Advertisement

Prevention of Conversion of Tumor Dormancy into Proliferative Metastases

  • Dalit BarkanEmail author
  • Ann F. Chambers
Chapter
Part of the Current Cancer Research book series (CUCR)

Abstract

Late recurrences of cancer are believed to be due to dormant disease that can persist for long periods following apparently successful treatment of a primary tumor. Clinical tumor dormancy thus creates uncertainty for cancer patients and their physicians, who cannot be certain that their cancer will not recur. We have a poor understanding about which individual patients are at risk for cancer recurrence following a period of tumor dormancy. Thus, in spite of the clinical importance of tumor dormancy, much remains to be learned about the mechanisms responsible for induction of, and release from, dormancy. Here we consider the clinical problem of tumor dormancy and discuss evolving ideas of how tumor dormancy and reinitiation of growth may be regulated, both naturally in the body and therapeutically. A better understanding of mechanisms by which dormancy can be regulated may suggest new therapeutic approaches to either eliminate dormant cancer cells or promote the maintenance of dormancy.

Keywords

Metastasis Tumor dormancy Disseminated tumor cells Molecular characterization Tumor microenvironment Cellular dormancy Angiogenesis Immune regulation 

References

  1. 1.
    Goss PE, Chambers AF (2010) Does tumour dormancy offer a therapeutic target? Nat Rev Cancer 10(12):871–877CrossRefPubMedGoogle Scholar
  2. 2.
    Chambers AF, Naumov GN, Varghese HJ, Nadkarni KV, MacDonald IC, Groom AC (2001) Critical steps in hematogenous metastasis an overview. Surg Oncol Clin N Am 10(2):243–255, viiPubMedGoogle Scholar
  3. 3.
    Weiss L (1990) Metastatic inefficiency. Adv Cancer Res 54:159–211CrossRefPubMedGoogle Scholar
  4. 4.
    Tarin D, Vass AC, Kettlewell MG, Price JE (1984) Absence of metastatic sequelae during long-term treatment of malignant ascites by peritoneo-venous shunting. A clinico-pathological report. Invasion Metastasis 4(1):1–12PubMedGoogle Scholar
  5. 5.
    Klein CA (2003) The systemic progression of human cancer a focus on the individual disseminated cancer cell—the unit of selection. Adv Cancer Res 89:35–67CrossRefPubMedGoogle Scholar
  6. 6.
    Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9(4):302–312CrossRefPubMedGoogle Scholar
  7. 7.
    Oskarsson T, Batlle E, Massague J (2014) Metastatic stem cells sources, niches, and vital pathways. Cell Stem Cell 14(3):306–321PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Gnant M, Steger GG (2009) Fighting overtreatment in adjuvant breast cancer therapy. Lancet 374(9707):2029–2030CrossRefPubMedGoogle Scholar
  9. 9.
    Albain KS, Barlow WE, Ravdin PM, Farrar WB, Burton GV, Ketchel SJ, Cobau CD, Levine EG, Ingle JN, Pritchard KI, Lichter AS, Schneider DJ, Abeloff MD, Henderson IC, Muss HB, Green SJ, Lew D, Livingston RB, Martino S, Osborne CK (2009) Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer a phase 3, open-label, randomised controlled trial. Lancet 374(9707):2055–2063PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572CrossRefPubMedGoogle Scholar
  11. 11.
    Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1(2):149–153CrossRefPubMedGoogle Scholar
  12. 12.
    Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834–846PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Klein CA (2011) Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev 21(1):42–49CrossRefPubMedGoogle Scholar
  14. 14.
    Wells A, Griffith L, Wells JZ, Taylor DP (2013) The dormancy dilemma quiescence versus balanced proliferation. Cancer Res 73(13):3811–3816PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Wikman H, Vessella R, Pantel K (2008) Cancer micrometastasis and tumour dormancy. Acta Pathol Microbiol Immunol Scand 116(7–8):754–770CrossRefGoogle Scholar
  16. 16.
    Bragado P, Sosa MS, Keely P, Condeelis J, Aguirre-Ghiso JA (2012) Microenvironments dictating tumor cell dormancy. Recent Results Cancer Res 195:25–39PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101PubMedGoogle Scholar
  18. 18.
    Hadfield G (1954) The dormant cancer cell. Br Med J 2(4888):607–610PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Suzuki M, Mose ES, Montel V, Tarin D (2006) Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. Am J Pathol 169(2):673–681PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Nguyen DX, Bos PD, Massague J (2009) Metastasis from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284CrossRefPubMedGoogle Scholar
  21. 21.
    Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff MJ, Liu ZY, Costes SV, Cho EH, Lockett S, Khanna C, Chambers AF, Green JE (2008) Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res 68(15):6241–6250PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Barkan D, El Touny LH, Michalowski AM, Smith JA, Chu I, Davis AS, Webster JD, Hoover S, Simpson RM, Gauldie J, Green JE (2010) Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res 70(14):5706–5716PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Barkan D, Green JE, Chambers AF (2010) Extracellular matrix a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer 46(7):1181–1188PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Henriet P, Zhong ZD, Brooks PC, Weinberg KI, DeClerck YA (2000) Contact with fibrillar collagen inhibits melanoma cell proliferation by up-regulating p27KIP1. Proc Natl Acad Sci U S A 97(18):10026–10031PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Roth JM, Akalu A, Zelmanovich A, Policarpio D, Ng B, MacDonald S, Formenti S, Liebes L, Brooks PC (2005) Recombinant alpha2(IV)NC1 domain inhibits tumor cell-extracellular matrix interactions, induces cellular senescence, and inhibits tumor growth in vivo. Am J Pathol 166(3):901–911PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Barkan D, Chambers AF (2011) β1-integrin a potential therapeutic target in the battle against cancer recurrence. Clin Cancer Res 17(23):7219–7223CrossRefPubMedGoogle Scholar
