Genome Editing pp 161-186 | Cite as

Using Engineered Nucleases to Create HIV-Resistant Cells

  • George Nicholas Llewellyn
  • Colin M. Exline
  • Nathalia Holt
  • Paula M. CannonEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB)


HIV-1/AIDS is often considered a priority disease in the development of genetic and cell based therapies because of the high burden imposed by current treatments, which require life-long adherence to antiretroviral drug regimens. Engineered nucleases have the capability to either disrupt a specific gene, or to promote precise gene edits or additions at the targeted gene. As one application for the gene disruption capabilities of the nucleases, HIV-1 infection provides an exceptional target in the CCR5 gene. This is the most commonly used entry co-receptor through which the virus enters into CD4+ T cells. Importantly, the loss of CCR5 is expected to be well-tolerated, since a relatively high percentage of individuals are naturally homozygous for a defective CCR5 allele. As a result, CCR5 disruption by zinc finger nuclease treatment of autologous T cells was the first-in-man use of engineered nucleases. Future applications to refine this therapy may include disrupting CCR5 in precursor hematopoietic stem cells, the additional disruption of the alternate HIV-1 co-receptor, CXCR4, in T cells, and the addition of other anti-HIV genes at a disrupted CCR5 locus to provide a combinatorial therapy. Finally, the gene disrupting actions of engineered nucleases could also be harnessed to inactivate the integrated HIV-1 genomes that persist in patients’ cells despite drug therapy, and which thereby prevent the complete eradication of the virus by drug treatments.


Homology directed repair (HDR) Hematopoietic stem cells (HSCs) Non-homologous end-joining (NHEJ) TAL effector nuclease (TALENs) Zinc finger nucleases (ZFNs) 



We gratefully acknowledge the expertise of our collaborators at Sangamo BioSciences, including Michael Holmes, Jianbin Wang and Philip Gregory, and thank Liz Wolffe for her help compiling Table 1. This work was supported by the James B. Pendleton Charitable Trust, NIH grants HL073104, AI110149 and HL129902, and the California HIV/AIDS Research Program grant ID12-USC-245.


