96PubMedCrossRefGoogle Scholar
  78. 78.
    Deshmukh A, Salehzadeh F, Metayer-Coustard S, Fahlman R, Nair KS, Al-Khalili L (2009) Post-transcriptional gene silencing of ribosomal protein S6 kinase 1 restores insulin action in leucine-treated skeletal muscle. Cell Mol Life Sci 66(8):1457–1466PubMedCrossRefGoogle Scholar
  79. 79.
    Jordan SD, Krüger M, Willmes DM, Redemann N, Wunderlich FT, Brönneke HS et al (2011) Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 13(4):434–448PubMedCrossRefGoogle Scholar
  80. 80.
    Nordlie RC, Foster JD, Lange AJ (1999) Regulation of glucose production by the liver. Annu Rev Nutr 19:379–406PubMedCrossRefGoogle Scholar
  81. 81.
    Postic C, Dentin R, Girard J (2004) Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab 30(5):398–408PubMedCrossRefGoogle Scholar
  82. 82.
    Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J et al (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413(6852):131–138PubMedCrossRefGoogle Scholar
  83. 83.
    Braccini L, Ciraolo E, Morello F, Lu X, Hirsch E (2009) PI3K signaling: a crossroads of metabolic regulation. Expert Rev Endocrinol Metab 4(4):349–357CrossRefGoogle Scholar
  84. 84.
    Cohen AW, Combs TP, Scherer PE, Lisanti MP (2003) Role of caveolin and caveolae in insulin signaling and diabetes. Am J Physiol Endocrinol Metab 285(6):E1151–E1160PubMedCrossRefGoogle Scholar
  85. 85.
    Krebs M, Roden M (2005) Molecular mechanisms of lipid-induced insulin resistance in muscle, liver and vasculature. Diabetes Obes Metab 7(6):621–632PubMedCrossRefGoogle Scholar
  86. 86.
    Massillon D, Barzilai N, Chen W, Hu MZ, Rossetti L (1996) Glucose regulates in vivo glucose-6-phosphatase gene expression in the liver of diabetic rats. J Biol Chem 271(17):9871–9874PubMedCrossRefGoogle Scholar
  87. 87.
    Bell AW (1979) Lipid metabolism in liver and selected tissues and in the whole body of ruminant animals. Prog Lipid Res 18(3):117–164PubMedCrossRefGoogle Scholar
  88. 88.
    Bergman EN, Havel RJ, Wolfe BM, Bohmer T (1971) Quantitative studies of the metabolism of chylomicron triglycerides and cholesterol by liver and extrahepatic tissues of sheep and dogs. J Clin Invest 50(9):1831–1839PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Azhar S, Kelley G (2007) PPARα: its role in the human metabolic syndrome. Future Lipidol 2(1):31–53CrossRefGoogle Scholar
  90. 90.
    Shankar K, Kang P, Harrell A, Zhong Y, Marecki JC, Ronis MJJ et al (2010) Maternal overweight programs insulin and adiponectin signaling in the offspring. Endocrinology 151(6):2577–2589PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Martin-Gronert MS, Fernandez-Twinn DS, Poston L, Ozanne SE (2010) Altered hepatic insulin signalling in male offspring of obese mice. J Dev Orig Health Dis 1(3):184–191PubMedCrossRefGoogle Scholar
  92. 92.
    Angulo P (2002) Medical progress: nonalcoholic fatty liver disease. N Engl J Med 346(16):1221–1231PubMedCrossRefGoogle Scholar
  93. 93.
    Marchesini G, Brizi M, Blanchi G, Tomassetti S, Bugianesi E, Lenzi M et al (2001) Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 50(8):1844–1850PubMedCrossRefGoogle Scholar
  94. 94.
    Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, Zenari L et al (2007) Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 30(5):1212–1218PubMedCrossRefGoogle Scholar
  95. 95.
    Bruce KD, Cagampang FR, Argenton M, Zhang J, Ethirajan PL, Burdge GC et al (2009) Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology 50(6):1796–1808PubMedCrossRefGoogle Scholar
  96. 96.
    Borengasser SJ, Lau F, Kang P, Blackburn ML, Ronis MJJ, Badger TM et al (2011) Maternal obesity during gestation impairs fatty acid oxidation and mitochondrial SIRT3 expression in rat offspring at weaning. PLoS One 6(8):e24068PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE et al (2009) Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest 119(2):323–335PubMedPubMedCentralGoogle Scholar
  98. 98.
