Heat Bath Algorithmic Cooling with Spins: Review and Prospects

  • Daniel K. Park
  • Nayeli A. Rodriguez-Briones
  • Guanru Feng
  • Robabeh Rahimi
  • Jonathan Baugh
  • Raymond Laflamme
Part of the Biological Magnetic Resonance book series (BIMR, volume 31)


Application of multiple rounds of Quantum Error Correction (QEC) is an essential milestone towards the construction of scalable quantum information processing devices. The requirements for multiple rounds QEC are high control fidelity and the ability to extract entropy from ancilla qubits. Nuclear Magnetic Resonance (NMR) based quantum devices have demonstrated high control fidelity with up to 12 qubits. On the other hand, the major challenge in the NMR QEC experiment is to efficiently supply ancilla qubits in highly pure states at the beginning of each round of QEC. Purification of spin qubits can be accomplished through Heat Bath Algorithmic Cooling (HBAC). It is an efficient method for extracting entropy from qubits that interact with a heat bath, allowing cooling below the bath temperature. For practical HBAC, hyperfine coupled electron-nuclear spin systems are more promising than conventional NMR quantum processors, since electron spin polarization is about 103 times greater than that of a proton under the same experimental conditions. We provide an overview on both theoretical and experimental aspects of HBAC focusing on spin and magnetic resonance based systems, and discuss the prospects of exploiting electron-nuclear hyperfine coupled systems for the realization of HBAC and multiple-round QEC.


Electron spin resonance Electron nuclear double resonance Quantum information processing Heat bath algorithmic cooling 



This work is supported by CIFAR, Industry Canada, and NSERC. We thank Dr. Tal Mor and Dr. Yossi Weinstein for helpful discussions, and Dr. Rolf Horn for proofreading the manuscript. NRB acknowledges CONACYT-COZCyT and SEP for support.


