Anesthetic Management of Cardiac Transplantation

  • Shiva SaleEmail author
  • Anand Lakshminarasimhachar


Cardiac transplantation is an established modality of treatment for many patients with end-stage heart failure (HF) with severely impaired functional capacity. These patients have a poor quality of life and/or an estimated life expectancy of less than 18 months with medical therapy. Understanding HF pathophysiology, the medical and surgical treatment of HF patients, and perioperative management are essential to optimize the outcomes from this lifesaving procedure.


Cardiac transplantation Heart failure Pharmacologic therapy Cardiac implantable electronic devices Cardiopulmonary bypass Graft failure 


  1. 1.
    Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239.PubMedCrossRefGoogle Scholar
  2. 2.
    Roger VL, et al. Executive summary: heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125(1):188–97.PubMedCrossRefGoogle Scholar
  3. 3.
    Lund LH, et al. The Registry of the International Society for Heart and Lung Transplantation: thirtieth official adult heart transplant report—2013; focus theme: age. J Heart Lung Transplant. 2013;32(10):951–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Stehlik J, et al. The Registry of the International Society for Heart and Lung Transplantation: 29th official adult heart transplant report—2012. J Heart Lung Transplant. 2012;31(10):1052–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Barnard CN. The operation. A human cardiac transplant: an interim report of a successful operation performed at Groote Schuur Hospital, Cape Town. S Afr Med J. 1967;41(48):1271–4.PubMedGoogle Scholar
  6. 6.
    Willman VL, et al. Auto-transplantation of the canine heart. Surg Gynecol Obstet. 1962;115:299–302.PubMedGoogle Scholar
  7. 7.
    Hunt SA, et al. Does cardiac transplantation prolong life and improve its quality? An updated report. Circulation. 1976;54(6 Suppl):III56–60.PubMedGoogle Scholar
  8. 8.
    DiBardino DJ. The history and development of cardiac transplantation. Tex Heart Inst J. 1999;26(3):198–205.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Arnold JM, et al. Canadian Cardiovascular Society consensus conference recommendations on heart failure 2006: diagnosis and management. Can J Cardiol. 2006;22(1):23–45.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hunt SA, et al. 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119(14):e391–479.PubMedCrossRefGoogle Scholar
  11. 11.
    Lindenfeld J, et al. HFSA 2010 comprehensive heart failure practice guideline. J Card Fail. 2010;16(6):e1–194.PubMedCrossRefGoogle Scholar
  12. 12.
    McMurray JJ, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33(14):1787–847.PubMedCrossRefGoogle Scholar
  13. 13.
    Deng MC. Orthotopic heart transplantation: highlights and limitations. Surg Clin North Am. 2004;84(1):243–55.PubMedCrossRefGoogle Scholar
  14. 14.
    Aaronson KD, et al. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation. 1997;95(12):2660–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Levy WC, et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006;113(11):1424–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Smits JM, et al. A prognostic model for predicting waiting-list mortality for a total national cohort of adult heart-transplant candidates. Transplantation. 2003;76(8):1185–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Cohn JN, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N Engl J Med. 1986;314(24):1547–52.PubMedCrossRefGoogle Scholar
  18. 18.
    Dec GW. Management of acute decompensated heart failure. Curr Probl Cardiol. 2007;32(6):321–66.PubMedCrossRefGoogle Scholar
  19. 19.
    Forrester JS, Diamond GA, Swan HJ. Correlative classification of clinical and hemodynamic function after acute myocardial infarction. Am J Cardiol. 1977;39(2):137–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Nohria A, et al. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol. 2003;41(10):1797–804.PubMedCrossRefGoogle Scholar
  21. 21.
    O’Connor CM, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365(1):32–43.PubMedCrossRefGoogle Scholar
  22. 22.
    Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail. 2008;10(10):933–89.PubMedCrossRefGoogle Scholar
  23. 23.