    Klip A, Paquet MR (1990) Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care 13(3):228–243PubMedCrossRefGoogle Scholar
  99. 99.
    Farese RV (2002) Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab 283(1):E1–E11PubMedCrossRefGoogle Scholar
  100. 100.
    Zierath JR, Krook A, Wallberg-Henriksson H (2000) Insulin action and insulin resistance in human skeletal muscle. Diabetologia 43(7):821–835PubMedCrossRefGoogle Scholar
  101. 101.
    Alkhateeb H, Chabowski A, Glatz JFC, Gurd B, Luiken JJFP, Bonen A (2009) Restoring AS160 phosphorylation rescues skeletal muscle insulin resistance and fatty acid oxidation while not reducing intramuscular lipids. Am J Physiol Endocrinol Metab 297(5):E1056–E1066PubMedCrossRefGoogle Scholar
  102. 102.
    Cartee GD, Wojtaszewski JFP (2007) Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport. Appl Physiol Nutr Metab 32(3):557–566PubMedCrossRefGoogle Scholar
  103. 103.
    Petersen KF, Shulman GI (2002) Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am J Cardiol 90(Suppl 5):11G–18GPubMedCrossRefGoogle Scholar
  104. 104.
    Henriksen EJ, Dokken BB (2006) Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr Drug Targets 7(11):1435–1441PubMedCrossRefGoogle Scholar
  105. 105.
    Kockeritz L, Doble B, Patel S, Woodgett JR (2006) Glycogen synthase kinase-3—An overview of an over-achieving protein kinase. Curr Drug Targets 7(11):1377–1388PubMedCrossRefGoogle Scholar
  106. 106.
    Yan X, Huang Y, Zhao JX, Long NM, Uthlaut AB, Zhu MJ et al (2011) Maternal obesity-impaired insulin signaling in sheep and induced lipid accumulation and fibrosis in skeletal muscle of offspring. Biol Reprod 85(1):172–178PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Lafontan M (2008) Advances in adipose tissue metabolism. Int J Obes (Lond) 32(Suppl 7):S39–S51CrossRefGoogle Scholar
  108. 108.
    Gross DN, Van Den Heuvel APJ, Birnbaum MJ (2008) The role of FoxO in the regulation of metabolism. Oncogene 27(16):2320–2336PubMedCrossRefGoogle Scholar
  109. 109.
    Antuna-Puente B, Feve B, Fellahi S, Bastard JP (2008) Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab 34(1):2–11PubMedCrossRefGoogle Scholar
  110. 110.
    Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8(11):1288–1295PubMedCrossRefGoogle Scholar
  111. 111.
    Zhou H, Song X, Briggs M, Violand B, Salsgiver W, Gulve EA et al (2005) Adiponectin represses gluconeogenesis independent of insulin in hepatocytes. Biochem Biophys Res Commun 338(2):793–799PubMedCrossRefGoogle Scholar
  112. 112.
    Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413–437PubMedCrossRefGoogle Scholar
  113. 113.
    Matsuda J, Yokota I, Iida M, Murakami T, Naito E, Ito M et al (1997) Serum leptin concentration in cord blood: relationship to birth weight and gender. J Clin Endocrinol Metabol 82(5):1642–1644CrossRefGoogle Scholar
  114. 114.
    Shekhawat PS, Garland JS, Shivpuri C, Mick GJ, Sasidharan P, Pelz CJ et al (1998) Neonatal cord blood leptin: Its relationship to birth weight, body mass index, maternal diabetes, and steroids. Pediatr Res 43(3):338–343PubMedCrossRefGoogle Scholar
  115. 115.
    Tapanainen P, Leinonen E, Ruokonen A, Knip M (2001) Leptin concentrations are elevated in newborn infants of diabetic mothers. Horm Res 55(4):185–190PubMedCrossRefGoogle Scholar
  116. 116.
    Masuyama H, Hiramatsu Y (2012) Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression. Endocrinology 153(6):2823–2830PubMedCrossRefGoogle Scholar
  117. 117.
    Strakovsky RS, Zhang X, Zhou D, Pan YX (2011) Gestational high fat diet programs hepatic phosphoenolpyruvate carboxykinase gene expression and histone modification in neonatal offspring rats. J Physiol 589(11):2707–2717PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    He A, Zhu L, Gupta N, Chang Y, Fang F (2007) Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 21(11):2785–2794PubMedCrossRefGoogle Scholar
  119. 119.
