Histological Fractal-Based Classification of Brain Tumors

  • Omar S. Al-KadiEmail author
  • Antonio Di Ieva
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)


The structural complexity of brain tumor tissue represents a major challenge for effective histopathological diagnosis. Tumor vasculature is known to be heterogeneous and mixtures of patterns are usually present. Therefore, extracting key descriptive features for accurate quantification is not a straightforward task. Several steps are involved in the texture analysis process where tissue heterogeneity contributes to the variability of the results. One of the interesting aspects of the brain lies in its fractal nature. Many regions within the brain tissue yield similar statistical properties at different scales of magnification. Fractal-based analysis of the histological features of brain tumors can reveal the underlying complexity of tissue structure and angiostructure, also providing an indication of tissue abnormality development. It can further be used to quantify the chaotic signature of disease in order to distinguish between different temporal tumor stages and histopathological grades.

Brain meningioma subtype classifications improvement from histopathological images is the main focus of this chapter. Meningioma tissue texture exhibits a wide range of histological patterns whereby a single slide may show a combination of multiple patterns. Distinctive fractal patterns quantified in a multiresolution manner would be for better spatial relationship representation. Fractal features extracted from textural tissue patterns can be useful in characterizing meningioma tumors in terms of subtype classification, a challenging problem compared to histological grading, and furthermore can provide an objective measure for quantifying subtle features within subtypes that are hard to discriminate.


Fractal dimension Texture analysis Brain histopathology Meningioma Tissue characterization Pattern classification 