    Felker GM, et al. Heart failure etiology and response to milrinone in decompensated heart failure: results from the OPTIME-CHF study. J Am Coll Cardiol. 2003;41(6):997–1003.PubMedCrossRefGoogle Scholar
  24. 24.
    Cuffe MS, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA. 2002;287(12):1541–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Landoni G, et al. Effects of levosimendan on mortality and hospitalization. A meta-analysis of randomized controlled studies. Crit Care Med. 2012;40(2):634–46.PubMedCrossRefGoogle Scholar
  26. 26.
    Hickey M, et al. Outcomes of urgent warfarin reversal with frozen plasma versus prothrombin complex concentrate in the emergency department. Circulation. 2013;128(4):360–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Riess HB, et al. Prothrombin complex concentrate (Octaplex) in patients requiring immediate reversal of oral anticoagulation. Thromb Res. 2007;121(1):9–16.PubMedCrossRefGoogle Scholar
  28. 28.
    Craig ML. Management of right ventricular failure in the era of ventricular assist device therapy. Curr Heart Fail Rep. 2011;8(1):65–71.PubMedCrossRefGoogle Scholar
  29. 29.
    Lee S, et al. Effects of the HeartMate II continuous-flow left ventricular assist device on right ventricular function. J Heart Lung Transplant. 2010;29(2):209–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Cleland JG, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352(15):1539–49.PubMedCrossRefGoogle Scholar
  31. 31.
    Rivero-Ayerza M, et al. Effects of cardiac resynchronization therapy on overall mortality and mode of death: a meta-analysis of randomized controlled trials. Eur Heart J. 2006;27(22):2682–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Wilcox JE, et al. Clinical effectiveness of cardiac resynchronization and implantable cardioverter-defibrillator therapy in men and women with heart failure: findings from IMPROVE HF. Circ Heart Fail. 2014;7(1):146–53.PubMedCrossRefGoogle Scholar
  33. 33.
    Hohnloser SH, et al. Prophylactic use of an implantable cardioverter-defibrillator after acute myocardial infarction. N Engl J Med. 2004;351(24):2481–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Moss AJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346(12):877–83.PubMedCrossRefGoogle Scholar
  35. 35.
    Guyton AC, Lindsey AW, Gilluly JJ. The limits of right ventricular compensation following acute increase in pulmonary circulatory resistance. Circ Res. 1954;2(4):326–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen EP, et al. Pulmonary vascular impedance and recipient chronic pulmonary hypertension following cardiac transplantation. Chest. 1997;112(6):1622–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Bittner HB, et al. Right ventricular dysfunction after cardiac transplantation: primarily related to status of donor heart. Ann Thorac Surg. 1999;68(5):1605–11.PubMedCrossRefGoogle Scholar
  38. 38.
    Bittner HB, et al. Brain death alters cardiopulmonary hemodynamics and impairs right ventricular power reserve against an elevation of pulmonary vascular resistance. Chest. 1997;111(3):706–11.PubMedCrossRefGoogle Scholar
  39. 39.
    Voelkel NF, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114(17):1883–91.PubMedCrossRefGoogle Scholar
  40. 40.
    Kirklin JK, et al. Pulmonary vascular resistance and the risk of heart transplantation. J Heart Transplant. 1988;7(5):331–6.PubMedGoogle Scholar
  41. 41.
    Costard-Jäckle A, Fowler MB. Influence of preoperative pulmonary artery pressure on mortality after heart transplantation: testing of potential reversibility of pulmonary hypertension with nitroprusside is useful in defining a high risk group. J Am Coll Cardiol. 1992;19:48–54.PubMedCrossRefGoogle Scholar
  42. 42.
    Murali S, Uretsky BF, Armitage JM, et al. Utility of prostaglandin E1 in the pretransplantation evaluation of heart failure patients with significant pulmonary hypertension. J Heart Lung Transplant. 1992;11:716–23.PubMedGoogle Scholar
  43. 43.
    Mehra MR, et al. Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates—2006. J Heart Lung Transplant. 2006;25(9):1024–42.PubMedCrossRefGoogle Scholar
  44. 44.