    Pandey AK, Verma G, Vig S, Srivastava S, Srivastava AK, Datta M (2011) MiR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells. Mol Cell Endocrinol 332(1–2):125–133PubMedCrossRefGoogle Scholar
  120. 120.
    Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M et al (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474(7353):649–653PubMedCrossRefGoogle Scholar
  121. 121.
    Nohr EA, Vaeth M, Baker JL, Sørensen TIA, Olsen J, Rasmussen KM (2008) Combined associations of prepregnancy body mass index and gestational weight gain with the outcome of pregnancy. Am J Clin Nutr 87(6):1750–1759PubMedGoogle Scholar
  122. 122.
    Smith J, Cianflone K, Biron S, Hould FS, Lebel S, Marceau S et al (2009) Effects of maternal surgical weight loss in mothers on intergenerational transmission of obesity. J Clin Endocrinol Metabol 94(11):4275–4283CrossRefGoogle Scholar
  123. 123.
    Van Der Steeg JW, Steures P, Eijkemans MJC, Habbema JDF, Hompes PGA, Burggraaff JM et al (2008) Obesity affects spontaneous pregnancy chances in subfertile, ovulatory women. Hum Reprod 23(2):324–328PubMedCrossRefGoogle Scholar
  124. 124.
    Robker RL (2008) Evidence that obesity alters the quality of oocytes and embryos. Pathophysiology 15(2):115–121PubMedCrossRefGoogle Scholar
  125. 125.
    Dokras A, Baredziak L, Blaine J, Syrop C, VanVoorhis BJ, Sparks A (2006) Obstetric outcomes after in vitro fertilization in obese and morbidly obese women. Obstet Gynecol 108(1):61–69PubMedCrossRefGoogle Scholar
  126. 126.
    Wu LL, Russell DL, Wong SL, Chen M, Tsai TS, St John JC et al (2015) Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development 142(4):681–691PubMedCrossRefGoogle Scholar
  127. 127.
    Minge CE, Bennett BD, Norman RJ, Robker RL (2008) Peroxisome proliferator-activated receptor-α agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality. Endocrinology 149(5):2646–2656PubMedCrossRefGoogle Scholar
  128. 128.
    Nicholas LM, Morrison JL, Rattanatray L, Ozanne SE, Kleemann DO, Walker SK et al (2013) Differential effects of exposure to maternal obesity or maternal weight loss during the periconceptional period in the sheep on insulin signalling molecules in skeletal muscle of the offspring at 4 months of age. PLoS One 8(12):e84594PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Nicholas LM, Rattanatray L, Maclaughlin SM, Ozanne SE, Kleemann DO, Walker SK et al (2013) Differential effects of maternal obesity and weight loss in the periconceptional period on the epigenetic regulation of hepatic insulin-signaling pathways in the offspring. FASEB J 27(9):3786–3796PubMedCrossRefGoogle Scholar
  130. 130.
    Nicholas LM, Rattanatray L, Morrison JL, Kleemann DO, Walker SK, Zhang S et al (2014) Maternal obesity or weight loss around conception impacts hepatic fatty acid metabolism in the offspring. Obesity 22(7):1685–1693PubMedCrossRefGoogle Scholar
  131. 131.
    Rattanatray L, MacLaughlin SM, Kleemann DO, Walker SK, Muhlhausler BS, McMillen IC (2010) Impact of maternal periconceptional overnutrition on fat mass and expression of adipogenic and lipogenic genes in visceral and subcutaneous fat depots in the postnatal lamb. Endocrinology 151(11):5195–5205PubMedCrossRefGoogle Scholar
  132. 132.
    Zhang S, Rattanatray L, MacLaughlin SM, Cropley JE, Suter CM, Molloy L et al (2010) Periconceptional undernutrition in normal and overweight ewes leads to increased adrenal growth and epigenetic changes in adrenal IGF2/H19 gene in offspring. FASEB J 24(8):2772–2782PubMedCrossRefGoogle Scholar
  133. 133.
    Russel AJF, Doney JM, Gunn RG (1969) Subjective assessment of body fat in live sheep. J Agric Sci 97:723–729CrossRefGoogle Scholar
  134. 134.
