Circular Dichroism Spectroscopy for Structural Characterization of Proteins

  • Søren Vrønning Hoffmann
  • Mathias Fano
  • Marco van de Weert
Chapter
Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

The large size, physicochemical complexity and rather labile nature of proteins present significant challenges in delivery of pharmaceutical proteins. First, the native structure of a given protein drug molecule must be characterized in order to define the active compound. Next, for the successful development of a formulation or drug delivery system for said molecule, compatibility of the system with the protein should be demonstrated. This is a challenging task as formulations and delivery systems often contain chromophores or particulates that absorb or scatter light, preventing the direct use of several of the most commonly used techniques for structural characterization.

The single most important spectroscopic method for the rapid elucidation of protein structure in solution is circular dichroism (CD) spectroscopy. In this chapter, an overview of the method is given, with a discussion of the instrumentation, several specific examples of applications and general experimental recommendations for CD experiments, including a special perspective on challenging samples as may be encountered in pharmaceutical sciences.

Keywords

Circular dichroism (CD) Synchrotron radiation CD Secondary, tertiary and quaternary structure Protein folding 

References

  1. Abdul-Gader A, Miles AJ, Wallace BA (2011) A reference dataset for the analyses of membrane protein secondary structures and transmembrane residues using circular dichroism spectroscopy. Bioinformatics 27:1630–1636CrossRefPubMedGoogle Scholar
  2. Adzhubei AA, Sternberg MJE, Makarov AA (2013) Polyproline-ll helix in proteins: structure and function. J Mol Biol 425:2100–2132CrossRefPubMedGoogle Scholar
  3. Andrade MA, Chacón P, Merelo JJ, Morán F (1993) Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng 6:383–390CrossRefPubMedGoogle Scholar
  4. Anslyn EV, Dougherty DA (2005) Stereochemistry (Chapter 6). In: Modern physical organic chemistry. University Science Books, USAGoogle Scholar
  5. Barlow DJ, Thornton JM (1988) Helix geometry in proteins. J Mol Biol 201:601–619CrossRefPubMedGoogle Scholar
  6. Barron LD (2004) Molecular light scattering and optical activity. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. Barron LD (2009) An introduction to chirality at the nanoscale. In: Amabilino DB (ed) Chirality at the nanoscale: nanoparticles, surfaces, materials and more. Wiley, WeinheimGoogle Scholar
  8. Becktel W, Schellman J (1987) Protein stability curves. Biopolymers 11:1859–1877CrossRefGoogle Scholar
  9. Burke RW, Deardorff ER, Menis O (1972) Liquid absorbance standards. J Res Natl Bur Stand A 76A:51–64CrossRefGoogle Scholar
  10. Burke RW, Mavrodineanu R (1977) Certification and use of acidic potassium dichromate solutions as an ultraviolet absorbance standard—SRM 935. National bureau of standards special publications. U.S. Government Printing office, WashingtonGoogle Scholar
  11. Cantor CR, Shimmel PR (1980) Biophysical chemistry part II. Freeman, New YorkGoogle Scholar
  12. Damodaran S (2005) Protein stabilization of emulsions and foams. J Food Sci 70:R54–R66CrossRefGoogle Scholar
  13. Day L, Zhai J, Xu M, Jones NC, Hoffmann SV, Wooster TJ (2014) Conformational changes of globular proteins adsorbed at oil-in-water emulsion interfaces examined by synchrotron radiation circular dichroism. Food Hydrocolloids 34:78–87CrossRefGoogle Scholar