    Drakos SG, et al. Effect of reversible pulmonary hypertension on outcomes after heart transplantation. J Heart Lung Transplant. 2007;26(4):319–23.PubMedCrossRefGoogle Scholar
  45. 45.
    Dardas T, et al. Transplant registrants with implanted left ventricular assist devices have insufficient risk to justify elective organ procurement and transplantation network status 1A time. J Am Coll Cardiol. 2012;60(1):36–43.PubMedCrossRefGoogle Scholar
  46. 46.
    Wu RS, Gupta S, Brown RN, et al. Clinical outcomes after cardiac transplantation in muscular dystrophy patients. J Heart Lung Transplant. 2010;29(4):432–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Komanapalli CB, et al. Becker’s muscular dystrophy and orthotopic heart transplantation: perioperative considerations. Heart Surg Forum. 2006;9(2):E604–6.PubMedGoogle Scholar
  48. 48.
    Baran DA. Induction therapy in cardiac transplantation: when and why? Heart Fail Clin. 2007;3(1):31–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Costanzo MR, et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29(8):914–56.PubMedCrossRefGoogle Scholar
  50. 50.
    Patel R, Terasaki PI. Significance of the positive crossmatch test in kidney transplantation. N Engl J Med. 1969;280(14):735–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Scornik JC, Meier-Kriesche HU. Blood transfusions in organ transplant patients: mechanisms of sensitization and implications for prevention. Am J Transplant. 2011;11(9):1785–91.PubMedCrossRefGoogle Scholar
  52. 52.
    Bishay ES, et al. The impact of HLA sensitization and donor cause of death in heart transplantation. Transplantation. 2000;70(1):220–2.PubMedGoogle Scholar
  53. 53.
    Lavee J, et al. Influence of panel-reactive antibody and lymphocytotoxic crossmatch on survival after heart transplantation. J Heart Lung Transplant. 1991;10(6):921–9. discussion 929–30.PubMedGoogle Scholar
  54. 54.
    Rebibou JM, et al. Flow cytometric evaluation of pregnancy-induced anti-HLA immunization and blood transfusion-induced reactivation. Transplantation. 2002;74(4):537–40.PubMedCrossRefGoogle Scholar
  55. 55.
    Askar M, et al. HLA and MICA allosensitization patterns among patients supported by ventricular assist devices. J Heart Lung Transplant. 2013;32(12):1241–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Drakos SG, et al. Prevalence and risks of allosensitization in HeartMate left ventricular assist device recipients: the impact of leukofiltered cellular blood product transfusions. J Thorac Cardiovasc Surg. 2007;133(6):1612–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Arnaoutakis GJ, et al. Effect of sensitization in US heart transplant recipients bridged with a ventricular assist device: update in a modern cohort. J Thorac Cardiovasc Surg. 2011;142(5):1236–45. 1245 e1.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Pamboukian SV, et al. Relationship between bridging with ventricular assist device on rejection after heart transplantation. J Heart Lung Transplant. 2005;24(3):310–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Loh E, et al. Role of panel-reactive antibody cross-reactivity in predicting survival after orthotopic heart transplantation. J Heart Lung Transplant. 1994;13(2):194–201.PubMedGoogle Scholar
  60. 60.
    Bray RA, et al. Transplanting the highly sensitized patient: the Emory algorithm. Am J Transplant. 2006;6(10):2307–15.PubMedCrossRefGoogle Scholar
  61. 61.
    Stehlik J, et al. Utility of virtual crossmatch in sensitized patients awaiting heart transplantation. J Heart Lung Transplant. 2009;28(11):1129–34.PubMedCrossRefGoogle Scholar
  62. 62.
    Chang D, Kobashigawa J. The use of the calculated panel-reactive antibody and virtual crossmatch in heart transplantation. Curr Opin Organ Transplant. 2012;17(4):423–6.PubMedGoogle Scholar
  63. 63.