    Catalano PM, Nizielski SE, Shao J, Preston L, Qiao L, Friedman JE (2002) Downregulated IRS-1 and PPARγ in obese women with gestational diabetes: relationship to FFA during pregnancy. Am J Physiol Endocrinol Metab 282(3):E522–E533PubMedCrossRefGoogle Scholar
  135. 135.
    Greenfield JR, Campbell LV (2004) Insulin resistance and obesity. Clin Dermatol 22(Spec iss 4):289–295PubMedCrossRefGoogle Scholar
  136. 136.
    Savage DB, Petersen KF, Shulman GI (2007) Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 87(2):507–520PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Li X, Monks B, Ge Q, Birnbaum MJ (2007) Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature 447(7147):1012–1016PubMedCrossRefGoogle Scholar
  138. 138.
    Ozanne SE, Jensen CB, Tingey KJ, Storgaard H, Madsbad S, Vaag AA (2005) Low birthweight is associated with specific changes in muscle insulin-signalling protein expression. Diabetologia 48(3):547–552PubMedCrossRefGoogle Scholar
  139. 139.
    Ozanne SE, Olsen GS, Hansen LL, Tingey KJ, Nave BT, Wang CL et al (2003) Early growth restriction leads to down regulation of protein kinase C zeta and insulin resistance in skeletal muscle. J Endocrinol 177(2):235–241PubMedCrossRefGoogle Scholar
  140. 140.
    Isagawa T, Nagae G, Shiraki N, Fujita T, Sato N, Ishikawa S et al (2011) DNA methylation profiling of embryonic stem cell differentiation into the three germ layers. PLoS One 6(10):e26052PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Duque-Guimarães DE, Ozanne SE (2013) Nutritional programming of insulin resistance: causes and consequences. Trends Endocrinol Metab 24(10):525–535PubMedCrossRefGoogle Scholar
  142. 142.
    Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(Spec. iss. 1):R47–R58PubMedCrossRefGoogle Scholar
  143. 143.
    Jiménez-Chillarón JC, Díaz R, Martínez D, Pentinat T, Ramón-Krauel M, Ribó S et al (2012) The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94(11):2242–2263PubMedCrossRefGoogle Scholar
  144. 144.
    Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11(4):285–296PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Semple RK, Chatterjee VK, O’Rahilly S (2006) PPAR gamma and human metabolic disease. J Clin Invest 116(3):581–589PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Waterland RA, Travisano M, Tahiliani KG, Rached MT, Mirza S (2008) Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes (Lond) 32(9):1373–1379CrossRefGoogle Scholar
  147. 147.
    Kral JG (2004) Preventing and treating obesity in girls and young women to curb the epidemic. Obes Res 12(10):1539–1546PubMedCrossRefGoogle Scholar
  148. 148.
    Birdsall KM, Vyas S, Khazaezadeh N, Oteng-Ntim E (2009) Maternal obesity: a review of interventions. Int J Clin Pract 63(3):494–507PubMedCrossRefGoogle Scholar
  149. 149.
    Dodd JM, Crowther CA, Robinson JS (2008) Dietary and lifestyle interventions to limit weight gain during pregnancy for obese or overweight women: a systematic review. Acta Obstet Gynecol Scand 87(7):702–706PubMedCrossRefGoogle Scholar
  150. 150.
    Ronnberg AK, Nilsson K (2010) Interventions during pregnancy to reduce excessive gestational weight gain: a systematic review assessing current clinical evidence using the grading of recommendations, assessment, development and evaluation (GRADE) system. BJOG 117(11):1327–1334PubMedCrossRefGoogle Scholar
  151. 151.
    Adamo KB, Ferraro ZM, Brett KE (2012) Can we modify the intrauterine environment to halt the intergenerational cycle of obesity? Int J Environ Res Public Health 9(4):1263–1307PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Patti ME (2013) Reducing maternal weight improves offspring metabolism and alters (or modulates) methylation. Proc Natl Acad Sci USA 110(32):12859–12860PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Dalfrà MG, Busetto L, Chilelli NC, Lapolla A (2012) Pregnancy and foetal outcome after bariatric surgery: a review of recent studies. J Matern Fetal Neonatal Med 25(9):1537–1543PubMedCrossRefGoogle Scholar
  154. 154.