  1. 1.
  2. 2.
    Baltimore D. Gene therapy. Intracellular immunization. Nature. 1988;335(6189):395–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Peterson CW, et al. Combinatorial anti-HIV gene therapy: using a multipronged approach to reach beyond HAART. Gene Ther. 2013;20(7):695–702.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370:10.CrossRefGoogle Scholar
  5. 5.
    Sun J, et al. Human Ku70/80 protein blocks exonuclease 1-mediated DNA resection in the presence of human Mre11 or Mre11/Rad50 protein complex. J Biol Chem. 2012;287(7):4936–45.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet. 2011;45:247–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 2012;47(4):497–510.PubMedCrossRefGoogle Scholar
  8. 8.
    Escribano-Diaz C, et al. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell. 2013;49(5):872–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Heyer WD, Ehmsen KT, Liu J. Regulation of homologous recombination in eukaryotes. Annu Rev Genet. 2010;44:113–39.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Mohrin M, et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell. 2010;7(2):174–85.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Rossi DJ, et al. Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging. Cell Cycle. 2007;6(19):2371–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Deng H, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996;381(6584):661–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Samson M, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996;382(6593):722–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Novembre J, Galvani AP, Slatkin M. The geographic spread of the CCR5 Delta32 HIV-resistance allele. PLoS Biol. 2005;3(11), e339.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Dean M, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. 1996;273(5283):1856–62.PubMedCrossRefGoogle Scholar
  16. 16.
    Wood A, Armour D. The discovery of the CCR5 receptor antagonist, UK-427,857, a new agent for the treatment of HIV infection and AIDS. Prog Med Chem. 2005;43: 239–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Allers K, et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood. 2011;117(10):2791–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Yukl SA, et al. Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient. PLoS Pathog. 2013;9(5), e1003347.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hutter G, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Hutter G, Zaia JA. Allogeneic haematopoietic stem cell transplantation in patients with human immunodeficiency virus: the experiences of more than 25 years. Clin Exp Immunol. 2011;163(3):284–95.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hayden EC. Hopes of HIV cure in ‘Boston patients’ dashed. Nature News 2013.Google Scholar
  22. 22.
    Ringpis GE, et al. Engineering HIV-1-resistant T-cells from short-hairpin RNA-expressing hematopoietic stem/progenitor cells in humanized BLT mice. PLoS One. 2012;7(12), e53492.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lee MT, et al. Inhibition of human immunodeficiency virus type 1 replication in primary macrophages by using Tat- or CCR5-specific small interfering RNAs expressed from a lentivirus vector. J Virol. 2003;77(22):11964–72.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    ter Brake O, et al. Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Mol Ther. 2008;16(3):557–64.PubMedCrossRefGoogle Scholar
  25. 25.
    Qin XF, et al. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci U S A. 2003;100(1):183–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    An DS, et al. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther. 2006;14(4):494–504.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Li MJ, et al. Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol Ther. 2003;8(2):196–206.PubMedCrossRefGoogle Scholar
  28. 28.
    Wu C, Dunbar CE. Stem cell gene therapy: the risks of insertional mutagenesis and approaches to minimize genotoxicity. Front Med. 2011;5(4):356–71.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Didigu CA, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood. 2014;123(1):61–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Maier DA, et al. Efficient clinical scale gene modification via zinc finger nuclease-targeted disruption of the HIV co-receptor CCR5. Hum Gene Ther. 2013;24(3):245–58.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Perez EE, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008;26(7):808–16.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Lei Y, et al. Gene editing of human embryonic stem cells via an engineered baculoviral vector carrying zinc-finger nucleases. Mol Ther. 2011;19(5):942–50.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Li L, et al. Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther. 2013;21(6):1259–69.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gaj T, et al. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods. 2012;9(8):805–7.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Holt N, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010;28(8):839–47.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kalos M, June CH. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity. 2013;39(1):49–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Scholler J, et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med. 2012;4(132):132ra53.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Mani M, et al. Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun. 2005;335(2):447–57.PubMedCrossRefGoogle Scholar