    Cecka JM. Calculated PRA (CPRA): the new measure of sensitization for transplant candidates. Am J Transplant. 2010;10(1):26–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Eckman PM, et al. Management of the sensitized adult heart transplant candidate. Clin Transplant. 2010;24(6):726–34.PubMedCrossRefGoogle Scholar
  65. 65.
    Velez M, Johnson MR. Management of allosensitized cardiac transplant candidates. Transplant Rev (Orlando). 2009;23(4):235–47.CrossRefGoogle Scholar
  66. 66.
    Kobashigawa J, et al. Report from a consensus conference on the sensitized patient awaiting heart transplantation. J Heart Lung Transplant. 2009;28(3):213–25.PubMedCrossRefGoogle Scholar
  67. 67.
    Wells CM, Rangasetty U, Subramaniam K. Imaging in heart failure: role of preoperative imaging and intraoperative transesophageal echocardiography for heart failure surgery. Int Anesthesiol Clin. 2012;50(3):55–82.PubMedCrossRefGoogle Scholar
  68. 68.
    Romano P, Mangion JR. The role of intraoperative transesophageal echocardiography in heart transplantation. Echocardiography. 2002;19:599–604.PubMedCrossRefGoogle Scholar
  69. 69.
    Aziz TM, et al. Orthotopic cardiac transplantation technique: a survey of current practice. Ann Thorac Surg. 1999;68(4):1242–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Lower RR, Stofer RC, Shumway NE. Homovital transplantation of the heart. J Thorac Cardiovasc Surg. 1961;41:196–204.PubMedGoogle Scholar
  71. 71.
    Sarsam MA, et al. An alternative surgical technique in orthotopic cardiac transplantation. J Card Surg. 1993;8(3):344–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Sievers HH, et al. An alternative technique for orthotopic cardiac transplantation, with preservation of the normal anatomy of the right atrium. Thorac Cardiovasc Surg. 1991;39(2):70–2.PubMedCrossRefGoogle Scholar
  73. 73.
    el Gamel A, et al. Orthotopic cardiac transplantation: a comparison of standard and bicaval Wythenshawe techniques. J Thorac Cardiovasc Surg. 1995;109(4):721–9. discussion 729–30.PubMedCrossRefGoogle Scholar
  74. 74.
    Jeevanandam V, et al. Donor tricuspid annuloplasty during orthotopic heart transplantation: long-term results of a prospective controlled study. Ann Thorac Surg. 2006;82(6):2089–95. discussion 2095.PubMedCrossRefGoogle Scholar
  75. 75.
    Meyer SR, et al. Declining need for permanent pacemaker insertion with the bicaval technique of orthotopic heart transplantation. Can J Cardiol. 2005;21(2):159–63.PubMedGoogle Scholar
  76. 76.
    Traversi E, et al. The bicaval anastomosis technique for orthotopic heart transplantation yields better atrial function than the standard technique: an echocardiographic automatic boundary detection study. J Heart Lung Transplant. 1998;17(11):1065–74.PubMedGoogle Scholar
  77. 77.
    Jacob S, Sellke F. Is bicaval orthotopic heart transplantation superior to the biatrial technique? Interact Cardiovasc Thorac Surg. 2009;9(2):333–42.PubMedCrossRefGoogle Scholar
  78. 78.
    Weiss ES, et al. Outcomes in bicaval versus biatrial techniques in heart transplantation: an analysis of the UNOS database. J Heart Lung Transplant. 2008;27(2):178–83.PubMedCrossRefGoogle Scholar
  79. 79.
    Davies RR, et al. Standard versus bicaval techniques for orthotopic heart transplantation: an analysis of the United Network for Organ Sharing database. J Thorac Cardiovasc Surg. 2010;140(3):700–8. 708 e1–2.PubMedCrossRefGoogle Scholar
  80. 80.