    Barisione M, Carlini F, Gradaschi R, Camerini G, Adami GF (2012) Body weight at developmental age in siblings born to mothers before and after surgically induced weight loss. Surg Obes Relat Dis 8(4):387–391PubMedCrossRefGoogle Scholar
  155. 155.
    Kral JG, Biron S, Simard S, Hould FS, Lebel S, Marceau S et al (2006) Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics 118(6):e1644–e1649PubMedCrossRefGoogle Scholar
  156. 156.
    Guénard F, Deshaies Y, Cianflone K, Kral JG, Marceau P, Vohl MC (2013) Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery. Proc Natl Acad Sci USA 110(28):11439–11444PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Zambrano E, Martínez-Samayoa PM, Rodríguez-González GL, Nathanielsz PW (2010) Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats. J Physiol 588(10):1791–1799PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Vega CC, Reyes-Castro LA, Bautista CJ, Larrea F, Nathanielsz PW, Zambrano E (2013) Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. Int J Obes 39(4):712–719CrossRefGoogle Scholar
  159. 159.
    Raipuria M, Bahari H, Morris MJ (2015) Effects of maternal diet and exercise during pregnancy on glucose metabolism in skeletal muscle and fat of weanling rats. PLoS One 10(4):e0120980PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    De Rooij SR, Painter RC, Phillips DIW, Osmond C, Michels RPJ, Godsland IF et al (2006) Impaired insulin secretion after prenatal exposure to the Dutch famine. Diabetes Care 29(8):1897–1901PubMedCrossRefGoogle Scholar
  161. 161.
    Smith NA, McAuliffe FM, Quinn K, Lonergan P, Evans ACO (2010) The negative effects of a short period of maternal undernutrition at conception on the glucose-insulin system of offspring in sheep. Anim Reprod Sci 121(1–2):94–100PubMedCrossRefGoogle Scholar
  162. 162.
    Todd SE, Oliver MH, Jaquiery AL, Bloomfield FH, Harding JE (2009) Periconceptional undernutrition of ewes impairs glucose tolerance in their adult offspring. Pediatr Res 65(4):409–413PubMedCrossRefGoogle Scholar
  163. 163.
    Lee RSF, Depree KM, Davey HW (2002) The sheep (Ovis aries) H19 gene: genomic structure and expression patterns, from the preimplantation embryo to adulthood. Gene 301(1–2):67–77PubMedCrossRefGoogle Scholar
  164. 164.
    Lie S, Morrison JL, Williams-Wyss O, Suter CM, Humphreys DT, Ozanne SE et al (2014) Impact of embryo number and maternal undernutrition around the time of conception on insulin signaling and gluconeogenic factors and microRNAs in the liver of fetal sheep. Am J Physiol Endocrinol Metab 306(9):E1013–E1024PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Lie S, Morrison JL, Williams-Wyss O, Suter CM, Humphreys DT, Ozanne SE et al (2014) Periconceptional undernutrition programs changes in insulin-signaling molecules and microRNAs in skeletal muscle in singleton and twin fetal sheep. Biol Reprod 90(1):5PubMedCrossRefGoogle Scholar
  166. 166.
    Edwards LJ, McMillen IC (2002) Periconceptional nutrition programs development of the cardiovascular system in the fetal sheep. Am J Physiol Regul Integr Comp Physiol 283(3):R669–R679PubMedCrossRefGoogle Scholar
  167. 167.
    Edwards LJ, McMillen IC (2002) Impact of maternal undernutrition during the periconceptional period, fetal number, and fetal sex on the development of the hypothalamo-pituitary adrenal axis in sheep during late gestation. Biol Reprod 66(5):1562–1569PubMedCrossRefGoogle Scholar
  168. 168.
    Zhang S, Morrison JL, Gill A, Rattanatray L, MacLaughlin SM, Kleemann D et al (2013) Dietary restriction in the periconceptional period in normal-weight or obese ewes results in increased abundance of angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor (AT1R) in the absence of changes in ACE or AT1R methylation in the adrenal of the offspring. Reproduction 146(5):443–454PubMedCrossRefGoogle Scholar
  169. 169.
    Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105(44):17046–17049PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The American Physiological Society 2016

Authors and Affiliations

  1. 1.Sansom Institute for Health Research, School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideAustralia
  2. 2.The ChancelleryUniversity of NewcastleCallaghanAustralia

Personalised recommendations