  14. Dickinson E (1999) Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology. Colloids Surf B 15:161–176CrossRefGoogle Scholar
  15. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890CrossRefPubMedGoogle Scholar
  16. Edelhoch H (1967) Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6:1948–1954CrossRefPubMedGoogle Scholar
  17. Fitzkee NC, Rose GD (2004) Reassessing random-coil statistics in unfolded proteins. Proc Natl Acad Sci U S A 101:12497–12502CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fodje MN, Al-Karadaghi S (2002) Occurrence, conformational features and amino acid propensities for the π-helix. Protein Eng 15:353–358CrossRefPubMedGoogle Scholar
  19. Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23:566–579CrossRefPubMedGoogle Scholar
  20. Greenfield N (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890CrossRefPubMedPubMedCentralGoogle Scholar
  21. Haupt GW (1952) An alkaline solution of potassium chromate is a transmittancy standard in the ultra violet. J Res Natl Bur Stand 48:414–416CrossRefGoogle Scholar
  22. Hennessey JP Jr, Johnson WC Jr (1981) Information content in the circular dichroism of proteins. Biochemistry 20:1085–1094CrossRefPubMedGoogle Scholar
  23. Husband FA, Garrood MJ, Mackie AR, Burnett GR, Wilde PJ (2001) Adsorbed protein secondary and tertiary structures by circular dichroism and infrared spectroscopy with refractive index matched emulsions. J Agric Food Chem 49:859–866CrossRefPubMedGoogle Scholar
  24. Hutchinson EG, Thornton JM (1994) A revised set of potentials for β-turn formation in proteins. Protein Sci 3:2207–2216CrossRefPubMedPubMedCentralGoogle Scholar
  25. Huus K, Havelund S, Olsen HB, van de Weert M, Frokjaer S (2005) Thermal dissociation and unfolding of insulin. Biochemistry 44:11171–11177CrossRefPubMedGoogle Scholar
  26. Huus K, Havelund S, Olsen HB, van de Weert M, Frokjaer S (2006) Chemical and thermal stability of insulin: effects of zinc and ligand binding to the insulin zinc-hexamer. Pharm Res 23:2611–2620CrossRefPubMedGoogle Scholar
  27. IUPAC-IUB Commission on Biochemical Nomenclature (1970) Abbreviations and symbols for the description of the conformation of polypeptide chains. J Biol Chem 245:6489–6497Google Scholar
  28. Janes RW, Wallace BA (2009) An introduction to circular dichroism and synchrotron radiation circular dichroism spectroscopy. In: Wallace BA, Janes RW (eds) Modern techniques for circular dichroism and synchrotron radiation circular dichroism spectroscopy. Advances in biomedical spectroscopy, vol 1. IOS Press, Amsterdam, p 1–18.Google Scholar
  29. Jensen MH, Wahlund PO, Toft KN, Jacobsen JK, Steensgaard DB, van de Weert M, Havelund S, Vestergaard B (2013) Small angle X-ray scattering-based elucidation of the self-association mechanism of human insulin analogue lys(B29)(N(ε)ω-carboxyheptadecanoyl) des(B30). Biochemistry 52:282–294CrossRefPubMedGoogle Scholar
  30. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2257–2637CrossRefGoogle Scholar
  31. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139CrossRefPubMedGoogle Scholar
  32. Lees JG, Miles AJ, Wien F, Wallace BA (2006) A reference database for circular dichroism spectroscopy covering fold and secondary structure space. Bioinformatics 22:1955–1962CrossRefPubMedGoogle Scholar
  33. Levitt M, Chothia C (1976) Structural patterns in proteins. Nature 261:552–558CrossRefPubMedGoogle Scholar
  34. McClements DJ (2002) Modulation of globular protein functionality by weakly interacting cosolvents. Crit Rev Food Sci Nutr 42:417–471CrossRefPubMedGoogle Scholar