    Despotis GJ, et al. Factors associated with excessive postoperative blood loss and hemostatic transfusion requirements: a multivariate analysis in cardiac surgical patients. Anesth Analg. 1996;82(1):13–21.PubMedGoogle Scholar
  81. 81.
    Hyde JA, Chinn JA, Graham TR. Platelets and cardiopulmonary bypass. Perfusion. 1998;13(6):389–407.PubMedCrossRefGoogle Scholar
  82. 82.
    Tanaka K, et al. Alterations in coagulation and fibrinolysis associated with cardiopulmonary bypass during open heart surgery. J Cardiothorac Anesth. 1989;3(2):181–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Butterworth J, et al. Pharmacokinetics of epsilon-aminocaproic acid in patients undergoing aortocoronary bypass surgery. Anesthesiology. 1999;90(6):1624–35.PubMedCrossRefGoogle Scholar
  84. 84.
    Dowd NP, et al. Pharmacokinetics of tranexamic acid during cardiopulmonary bypass. Anesthesiology. 2002;97(2):390–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Sharma V, et al. The association between tranexamic acid and convulsive seizures after cardiac surgery: a multivariate analysis in 11,529 patients. Anaesthesia. 2014;69(2):124–30.PubMedCrossRefGoogle Scholar
  86. 86.
    Dietrich W, Spannagl M. Caveat against the use of activated recombinant factor VII for intractable bleeding in cardiac surgery. Anesth Analg. 2002;94(5):1369–70. author reply 1370–1.PubMedCrossRefGoogle Scholar
  87. 87.
    Kwon MH, et al. Primary graft dysfunction does not lead to increased cardiac allograft vasculopathy in surviving patients. J Thorac Cardiovasc Surg. 2013;145(3):869–73.PubMedCrossRefGoogle Scholar
  88. 88.
    Kobashigawa J, Zuckerman A, Macdonald P, et al. ISHLT CONSENSUS: Report from a consensus conference on primary graft dysfunction after cardiac transplantation. J Heart Lung Transplant. 2014;33(4):327–40.PubMedCrossRefGoogle Scholar
  89. 89.
    Russo MJ, et al. Factors associated with primary graft failure after heart transplantation. Transplantation. 2010;90(4):444–50. doi: 10.1097/TP.0b013e3181e6f1eb.PubMedCrossRefGoogle Scholar
  90. 90.
    Amarelli C, et al. Early graft failure after heart transplant: risk factors and implications for improved donor-recipient matching. Interact Cardiovasc Thorac Surg. 2012;15(1):57–62.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    D’Ancona G, et al. Primary graft failure after heart transplantation: the importance of donor pharmacological management. Transplant Proc. 2010;42(3):710–2.PubMedCrossRefGoogle Scholar
  92. 92.
    Lima B, et al. Marginal cardiac allografts do not have increased primary graft dysfunction in alternate list transplantation. Circulation. 2006;114(1 Suppl):I27–32.PubMedGoogle Scholar
  93. 93.
    Segovia J, Cosio DG, Barcelo JM, et al. RADIAL: a novel primary graft failure risk score in heart transplantation. J Heart Lung Transplant. 2011;30:644–51.PubMedCrossRefGoogle Scholar
  94. 94.
    Cosío Carmena MDG, et al. Primary graft failure after heart transplantation: characteristics in a contemporary cohort and performance of the RADIAL risk score. J Heart Lung Transplant. 2013;32(12):1187–95.PubMedCrossRefGoogle Scholar
  95. 95.
    Russo MJ, et al. The effect of ischemic time on survival after heart transplantation varies by donor age: an analysis of the United Network for Organ Sharing database. J Thorac Cardiovasc Surg. 2007;133(2):554–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Zaroff JG, et al. Consensus conference report: maximizing use of organs recovered from the cadaver donor: cardiac recommendations, March 28–29, 2001, Crystal City, VA. Circulation. 2002;106(7):836–41.PubMedCrossRefGoogle Scholar
  97. 97.
    Valero R. Donor management: one step forward. Am J Transplant. 2002;2(8):693–4.PubMedCrossRefGoogle Scholar
  98. 98.