  1. 1.
    Agterberg FP. Fractals and spatial statistics of point patterns. J Earth Sci. 2013;24(1):1–11.CrossRefGoogle Scholar
  2. 2.
    Al-Kadi OS, Watson D. Texture analysis of aggressive and non-aggressive lung tumor CE CT images. IEEE Trans Biomed Eng. 2008;55(7):1822–30.CrossRefPubMedGoogle Scholar
  3. 3.
    Al-Kadi OS. Tumour grading and discrimination based on class assignment and quantitative texture analysis techniques. PhD Thesis. Brighton: University of Sussex; 2009.Google Scholar
  4. 4.
    Al-Kadi OS. A fractal dimension based optimal wavelet packet analysis technique for classification of meningioma brain tumours. IEEE International Conference on Image Processing; 2009. p. 4125–8.Google Scholar
  5. 5.
    Al-Kadi OS. Texture measures combination for improved meningioma classification of histopathological images. Pattern Recog. 2010;43(6):2043–53.CrossRefGoogle Scholar
  6. 6.
    Al-Kadi OS. A multiresolution clinical decision support system based on fractal model design for classification of histological brain tumours. Comput Med Imaging Graph. 2015;41:67–79.CrossRefPubMedGoogle Scholar
  7. 7.
    Al-Kadi OS, Chung DYF, Carlisle RC, Coussios CC, Noble JA. Quantification of ultrasonic texture intra-heterogeneity via volumetric stochastic modeling for tissue characterization. Med Image Anal. 2015;21(1):59–71.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Alexandratou E, Yova D, Gorpas D, Maragos P, Agrogiannis G, Kavantzas N. Texture analysis of tissues in Gleason grading of prostate cancer. In: Farkas DL, Nicolau DV, Leif RC, editors. Imaging, manipulation, and analysis of biomolecules, cells, and tissues VI. San Jose, CA: Proceedings of the Society of Photo-Optical Instrumentation Engineers; 2008. p. 685904–8.Google Scholar
  9. 9.
    Aushev AA, Barinov SP, Vasin MG, Drozdov YM, Ignatev YV, Izgorodin VM, et al. Alpha-spectrometry and fractal analysis of surface micro-images for characterisation of porous materials used in manufacture of targets for laser plasma experiments. Quant Electron. 2015;45(6):533–9.CrossRefGoogle Scholar
  10. 10.
    Bautista PA, Yagi Y. Staining correction in digital pathology by utilizing a dye amount table. J Digit Imaging. 2015;28(3):283–94.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cassot F, Lauwers F, Fouard C, Prohaska S, Lauwers-Cances V. A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex. Microcirculation. 2006;13(1):1–18.CrossRefPubMedGoogle Scholar
  12. 12.
    Clarke KC. Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Comput Geosci. 1986;12(5):713–22.CrossRefGoogle Scholar
  13. 13.
    Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory. 1990;36(5):961–1005.CrossRefGoogle Scholar
  14. 14.
    Demir C, Gultekin SH, Yener B. Learning the topological properties of brain tumors. IEEE/ACM Trans Comput Biol Bioinform. 2005;2(3):262–70.CrossRefPubMedGoogle Scholar
  15. 15.
    Di Ieva A, Grizzi F, Ceva-Grimaldi G, Aimar E, Serra S, Pisano P, et al. The microvascular network of the pituitary gland: a model for the application of fractal geometry to the analysis of angioarchitecture and angiogenesis of brain tumors. J Neurosurg Sci. 2010;54(2):49–54.PubMedGoogle Scholar
  16. 16.
    Di Ieva A, Grizzi F, Sherif C, Matula C, Tschabitscher M. Angioarchitectural heterogeneity in human glioblastoma multiforme: a fractal-based histopathological assessment. Microvasc Res. 2011;81(2):222–30.CrossRefPubMedGoogle Scholar
  17. 17.
    Di Ieva A. Fractal analysis of microvascular networks in malignant brain tumors. Clin Neuropathol. 2012;31(5):342–51.CrossRefPubMedGoogle Scholar
  18. 18.
    Di Ieva A, Bruner E, Widhalm G, Minchev G, Tschabitscher M, Grizzi F. Computer-assisted and fractal-based morphometric assessment of microvascularity in histological specimens of gliomas. Sci Rep. 2012;2:429–38.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Estevez J, Alayon S, Moreno L, Sigut J, Aguilar R. Cytological image analysis with a genetic fuzzy finite state machine. Comput Methods Programs Biomed. 2005;80:S3–15.CrossRefPubMedGoogle Scholar
  20. 20.
    Fatima K, Arooj A, Majeed H. A new texture and shape based technique for improving meningioma classification. Microsc Res Tech. 2014;77(11):862–73.CrossRefPubMedGoogle Scholar
  21. 21.
    Feng YJ, Liu Y. Fractal dimension as an indicator for quantifying the effects of changing spatial scales on landscape metrics. Ecol Indic. 2015;53:18–27.CrossRefGoogle Scholar
  22. 22.
    Gazit Y, Berk DA, Leunig M, Baxter LT, Jain RK. Scale-invariant behavior and vascular network formation in normal and tumor-tissue. Phys Rev Lett. 1995;75(12):2428–31.CrossRefPubMedGoogle Scholar
  23. 23.
    Gefen Y, Meir Y, Mandelbrot BB, Aharony A. Geometric implementation of hypercubic lattices with noninteger dimensionality by use of low lacunarity fractal lattices. Phys Rev Lett. 1983;50(3):145–8.CrossRefGoogle Scholar
  24. 24.
    Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B. Histopathological image analysis: a review. Biom Eng IEEE Rev. 2009;2:147–71.CrossRefGoogle Scholar
  25. 25.
    Heinzer S, Krucker T, Stampanoni M, Abela R, Meyer EP, Schuler A, et al. Hierarchical microimaging for multiscale analysis of large vascular networks. Neuroimage. 2006;32(2):626–36.CrossRefPubMedGoogle Scholar
  26. 26.
    Jackson T. Modeling tumor vasculature: molecular, cellular, and tissue level aspects and implications. New York: Springer; 2012.CrossRefGoogle Scholar
  27. 27.
    Khan AM, Rajpoot N, Treanor D, Magee D. A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans Biomed Eng. 2014;61(6):1729–38.CrossRefPubMedGoogle Scholar
  28. 28.
    Lessmann B, Nattkemper TW, Hans VH, Degenhard A. A method for linking computed image features to histological semantics in neuropathology. J Biomed Inform. 2007;40:631–41.CrossRefPubMedGoogle Scholar
  29. 29.
