Advertisement

Fractal Analysis in MATLAB: A Tutorial for Neuroscientists

  • Juan Ruiz de Miras
Chapter
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)

Abstract

MATLAB is one of the software platforms most widely used for scientific computation. MATLAB includes a large set of functions, packages, and toolboxes that make it simple and fast to obtain complex mathematical and statistical computations for many applications. In this chapter, we review some tools available in MATLAB for performing fractal analyses on typical neuroscientific data in a practical way. We provide detailed examples of how to calculate the fractal dimension of 1D, 2D, and 3D data in MATLAB. Furthermore, we review other software packages and several online tools available for fractal analysis.

Keywords

Fractal analysis Fractal dimension MATLAB 

Notes

Acknowledgments

This work has been partially supported by the University of Jaén, the Caja Rural de Jaén, the Ministry of Economy and Competitiveness, and the European Union (via ERDF funds) through the research projects UJA2013/12/04, UJA2013/08/35, TIN2014-58218-R, and MTM2014-61312-EXP.

References

  1. 1.
    Abry P, Jaffard S, Wendt H. Irregularities and scaling in signal and image processing: multifractal analysis. In: M. Frame Ed. Benoit Mandelbrot: a life in many dimensions. World Scientific. Singapore. 2012.Google Scholar
  2. 2.
    Ashburner J. SPM: a history. Neuroimage. 2012;62(2):791–800. SPM software available from http://www.fil.ion.ucl.ac.uk/spm.CrossRefPubMedGoogle Scholar
  3. 3.
    BENOIT. Fractal Analysis System. TruSoft Inc. Available from http://www.trusoft-international.com.
  4. 4.
    Bourke P. Fractal Dimension Calculator. 2003. Available from http://paulbourke.net/fractals/fracdim.
  5. 5.
    Crampton S. A Java Applet to Compute Fractal Dimensions. Available from http://www.stevec.org/fracdim.
  6. 6.
    Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG. J Neurosci Methods. 2004;134:9–21. MATLAB toolbox available from http://sccn.ucsd.edu/eeglab.CrossRefPubMedGoogle Scholar
  7. 7.
    Di Ieva A, Esteban FJ, Grizzi F, Klonowski W, Martín-Landrove M. Fractals in the neurosciences, part II: clinical applications and future perspectives. Neuroscientist. 2015;21(1):30–43.CrossRefPubMedGoogle Scholar
  8. 8.
    Esteller R, Vachtsevanos G, Echauz J, Litt B. A comparison of waveform fractal dimension algorithms. IEEE Trans Circuits Syst I Fund Theory Appl. 2001;48(2):177–83.CrossRefGoogle Scholar
  9. 9.
    FDim. Laboratory for computational longitudinal neuroimaging. Harvard Medical School. Available from http://reuter.mit.edu/software/fdim.
  10. 10.
    Grossu IV, Grossu I, Felea D, Besliu C, Jipa AL, Esanu T, Bordeianu CC, Stan E. Hyper-fractal analysis: visual tool for estimating the fractal dimension of 4D objects. Comput Phys Commun. 2013;184(4):1344–5.CrossRefGoogle Scholar
  11. 11.
    HarFa. Harmonic and fractal image analyzer. Available from http://www.fch.vutbr.cz/lectures/imagesci.
  12. 12.
    Higuchi T. Approach to an irregular time series on the basis of the fractal theory. Physica D Nonlinear Phenomena. 1988;31(2):277–83.CrossRefGoogle Scholar
  13. 13.
    Ihnlen EAF. Introduction to multifractal detrended fluctuation analysis is in Matlab. Front Physiol Fractal Physiol. 2012;3(141):1–18.Google Scholar
  14. 14.
    INRIA. FracLab: a fractal analysis tool for signal and image processing. Available from http://fraclab.saclay.inria.fr.
  15. 15.
    Jiménez J, López AM, Cruz J, Esteban FJ, Navas J, Villoslada P, Ruiz de Miras J. A web platform for the interactive visualization and analysis of the 3D fractal dimension of MRI data. J Biomed Inform. 2014;51:176–90.CrossRefPubMedGoogle Scholar
  16. 16.
    Karperien, A. FracLac for ImageJ. 1999-2013. Available from http://rsbweb.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm.
  17. 17.
    Katz M. Fractals and the analysis of waveforms. Comput Biol Med. 1988;18(3):145–56.CrossRefPubMedGoogle Scholar
  18. 18.
    Mandelbrot BB. The fractal geometry of nature. New York: Freeman; 1982.Google Scholar
  19. 19.
    Moisy F. Computing a fractal dimension with Matlab: 1D, 2D and 3D Box-counting. Available from http://www.mathworks.com/matlabcentral/fileexchange/13063-boxcount.
  20. 20.
    Monge-Álvarez J. Higuchi and Katz fractal dimension measures. Available from http://www.mathworks.com/matlabcentral/fileexchange/50290-higuchi-and-katz-fractal-dimension-measures.
  21. 21.
    MRICron software. Available from: http://www.mccauslandcenter.sc.edu/mricro/mricron.
  22. 22.
    Rasband, WS. ImageJ. Image processing and analysis in Java. 1997-2015. Available from http://imagej.nih.gov/ij.
  23. 23.
    Selvman S. Complete Higuchi fractal dimension algorithm. Available from http://www.mathworks.com/matlabcentral/fileexchange/30119-complete-higuchi-fractal-dimension-algorithm.
  24. 24.
    Shen J. Tools for NIfTI and ANALYZE image. 2005. Available from http://www.mathworks.com/matlabcentral/fileexchange/8797-tools-for-nifti-and-analyze-image.
  25. 25.
    Shoelson B. edfRead: a simple file reader for European Data Formatted (EDF-) files. Available from http://www.mathworks.com/matlabcentral/fileexchange/31900-edfread.
  26. 26.
    Sumanth. Simple Higuchi fractal dimension implementation. 2012. Available from http://www.mathworks.com/matlabcentral/fileexchange/36027-simple-higuchi-fractal-dimension-implementation.
  27. 27.
    Vuidel G. Fractalyse – fractal analysis software. Available from http://www.fractalyse.org.
  28. 28.
    Wendt H. Wavelet leader and bootstrap based MultiFractal analysis (WLBMF) toolbox. Available from http://www.irit.fr/~Herwig.Wendt/software.html.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversity of JaénJaénSpain

Personalised recommendations