    Hicks M, et al. Organ preservation. Methods Mol Biol. 2006;333:331–74.PubMedGoogle Scholar
  99. 99.
    Karmazyn M. The role of the myocardial sodium-hydrogen exchanger in mediating ischemic and reperfusion injury. From amiloride to cariporide. Ann N Y Acad Sci. 1999;874:326–34.PubMedCrossRefGoogle Scholar
  100. 100.
    Lazdunski M, Frelin C, Vigne P. The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol. 1985;17(11):1029–42.PubMedCrossRefGoogle Scholar
  101. 101.
    Jahania MS, et al. Heart preservation for transplantation: principles and strategies. Ann Thorac Surg. 1999;68(5):1983–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Demmy TL, et al. Organ preservation solutions in heart transplantation—patterns of usage and related survival. Transplantation. 1997;63(2):262–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Stein DG, et al. Cardiac preservation in patients undergoing transplantation. A clinical trial comparing University of Wisconsin solution and Stanford solution. J Thorac Cardiovasc Surg. 1991;102(5):657–65.PubMedGoogle Scholar
  104. 104.
    Rosenbaum DH, et al. Perfusion preservation versus static preservation for cardiac transplantation: effects on myocardial function and metabolism. J Heart Lung Transplant. 2008;27(1):93–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Jacobs S, Rega F, Meyns B. Current preservation technology and future prospects of thoracic organs. Part 2: Heart. Curr Opin Organ Transplant. 2010;15(2):156–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Garbade J, et al. Functional, metabolic, and morphological aspects of continuous, normothermic heart preservation: effects of different preparation and perfusion techniques. Tissue Eng Part C Methods. 2009;15(2):275–83.PubMedCrossRefGoogle Scholar
  107. 107.
    McCurry K, et al. 294: Prospective multi-center safety and effectiveness evaluation of the organ care system device for cardiac use (PROCEED). J Heart Lung Transplant. 2008;27(2):S166.CrossRefGoogle Scholar
  108. 108.
  109. 109.
    Dobson GP. Organ arrest, protection and preservation: natural hibernation to cardiac surgery. Comp Biochem Physiol B Biochem Mol Biol. 2004;139(3):469–85.PubMedCrossRefGoogle Scholar
  110. 110.
    Dobson GP, Jones MW. Adenosine and lidocaine: a new concept in nondepolarizing surgical myocardial arrest, protection, and preservation. J Thorac Cardiovasc Surg. 2004;127(3):794–805.PubMedCrossRefGoogle Scholar
  111. 111.
    Rudd DM, Dobson GP. Toward a new cold and warm nondepolarizing, normokalemic arrest paradigm for orthotopic heart transplantation. J Thorac Cardiovasc Surg. 2009;137(1):198–207.PubMedCrossRefGoogle Scholar
  112. 112.
    Rudd DM, Dobson GP. Eight hours of cold static storage with adenosine and lidocaine (Adenocaine) heart preservation solutions: toward therapeutic suspended animation. J Thorac Cardiovasc Surg. 2011;142(6):1552–61.PubMedCrossRefGoogle Scholar
  113. 113.
    Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–35.PubMedCrossRefGoogle Scholar
  114. 114.
    de Groot H, Rauen U. Ischemia-reperfusion injury: processes in pathogenetic networks: a review. Transplant Proc. 2007;39(2):481–4.PubMedCrossRefGoogle Scholar
  115. 115.
    Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res. 2004;61(3):372–85.PubMedCrossRefGoogle Scholar
  116. 116.
    Wong R, Steenbergen C, Murphy E. Mitochondrial permeability transition pore and calcium handling. Methods Mol Biol. 2012;810:235–42.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Rezkalla SH, Kloner RA. No-reflow phenomenon. Circulation. 2002;105(5):656–62.PubMedCrossRefGoogle Scholar
  118. 118.