  39. 39.
    Yi G, et al. CCR5 gene editing of resting CD4(+) T cells by transient ZFN expression from HIV envelope pseudotyped nonintegrating lentivirus confers HIV-1 resistance in humanized mice. Mol Ther Nucleic Acids. 2014;3, e198.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Shayakhmetov DM, et al. Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. J Virol. 2000;74(6):2567–83.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chun TW, et al. Relationship between pre-existing viral reservoirs and the re-emergence of plasma viremia after discontinuation of highly active anti-retroviral therapy. Nat Med. 2000;6(7):757–61.PubMedCrossRefGoogle Scholar
  42. 42.
    Hofer U, et al. Pre-clinical modeling of CCR5 knockout in human hematopoietic stem cells by zinc finger nucleases using humanized mice. J Infect Dis. 2013;208 Suppl 2:S160–4.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lepus CM, et al. Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/gammac−/−, Balb/c-Rag1−/−gammac−/−, and C.B-17-scid/bg immunodeficient mice. Hum Immunol. 2009;70(10):790–802.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lapid K, et al. Egress and mobilization of hematopoietic stem and progenitor cells: a dynamic multi-facet process. Cambridge: Harvard Stem Cell Institute; 2008. StemBook [Internet].Google Scholar
  45. 45.
    Cannon PM, et al. Electroporation of ZFN mRNA enables efficient CCR5 gene disruption in mobilized blood hematopoietic stem cells at clinical scale. Mol Ther. 2013;21:S71–2.Google Scholar
  46. 46.
    Miller JC, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29(2):143–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Llewellyn N, et al. Next generation TALENs mediate efficient disruption of the CCR5 gene in human HSCs. Mol Ther. 2013;21:S72.Google Scholar
  48. 48.
    Mussolino C, et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011;39(21):9283–93.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Mussolino C, et al. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res. 2014;42(10):6762–73.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Mock U, et al. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5. Nucleic Acids Res. 2015;43(11):5560–71.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kim Y, Kweon J, Kim JS. TALENs and ZFNs are associated with different mutation signatures. Nat Methods. 2013;10(3):185.PubMedCrossRefGoogle Scholar
  52. 52.
    Certo MT, et al. Coupling endonucleases with DNA end-processing enzymes to drive gene disruption. Nat Methods. 2012;9(10):973–5.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Cho SW, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24(1):132–41.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Cradick TJ, et al. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 2013;41(20):9584–92.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Mandal PK, et al. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell. 2014;15(5):643–52.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Li C, et al. Inhibition of HIV-1 infection of primary CD4+ T cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J Gen Virol. 2015;96(8):2381–93.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang W, et al. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One. 2014;9(12), e115987.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wilen CB, et al. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases. PLoS Pathog. 2011;7(4), e1002020.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Yuan J, et al. Zinc-finger nuclease editing of human cxcr4 promotes HIV-1 CD4(+) T cell resistance and enrichment. Mol Ther. 2012;20(4):849–59.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. 2013.
  61. 61.
    Meyer L, et al. Early protective effect of CCR-5 delta 32 heterozygosity on HIV-1 disease progression: relationship with viral load. The SEROCO Study Group. AIDS. 1997;11(11):F73–8.PubMedCrossRefGoogle Scholar
  62. 62.
    de Roda Husman AM, et al. Association between CCR5 genotype and the clinical course of HIV-1 infection. Ann Intern Med. 1997;127(10):882–90.PubMedCrossRefGoogle Scholar
  63. 63.
    Meyer L, et al. CCR5 delta32 deletion and reduced risk of toxoplasmosis in persons infected with human immunodeficiency virus type 1. The SEROCO-HEMOCO-SEROGEST Study Groups. J Infect Dis. 1999;180(3):920–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Ioannidis JP, et al. Effects of CCR5-Delta, 32, CCR2–64I, and SDF-1 3′A alleles on HIV-1 disease progression: an international meta-analysis of individual-patient data. Ann Intern Med. 2001;135(9):782–95.PubMedCrossRefGoogle Scholar
  65. 65.
    Bevec D, et al. Inhibition of human immunodeficiency virus type 1 replication in human T cells by retroviral-mediated gene transfer of a dominant-negative Rev trans-activator. Proc Natl Acad Sci U S A. 1992;89(20):9870–4.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bonyhadi ML, et al. RevM10-expressing T cells derived in vivo from transduced human hematopoietic stem-progenitor cells inhibit human immunodeficiency virus replication. J Virol. 1997;71(6):4707–16.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Stremlau M, et al. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature. 2004;427(6977):848–53.PubMedCrossRefGoogle Scholar
  68. 68.