  1. 1.
    C. Negrevergne, T.S. Mahesh, C.A. Ryan, M. Ditty, F. Cyt-Racine, W. Power, N. Boulant, T. Havel, D.G. Cory, R. Laflamme, Phys. Rev. Lett. 96, 170501 (2006)Google Scholar
  2. 2.
    B. Criger, D. Park, J. Baugh, in Quantum Information and Computation for Chemistry, ed. by S.A. Rice, A.R. Dinner (Wiley, New York, 2014), pp. 193–228Google Scholar
  3. 3.
    B. Criger, G. Passante, D. Park, R. Laflamme, Philos. Trans. A. Math. Phys. Eng. Sci. 370, 4620 (2012)CrossRefGoogle Scholar
  4. 4.
    B. Criger, O. Moussa, R. Laflamme, Phys. Rev. A 85, 044302 (2012)Google Scholar
  5. 5.
    N.A. Gershenfeld, Science 275, 350 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    D.G. Cory, A.F. Fahmy, T.F. Havel, Proc. Natl. Acad. Sci. U. S. A. 94, 1634 (1997)CrossRefGoogle Scholar
  7. 7.
    T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nature 464, 45 (2010)CrossRefGoogle Scholar
  8. 8.
    O.W. Sørensen, J. Magn. Reson. 440, 435 (1990)Google Scholar
  9. 9.
    O.W. Sørensen, J. Magn. Reson. 93, 648 (1991)Google Scholar
  10. 10.
    L.J. Schulman, U.V. Vazirani, in Proceedings of Thirty-First Annual ACM Symposium on Theory of Computing—STOC ’99 (ACM, New York, 1999), pp. 322–329Google Scholar
  11. 11.
    P.O. Boykin, T. Mor, V. Roychowdhury, F. Vatan, R. Vrijen, Proc. Natl. Acad. Sci. U. S. A. 99, 3388 (2002)CrossRefGoogle Scholar
  12. 12.
    J.M. Fernandez, S. Lloyd, T. Mor, V. Roychowdhury, Int. J. Quantum Inf. 2, 461 (2004)CrossRefGoogle Scholar
  13. 13.
    L.J. Schulman, T. Mor, Y. Weinstein, Phys. Rev. Lett. 94, 120501 (2005)CrossRefGoogle Scholar
  14. 14.
    Y. Elias, G.M. Fernandez, T. Mor, Y. Weinstein, Isr. J. Chem. 46, 371 (2006)CrossRefGoogle Scholar
  15. 15.
    L.J. Schulman, T. Mor, Y. Weinstein, SIAM J. Comput. 36, 1729 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Y. Elias, T. Mor, Y. Weinstein, Phys. Rev. A 83, 042340 (2011)Google Scholar
  17. 17.
    O. Moussa, On Heat-Bath Algorithmic Cooling and Its Implementation in Solid-State NMR, Master thesis, University of Waterloo, 2005Google Scholar
  18. 18.
    N.A. Rodríguez-Briones, R. Laflamme, Achievable polarization for heat-bath algorithmic cooling. Phys. Rev. Lett. 116, 170501 (2016)CrossRefGoogle Scholar
  19. 19.
    S. Raeisi, M. Michele, Asymptotic bound for heat-bath algorithmic cooling. Phys. Rev. Lett. 114, 100404 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Elias, H. Gilboa, T. Mor, Y. Weinstein, Chem. Phys. Lett. 517, 126 (2011)CrossRefGoogle Scholar
  21. 21.
    G. Brassard, Y. Elias, J.M. Fernandez, H. Gilboa, J.A. Jones, T. Mor, Y. Weinstein, L. Xiao, Experimental heat-bath cooling of spins. EPJ Plus 129(12), 266 (2014)Google Scholar
  22. 22.
    D.E. Chang, L.M.K. Vandersypen, M. Steffen, Chem. Phys. Lett. 338, 337–344 (2001)Google Scholar
  23. 23.
    Y. Atia, Y. Elias, T. Mor, Y. Weinstein, Algorithmic cooling in liquid-state nuclear magnetic resonance. Phys. Rev. A 93, 012325 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    D.G. Cory, R. Laflamme, E. Knill, L. Viola, T.F. Havel, N. Boulant, G. Boutis, E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Sharf, G. Teklemariam, Y.S. Weinstein, W.H. Zurek, Fortschritte Der Phys. 48, 875 (2000)CrossRefGoogle Scholar
  25. 25.
    J. Baugh, O. Moussa, C.A. Ryan, A. Nayak, R. Laflamme, Nature 438, 470 (2005)CrossRefGoogle Scholar
  26. 26.
    D.G. Cory, J.B. Miller, A.N. Garroway, J. Magn. Reson. 90, 205 (1990)Google Scholar
  27. 27.
    E.M. Fortunato, M.A. Pravia, N. Boulant, G. Teklemariam, T.F. Havel, D.G. Cory, J. Chem. Phys. 116, 7599 (2002)CrossRefGoogle Scholar
  28. 28.
    C.A. Ryan, O. Moussa, J. Baugh, R. Laflamme, Phys. Rev. Lett. 100 (2008)Google Scholar
  29. 29.
    L. Müller, A. Kumar, T. Baumann, R.R. Ernst, Phys. Rev. Lett. 32, 1402 (1974)CrossRefGoogle Scholar
  30. 30.
    N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser, J. Magn. Reson. 172, 296 (2005)CrossRefGoogle Scholar
  31. 31.
    D.K. Park, G. Feng, R. Rahimi, S. Labruyere, T. Shibata, S. Nakazawa, K. Sato, T. Takui, R. Laflamme, J. Baugh, Quant. Inform. Process. 14(7), 2435–2461 (2015)Google Scholar
  32. 32.
    A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2001), p. 608Google Scholar
  33. 33.
    N. Khaneja, Phys. Rev. A 76, 32326 (2007)CrossRefGoogle Scholar
  34. 34.
    J. Hodges, J. Yang, C. Ramanathan, D. Cory, Phys. Rev. A 78, 010303 (2008)CrossRefGoogle Scholar
  35. 35.
    Y. Zhang, C.A. Ryan, R. Laflamme, J. Baugh, Phys. Rev. Lett. 107, 170503 (2011)CrossRefGoogle Scholar
  36. 36.
    G. Turinici, H. Rabitz, Chem. Phys. 267, 1 (2001)CrossRefGoogle Scholar
  37. 37.
    C. Altafini, J. Math. Phys. 43, 2051 (2002)MathSciNetCrossRefGoogle Scholar
  38. 38.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976)MathSciNetCrossRefGoogle Scholar
  39. 39.
    T.F. Havel, J. Math. Phys. 44, 534 (2003)MathSciNetCrossRefGoogle Scholar
  40. 40.
    R.R. Darabad, Studies on Entanglement in Nuclear and Electron Spin Systems for Quantum Computing, Doctoral thesis, Osaka University, 2006Google Scholar
  41. 41.
    Y. Deguchi, Bull. Chem. Soc. Jpn. 35, 260 (1961)CrossRefGoogle Scholar
  42. 42.
    Y. Deguchi, Bull. Chem. Soc. Jpn. 34, 910 (1960)CrossRefGoogle Scholar
  43. 43.
    A. Abragam, M. Goldman, Rep. Prog. Phys. 41, 395 (1978)CrossRefGoogle Scholar
  44. 44.
    A. Abragam, Principles of Nuclear Magnetism (Clarendon, Oxford, 1961)Google Scholar
  45. 45.
    J. Harrison, M.J. Sellars, N.B. Manson, Diam. Relat. Mater. 15, 586 (2006)CrossRefGoogle Scholar
  46. 46.
    K. Tateishi, M. Negoro, A. Kagawa, M. Kitagawa, Angew. Chem. Int. Ed. Engl. 52, 13307 (2013)CrossRefGoogle Scholar
  47. 47.
    K. Tateishi, M. Negoro, S. Nishida, A. Kagawa, Y. Morita, M. Kitagawa, Proc. Natl. Acad. Sci. U. S. A. 111, 7527 (2014)CrossRefGoogle Scholar

Copyright information

© Springer New York 2016

Authors and Affiliations

  • Daniel K. Park
    • 1
    • 2
    • 3
  • Nayeli A. Rodriguez-Briones
    • 2
    • 3
  • Guanru Feng
    • 2
    • 3
  • Robabeh Rahimi
    • 2
    • 3
    • 4
  • Jonathan Baugh
    • 2
    • 3
    • 5
  • Raymond Laflamme
    • 2
    • 3
    • 6
    • 7
  1. 1.Natural Science Research InstituteKAISTSouth Korea
  2. 2.Institute for Quantum ComputingUniversity of WaterlooWaterlooCanada
  3. 3.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada
  4. 4.Science and Research Branch Azad UniversityTehranIran
  5. 5.Department of ChemistryUniversity of WaterlooWaterlooCanada
  6. 6.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  7. 7.Canadian Institute for Advanced ResearchTorontoCanada

Personalised recommendations