    Cooley DA, Reul GJ, Wukasch DC. Ischemic contracture of the heart: “stone heart”. Am J Cardiol. 1972;29(4):575–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Verma S, et al. Fundamentals of reperfusion injury for the clinical cardiologist. Circulation. 2002;105(20):2332–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Buckberg GD. Studies of hypoxemic/reoxygenation injury: I. Linkage between cardiac function and oxidant damage. J Thorac Cardiovasc Surg. 1995;110(4 Pt 2):1164–70.PubMedCrossRefGoogle Scholar
  121. 121.
    Ihnken K, et al. Normoxic cardiopulmonary bypass reduces oxidative myocardial damage and nitric oxide during cardiac operations in the adult. J Thorac Cardiovasc Surg. 1998;116(2):327–34.PubMedCrossRefGoogle Scholar
  122. 122.
    Thomas NJ, et al. Controlled cardiac reoxygenation in adults with ischemic heart disease. J Thorac Cardiovasc Surg. 1999;117(3):630–2.PubMedCrossRefGoogle Scholar
  123. 123.
    Souidi N, Stolk M, Seifert M. Ischemia-reperfusion injury: beneficial effects of mesenchymal stromal cells. Curr Opin Organ Transplant. 2013;18(1):34–43.PubMedCrossRefGoogle Scholar
  124. 124.
    Kukreja RC, Yin C, Salloum FN. MicroRNAs: new players in cardiac injury and protection. Mol Pharmacol. 2011;80(4):558–64.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Marasco SF, et al. Early institution of mechanical support improves outcomes in primary cardiac allograft failure. J Heart Lung Transplant. 2005;24(12):2037–42.PubMedCrossRefGoogle Scholar
  126. 126.
    Mihaljevic T, et al. Mechanical circulatory support after heart transplantation. Eur J Cardiothorac Surg. 2012;41(1):200–6. discussion 206.PubMedGoogle Scholar
  127. 127.
    D’Alessandro C, et al. Predictive risk factors for primary graft failure requiring temporary extra-corporeal membrane oxygenation support after cardiac transplantation in adults. Eur J Cardiothorac Surg. 2011;40(4):962–9.PubMedGoogle Scholar
  128. 128.
    Leprince P, et al. Peripheral extracorporeal membrane oxygenation (ECMO) in patients with posttransplant cardiac graft failure. Transplant Proc. 2005;37(6):2879–80.PubMedCrossRefGoogle Scholar
  129. 129.
    Patarroyo M, et al. Pre-operative risk factors and clinical outcomes associated with vasoplegia in recipients of orthotopic heart transplantation in the contemporary era. J Heart Lung Transplant. 2012;31(3):282–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Wong RC, et al. Tricuspid regurgitation after cardiac transplantation: an old problem revisited. J Heart Lung Transplant. 2008;27(3):247–52.PubMedCrossRefGoogle Scholar
  131. 131.
    Anderson CA, et al. Severity of intraoperative tricuspid regurgitation predicts poor late survival following cardiac transplantation. Ann Thorac Surg. 2004;78(5):1635–42.PubMedCrossRefGoogle Scholar
  132. 132.
    Brown NE, et al. Tricuspid annuloplasty significantly reduces early tricuspid regurgitation after biatrial heart transplantation. J Heart Lung Transplant. 2004;23(10):1160–2.PubMedCrossRefGoogle Scholar
  133. 133.
    Kissmeyer-Nielsen F, Olsen S, Peterson VP, Fjeldborg O. Hyperacute rejection of kidney allografts associated with preexisting humoral antibodies against donor cells. Lancet. 1966;2:662–5.PubMedCrossRefGoogle Scholar
  134. 134.
    Rose AG. Understanding the pathogenesis and the pathology of hyperacute cardiac rejection. Cardiovasc Pathol. 2002;11:171–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Cardiothoracic AnesthesiaCleveland Clinic FoundationClevelandUSA
  2. 2.Department of AnesthesiologyBarnes Jewish HospitalSt. LouisUSA

Personalised recommendations