    Sawyer SL, et al. Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci U S A. 2005;102(8):2832–7.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Anderson J, Akkina R. Human immunodeficiency virus type 1 restriction by human-rhesus chimeric tripartite motif 5alpha (TRIM 5alpha) in CD34(+) cell-derived macrophages in vitro and in T cells in vivo in severe combined immunodeficient (SCID-hu) mice transplanted with human fetal tissue. Hum Gene Ther. 2008;19(3):217–28.PubMedCrossRefGoogle Scholar
  70. 70.
    Schrofelbauer B, Chen D, Landau NR. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc Natl Acad Sci U S A. 2004;101(11):3927–32.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Xu H, et al. A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc Natl Acad Sci U S A. 2004;101(15):5652–7.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Anderson J, et al. Safety and efficacy of a lentiviral vector containing three anti-HIV genes--CCR5 ribozyme, tat-rev siRNA, and TAR decoy--in SCID-hu mouse-derived T cells. Mol Ther. 2007;15(6):1182–8.PubMedGoogle Scholar
  73. 73.
    Kumar P, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell. 2008;134(4):577–86.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    ter Brake O, et al. Evaluation of safety and efficacy of RNAi against HIV-1 in the human immune system (Rag-2(−/−)gammac(−/−)) mouse model. Gene Ther. 2009;16(1):148–53.PubMedCrossRefGoogle Scholar
  75. 75.
    Novina CD, et al. siRNA-directed inhibition of HIV-1 infection. Nat Med. 2002;8(7):681–6.PubMedGoogle Scholar
  76. 76.
    Kohn DB, et al. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood. 1999;94(1):368–71.PubMedGoogle Scholar
  77. 77.
    Humeau LM, et al. Efficient lentiviral vector-mediated control of HIV-1 replication in CD4 lymphocytes from diverse HIV+ infected patients grouped according to CD4 count and viral load. Mol Ther. 2004;9(6):902–13.PubMedCrossRefGoogle Scholar
  78. 78.
    Michienzi A, et al. A nucleolar TAR decoy inhibitor of HIV-1 replication. Proc Natl Acad Sci U S A. 2002;99(22):14047–52.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Zahn RC, et al. Efficient entry inhibition of human and nonhuman primate immunodeficiency virus by cell surface-expressed gp41-derived peptides. Gene Ther. 2008;15(17):1210–22.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Voit RA, et al. Generation of an HIV resistant T-cell line by targeted “stacking” of restriction factors. Mol Ther. 2013;21(4):786–95.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lombardo A, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007;25(11):1298–306.PubMedCrossRefGoogle Scholar
  82. 82.
    Lombardo A, et al. Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods. 2011;8(10):861–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Genovese P, et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature. 2014;510(7504):235–40.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Hoban MD, et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood. 2015;125(17):2597–604.PubMedCrossRefGoogle Scholar
  85. 85.
    Wang J, Exline CM, et al. Highly efficient homology-driven genome editing in CD34+ hematopoietic stem/progenitor cells by combining zinc finger nuclease mRNA and AAV donor delivery. Nat Biotechnol. 2015;33(12):1256–1263.Google Scholar
  86. 86.
    Chu VT, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol. 2015;33(5):543–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Maruyama T, et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015;33(5):538–42.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ye L, et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection. Proc Natl Acad Sci U S A. 2014;111(26):9591–6.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Yao Y, et al. Generation of CD34+ cells from CCR5-disrupted human embryonic and induced pluripotent stem cells. Hum Gene Ther. 2012;23(2):238–42.PubMedCrossRefGoogle Scholar
  90. 90.
    Chomont N, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15(8):893–900.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Chun TW, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature. 1997;387(6629):183–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Finzi D, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med. 1999;5(5):512–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Sarkar I, et al. HIV-1 proviral DNA excision using an evolved recombinase. Science. 2007;316(5833):1912–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Qu X, et al. Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. Nucleic Acids Res. 2013;41(16):7771–82.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hauber I, et al. Highly significant antiviral activity of HIV-1 LTR-specific tre-recombinase in humanized mice. PLoS Pathog. 2013;9(9), e1003587.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Ebina H, et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3:2510.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Blackard JT, et al. Transmission of human immunodeficiency type 1 viruses with intersubtype recombinant long terminal repeat sequences. Virology. 1999;254(2):220–5.PubMedCrossRefGoogle Scholar
  98. 98.
    Surendranath V, et al. SeLOX—a locus of recombination site search tool for the detection and directed evolution of site-specific recombination systems. Nucleic Acids Res. 2010;38(Web Server issue):W293–8.Google Scholar
  99. 99.