  35. McPhie P (2001) Circular dichroism studies of proteins in films and in solution: estimation of secondary structure by g-factor analysis. Anal Biochem 293:109–119CrossRefPubMedGoogle Scholar
  36. Miles A, Wien F, Lees J, Rodger A, Janes R, Wallace B (2003) Calibration and standardisation of synchrotron radiation circular dichroism and conventional circular dichroism spectrophotometers. Spectroscopy 17:653–661CrossRefGoogle Scholar
  37. Miles AJ, Wien F, Wallace BA (2004) Redetermination of the extinction coefficient of camphor-10-sulfonic acid, a calibration standard for circular dichroism spectroscopy. Anal Biochem 335:338–339CrossRefPubMedGoogle Scholar
  38. Miles AJ, Wallace BA (2006) Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chem Soc Rev 35:39–51CrossRefPubMedGoogle Scholar
  39. Miles AJ, Hoffmann SV, Tao Y, Janes RW, Wallace BA (2007) Synchrotron radiation circular dichroism (SRCD) spectroscopy: new beamlines and new applications in biology. Spectroscopy 21:245–255CrossRefGoogle Scholar
  40. Miles AJ, Janes RW, Brown A, Clarke DT, Sutherland JC, Tao Y, Wallace BA, Hoffmann SV (2008) Light flux density threshold at which protein denaturation is induced by synchrotron radiation circular dichroism beamlines. J Synchrotron Radiat 15:420–422CrossRefPubMedGoogle Scholar
  41. Murray BS (2011) Rheological properties of protein films. Curr Opin Colloid Interface Sci 16:27–35CrossRefGoogle Scholar
  42. Neergaard MS, Nielsen AD, Parshad H, Van De Weert M (2014) Stability of monoclonal antibodies at high-concentration: head-to-head comparison of the IgG1 and IgG4 subclass. J Pharm Sci 103:115–127CrossRefPubMedGoogle Scholar
  43. Noble JE, Bailey MJA (2009) Quantitation of protein. Methods Enzymol 463:73–95CrossRefPubMedGoogle Scholar
  44. Nordén B, Rodger A, Daffron T (2010) Linear dichroism and circular dichroism. A text-book on polarized-light spectroscopy. RCS Publishing, CambridgeGoogle Scholar
  45. Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423CrossRefPubMedPubMedCentralGoogle Scholar
  46. Physical Properties of Glycerine and Its Solutions (1963) Physical properties of glycerine and its solutions. Glycerine Producers’ Association, New YorkGoogle Scholar
  47. Provencher SW, Glöckner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20:33–37CrossRefPubMedGoogle Scholar
  48. Raussens V, Ruysschaert J-M, Goormaghtigh E (2003) Protein concentration is not an absolute prerequisite for the determination of secondary structure from circular dichroism spectra: a new scaling method. Anal Biochem 319:114–121CrossRefPubMedGoogle Scholar
  49. Rosenfeld L (1929) Quantenmechanische theorie der natürlichen optischen aktivität von flüssigkeiten und gasen. Z Phys 52(161–174):921Google Scholar
  50. Sarmento B, Ferreira DC, Jorgensen L, van de Weert M (2007) Probing insulin’s secondary structure after entrapment into alginate/chitosan nanoparticles. Eur J Pharm Biopharm 65:10–17CrossRefPubMedGoogle Scholar
  51. Saxena VP, Wetlaufer DB (1971) A new basis for interpreting the circular dichroic spectra of proteins. Proc Natl Acad Sci U S A 68:969–972CrossRefPubMedPubMedCentralGoogle Scholar
  52. Schaeffer RD, Daggett V (2011) Protein folds and protein folding. Protein Eng Des Sel 24:11–19CrossRefPubMedGoogle Scholar
  53. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260CrossRefPubMedGoogle Scholar
  54. Sreerama N, Woody RW (2004) Computation and analysis of protein circular dichroism spectra. Methods Enzymol 383:318–351CrossRefPubMedGoogle Scholar
  55. Steensgaard DB, Schluckebier G, Strauss HM, Norrman M, Thomsen JK, Friderichsen AV, Havelund S, Jonassen I (2013) Ligand-controlled assembly of hexamers, dihexamers, and linear multihexamer structures by the engineered acylated insulin degludec. Biochemistry 52:295–309CrossRefPubMedGoogle Scholar