    Li X, Plataniotis KN. A complete color normalization approach to histopathology images using color cues computed from saturation-weighted statistics. IEEE Trans Biomed Eng. 2015;62(7):1862–73.CrossRefPubMedGoogle Scholar
  30. 30.
    Lin B, Yang ZR. A suggested lacunarity expression for sierpinski carpets. J Phys A Math Gen. 1986;19(2):L49–52.CrossRefGoogle Scholar
  31. 31.
    Lorthois S, Cassot F. Fractal analysis of vascular networks: insights from morphogenesis. J Theor Biol. 2010;262(4):614–33.CrossRefPubMedGoogle Scholar
  32. 32.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mandelbrot BB, van Ness JW. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968;10(4):422–37.CrossRefGoogle Scholar
  34. 34.
    Mandelbrot BB. Fractal geometry of nature. San Francisco: Freeman; 1982.Google Scholar
  35. 35.
    Onder D, Zengin S, Sarioglu S. A review on color normalization and color deconvolution methods in histopathology. Appl Immunohistochem Mol Morphol. 2014;22(10):713–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Paggi M, He QC. Evolution of the free volume between rough surfaces in contact. Wear. 2015;336:86–95.CrossRefGoogle Scholar
  37. 37.
    Pantic I, Dacic S, Brkic P, Lavrnja I, Jovanovic T, Pantic S, et al. Discriminatory ability of fractal and grey level co-occurrence matrix methods in structural analysis of hippocampus layers. J Theor Biol. 2015;370:151–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Peitgen HO, Jürgens H, Saupe D. Chaos and fractals: new frontiers of science. 2nd ed. New York: Springer; 2004.CrossRefGoogle Scholar
  39. 39.
    Peleg S, Naor J, Hartley R, Avnir D. Multiple resolution texture analysis and classification. Pattern Anal Mach Intel IEEE Trans. 1984;6(4):518–23.CrossRefGoogle Scholar
  40. 40.
    Petrou M, Gacia Sevilla P. Image processing: dealing with texture. Chichester, England: Wiley; 2006.Google Scholar
  41. 41.
    Qian W, Zhukov T, Song DS, Tockman MS. Computerized analysis of cellular features and biomarkers for cytologic diagnosis of early lung cancer. Anal Quant Cytol Histol. 2007;29(2):103–11.PubMedGoogle Scholar
  42. 42.
    Qureshi H, Rajpoot N, Wilson R, Nattkemper T, Hans VH, editors. Comparative analysis of discriminant wavelet packet features and raw image features for classification of meningioma subtypes. Medical image understanding and analysis. Aberystwyth: BMVA; 2007.Google Scholar
  43. 43.
    Qureshi H, Sertel O, Rajpoot N, Wilson R, Gurcan M. Adaptive discriminant wavelet packet transform and local binary patterns for meningioma subtype classification. Med Image Comput Comput-Assist Interv Proc. 2008;5242:196–204.Google Scholar
  44. 44.
    Seker H, Odetayo MO, Petrovic D, Naguib RNG. A fuzzy logic based-method for prognostic decision making in breast and prostate cancers. IEEE Trans Inf Technol Biomed. 2003;7(2):114–22.CrossRefPubMedGoogle Scholar
  45. 45.
    Sertel O, Kong J, Catalyurek UV, Lozanski G, Saltz JH, Gurcan MN. Histopathological image analysis using model-based intermediate representations and color texture: follicular lymphoma grading. J Signal Proc Syst Signal Image Video Technol. 2009;55(1–3):169–83.CrossRefGoogle Scholar
  46. 46.
    Sertel O, Kong J, Shimada H, Catalyurek UV, Saltz JH, Gurcan MN. Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development. Pattern Recog. 2009;42(6):1093–103.CrossRefGoogle Scholar
  47. 47.
    Strange H, Zwiggelaar R. Meningioma subtype classification using morphology features and random forests. In: Gurcan MN, Madabhushi A, editors. Medical imaging 2013: digital pathology. Lake Buena Vista, FL: Proceedings of SPIE; 2013. p. 8676.Google Scholar
  48. 48.
    Thiran JP, Macq B. Morphological feature extraction for the classification of digital images of cancerous tissues. IEEE Trans Biom Eng. 1996;43(10):1011–20.CrossRefGoogle Scholar
  49. 49.
    Tropine A, Dellani PD, Glaser M, Bohl J, Ploner T, Vucurevic G, et al. Differentiation of fibroblastic meningiomas from other benign subtypes using diffusion tensor imaging. J Magn Reson Imaging. 2007;25(4):703–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Turner MJ, Andrews PR, Blackledge JM. Fractal geometry in digital imaging. San Diego: Academic; 1998.Google Scholar
  51. 51.
    Turner MR. Texture-discrimination by Gabor functions. Biol Cybern. 1986;55(2–3):71–82.PubMedGoogle Scholar
  52. 52.
    Wiltgen M, Gerger A, Wagner C, Bergthaler P, Smolle J. Evaluation of texture features in spatial and frequency domain for automatic discrimination of histologic tissue. Anal Quant Cytol Histol. 2007;29(4):251–63.PubMedGoogle Scholar
  53. 53.
    Wirjadi O, Breuel T, Feiden W, Kim YJ, editors. Automated feature selection for the classification of meningioma cell nuclei. Bildverarbeitung für die Medizin; 2006.Google Scholar
  54. 54.
    Wittke C, Mayer J, Schweiggert F. On the classification of prostate carcinoma with methods from spatial statistics. IEEE Trans Inf Technol Biomed. 2007;11(4):406–14.CrossRefPubMedGoogle Scholar
  55. 55.
    Zeng Z, Tong Z, Han Z, Zhang Y, Zwiggelaar R. The classification of meningioma subtypes based on the color segmentation and shape features. In: Li S, Jin Q, Jiang X, Park JJ, editors. Frontier and future development of information technology in medicine and education. Lecture Notes in Electrical Engineering. New York: Springer; 2014. p. 2669–74.Google Scholar
  56. 56.
    Zengin S, Sakar M, Onder D, Sarioglu S. Color correction of stained tissue section images by histogram transfer according to control images. Anal Quant Cytol Histol. 2015;37(3):177–86.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of BioengineeringEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.King Abdullah II School for ITUniversity of JordanAmmanJordan
  3. 3.Neurosurgery Unit, Faculty of Medicine and Health SciencesMacquarie UniversitySydneyAustralia
  4. 4.Garvan Institute of Medical ResearchSydneyAustralia
  5. 5.Medical University of ViennaViennaAustria
  6. 6.University of TorontoTorontoCanada

Personalised recommendations