    Karpinski J, et al. Universal Tre (uTre) recombinase specifically targets the majority of HIV-1 isolates. J Int AIDS Soc. 2014;17(4 Suppl 3):19706.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Ebina H, et al. A high excision potential of TALENs for integrated DNA of HIV-based lentiviral vector. PLoS One. 2015;10(3), e0120047.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Cong L, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Zhu W, et al. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology. 2015;12:22.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Liao HK, et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun. 2015;6.Google Scholar
  104. 104.
    Hu W, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A. 2014;111(31):11461–6.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Li H, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 2011;475(7355):217–21.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Joglekar AV, et al. Integrase-defective lentiviral vectors as a delivery platform for targeted modification of adenosine deaminase locus. Mol Ther. 2013;21(9):1705–17.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Holkers M, et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 2013;41(5), e63.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Chen Z, et al. Receptor-mediated delivery of engineered nucleases for genome modification. Nucleic Acids Res. 2013;41(19), e182.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Mock U, et al. Novel lentiviral vectors with mutated reverse transcriptase for mRNA delivery of TALE nucleases. Sci Rep. 2014;4:6409.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Khatri N, et al. In vivo delivery aspects of miRNA, shRNA and siRNA. Crit Rev Ther Drug Carrier Syst. 2012;29(6):487–527.PubMedCrossRefGoogle Scholar
  111. 111.
    Morizono K, et al. Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat Med. 2005;11(3):346–52.PubMedCrossRefGoogle Scholar
  112. 112.
    Lin AH, et al. Receptor-specific targeting mediated by the coexpression of a targeted murine leukemia virus envelope protein and a binding-defective influenza hemagglutinin protein. Hum Gene Ther. 2001;12(4):323–32.PubMedCrossRefGoogle Scholar
  113. 113.
    Frecha C, et al. A novel lentiviral vector targets gene transfer into human hematopoietic stem cells in marrow from patients with bone marrow failure syndrome and in vivo in humanized mice. Blood. 2012;119(5):1139–50.PubMedCrossRefGoogle Scholar
  114. 114.
    Anliker B, et al. Specific gene transfer to neurons, endothelial cells and hematopoietic progenitors with lentiviral vectors. Nat Methods. 2010;7(11):929–35.PubMedCrossRefGoogle Scholar
  115. 115.
    Paraskevakou G, et al. Epidermal growth factor receptor (EGFR)-retargeted measles virus strains effectively target EGFR- or EGFRvIII expressing gliomas. Mol Ther. 2007;15(4):677–86.PubMedGoogle Scholar
  116. 116.
    Kneissl S, et al. Measles virus glycoprotein-based lentiviral targeting vectors that avoid neutralizing antibodies. PLoS One. 2012;7(10), e46667.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Kneissl S, et al. CD19 and CD20 targeted vectors induce minimal activation of resting B lymphocytes. PLoS One. 2013;8(11), e79047.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Alwin S, et al. Custom zinc-finger nucleases for use in human cells. Mol Ther. 2005;12(4):610–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Kim HJ, et al. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 2009;19(7):1279–88.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Koo T, Lee J, Kim JS. Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9. Mol Cells. 2015;38(6):475–81.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Hendel A, et al. Quantifying on- and off-target genome editing. Trends Biotechnol. 2015;33(2):132–40.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Pattanayak V, et al. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. 2011;8(9):765–70.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Gabriel R, et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 2011;29(9):816–23.PubMedCrossRefGoogle Scholar
  124. 124.
    Chiarle R, et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell. 2011;147(1):107–19.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Frock RL, et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol. 2015;33(2):179–86.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Tsai SQ, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015;33(2):187–97.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Crosetto N, et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods. 2013;10(4):361–5.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Ran FA, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546):186–98.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Kim D, et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods. 2015;12(3):237–43, 1 p following 243.PubMedCrossRefGoogle Scholar
  130. 130.
    Doyon Y, et al. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods. 2011;8(1):74–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Tsai SQ, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014;32(6):569–76.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© American Society of Gene and Cell Therapy 2016

Authors and Affiliations

  • George Nicholas Llewellyn
    • 1
  • Colin M. Exline
    • 1
  • Nathalia Holt
    • 1
  • Paula M. Cannon
    • 1
    Email author
  1. 1.Department of Molecular Microbiology and ImmunologyKeck School of Medicine, University of Southern CaliforniaLos AngelesUSA

Personalised recommendations