  56. Toumadje A, Alcorn SW, Johnson WC Jr (1992) Extending CD spectra of proteins to 168 nm improves the analysis for secondary structure. Anal Biochem 200:321–331CrossRefPubMedGoogle Scholar
  57. Travis JC, Acosta JC, Andor G et al (2005) Intrinsic wavelength standard absorption bands in holmium oxide solution for UV/visible molecular absorption spectrophotometry. J Phys Chem Ref Data 34:41–56CrossRefGoogle Scholar
  58. Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804:1231–1264CrossRefPubMedPubMedCentralGoogle Scholar
  59. van Slooten ML, Visser AJ, van Hoek A, Storm G, Crommelin DJ, Jiskoot W (2000) Conformational stability of human interferon-gamma on association with and dissociation from liposomes. J Pharm Sci 89:1605–1619CrossRefPubMedGoogle Scholar
  60. Wallace BA, Janes RW (2001) Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics. Curr Opin Chem Biol 5:567–571CrossRefPubMedGoogle Scholar
  61. Wallace BA (2009) Protein characterization by synchrotron radiation circular dichroism spectroscopy. Q Rev Biophys 42:317–370CrossRefPubMedGoogle Scholar
  62. Wallace BA, Gekko K, Hoffmann SV, Lin Y-H, Sutherland JC, Tao Y, Wien F, Janes RW (2011) Synchrotron radiation circular dichroism (SRCD) spectroscopy: an emerging method in structural biology for examining protein conformations and protein interactions. Nucl Instr Meth Phys Res A 649:177–178CrossRefGoogle Scholar
  63. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400CrossRefPubMedGoogle Scholar
  64. Whitmore L, Woollett B, Miles AJ, Klose DP, Janes RW, Wallace BA (2011) PCDDB: the protein circular dichroism data bank, a repository for circular dichroism spectral and metadata. Nucleic Acids Res 39:D480–D486CrossRefPubMedGoogle Scholar
  65. Wien F, Wallace BA (2005) Calcium fluoride micro cells for synchrotron radiation circular dichroism spectroscopy. Appl Spectrosc 59:1109–1113CrossRefPubMedGoogle Scholar
  66. Wilde PJ (2000) Interfaces: their role in foam and emulsion behaviour. Curr Opin Colloid Interface Sci 5:176–181CrossRefGoogle Scholar
  67. Wong BT, Zhai J, Hoffmann SV, Augustin M, Wooster TJ, Day L (2012) Conformational changes to deamidated wheat gliadins and β-casein upon adsorption to oil-water emulsion interfaces. Food Hydrocolloids 27:91–101CrossRefGoogle Scholar
  68. Zhai J, Miles AJ, Pattenden LK, Lee T-H, Augustin MA, Wallace BA, Aguilar M-I, Wooster TJ (2010) Changes in beta-lactoglobulin conformation at the oil/water interface of emulsions studied by synchrotron radiation circular dichroism spectroscopy. Biomacromolecules 11:2136–2142CrossRefPubMedGoogle Scholar
  69. Zhai J, Wooster TJ, Hoffmann SV, Lee T-H, Augustin MA, Aguilar M-I (2011) Structural rearrangement of β-lactoglobulin at different oil-water interfaces and its effect on emulsion stability. Langmuir 27:9227–9236CrossRefPubMedGoogle Scholar
  70. Zhai J, Hoffmann SV, Day L, Lee T-H, Augustin MA, Aguilar M-I, Wooster TJ (2012) Conformational changes of α-lactalbumin adsorbed at oil-water interfaces: interplay between protein structure and emulsion stability. Langmuir 28:2357–2367CrossRefPubMedGoogle Scholar

Copyright information

© Controlled Release Society 2016

Authors and Affiliations

  • Søren Vrønning Hoffmann
    • 1
  • Mathias Fano
    • 2
  • Marco van de Weert
    • 3
  1. 1.ISA, Department of Physics and AstronomyAarhus UniversityAarhus CDenmark
  2. 2.Bioneer:FARMACopenhagen ØDenmark
  3. 3.University of CopenhagenCopenhagen ØDenmark

Personalised recommendations