  27. 27.
    Roskelley CD, Desprez PY, Bissell MJ (1994) Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc Natl Acad Sci U S A 91(26):12378–12382PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Shibue T, Weinberg RA (2009) Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci U S A 106(25):10290–10295PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Aguirre Ghiso JA, Kovalski K, Ossowski L (1999) Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 147(1):89–104CrossRefPubMedGoogle Scholar
  30. 30.
    Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L (2001) Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell 12(4):863–879PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    White DE, Kurpios NA, Zuo D, Hassell JA, Blaess S, Mueller U, Muller WJ (2004) Targeted disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6(2):159–170CrossRefPubMedGoogle Scholar
  32. 32.
    Kren A, Baeriswyl V, Lehembre F, Wunderlin C, Strittmatter K, Antoniadis H, Fassler R, Cavallaro U, Christofori G (2007) Increased tumor cell dissemination and cellular senescence in the absence of beta1-integrin function. EMBO J 26(12):2832–2842PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Ranganathan AC, Zhang L, Adam AP, Aguirre-Ghiso JA (2006) Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res 66(3):1702–1711PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Ranganathan AC, Ojha S, Kourtidis A, Conklin DS, Aguirre-Ghiso JA (2008) Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. Cancer Res 68(9):3260–3268PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Adam AP, George A, Schewe D, Bragado P, Iglesias BV, Ranganathan AC, Kourtidis A, Conklin DS, Aguirre-Ghiso JA (2009) Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Res 69(14):5664–5672PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Schewe DM, Aguirre-Ghiso JA (2008) ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc Natl Acad Sci U S A 105(30):10519–10524PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Taylor J, Hickson J, Lotan T, Yamada DS, Rinker-Schaeffer C (2008) Using metastasis suppressor proteins to dissect interactions among cancer cells and their microenvironment. Cancer Metastasis Rev 27(1):67–73CrossRefPubMedGoogle Scholar
  38. 38.
    Hedley BD, Allan AL, Chambers AF (2006) Tumor dormancy and the role of metastasis suppressor genes in regulating ectopic growth. Future Oncol 2(5):627–641CrossRefPubMedGoogle Scholar
  39. 39.
    Alix-Panabieres C, Riethdorf S, Pantel K (2008) Circulating tumor cells and bone marrow micrometastasis. Clin Cancer Res 14(16):5013–5021CrossRefPubMedGoogle Scholar
  40. 40.
    Kobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S, Pai SK, Liu W, Fukuda K, Chambers C, Wilber A, Watabe K (2011) Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med 208(13):2641–2655PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Shiozawa Y, Pedersen EA, Patel LR, Ziegler AM, Havens AM, Jung Y, Wang J, Zalucha S, Loberg RD, Pienta KJ, Taichman RS (2010) GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia 12(2):116–127PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Bragado P, Estrada Y, Parikh F, Krause S, Capobianco C, Farina HG, Schewe DM, Aguirre-Ghiso JA (2013) TGF-beta2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38alpha/beta signalling. Nat Cell Biol 15(11):1351–1361PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA, Greco SJ, Bryan M, Patel PS, Rameshwar P (2011) Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71(5):1550–1560CrossRefPubMedGoogle Scholar
  44. 44.
    Gewirtz DA (2009) Autophagy, senescence and tumor dormancy in cancer therapy. Autophagy 5(8):1232–1234CrossRefPubMedGoogle Scholar
  45. 45.
    Lock R, Debnath J (2008) Extracellular matrix regulation of autophagy. Curr Opin Cell Biol 20(5):583–588PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Sosa MS, Bragado P, Debnath J, Aguirre-Ghiso JA (2013) Regulation of tumor cell dormancy by tissue microenvironments and autophagy. Adv Exp Med Biol 734:73–89PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, Foekens JA, Massague J (2009) Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16(1):67–78PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    El Touny LH, Vieira A, Mendoza A, Khanna C, Hoenerhoff MJ, Green JE (2014) Combined SFK/MEK inhibition prevents metastatic outgrowth of dormant tumor cells. J Clin Invest 124(1):156–168PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Villanueva A, Hoshida Y, Toffanin S, Lachenmayer A, Alsinet C, Savic R, Cornella H, Llovet JM (2010) New strategies in hepatocellular carcinoma genomic prognostic markers. Clin Cancer Res 16(19):4688–4694PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Kim RS, Avivar-Valderas A, Estrada Y, Bragado P, Sosa MS, Aguirre-Ghiso JA, Segall JE (2012) Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS One 7(4):e35569PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Troester MA, Lee MH, Carter M, Fan C, Cowan DW, Perez ER, Pirone JR, Perou CM, Jerry DJ, Schneider SS (2009) Activation of host wound responses in breast cancer microenvironment. Clin Cancer Res 15(22):7020–7028PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills GB, Liao WS, Bast RC Jr (2008) The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest 118(12):3917–3929PubMedCentralPubMedGoogle Scholar
  54. 54.
    Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4(6):448–456CrossRefPubMedGoogle Scholar
  55. 55.
    Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, Forni G, Eils R, Fehm T, Riethmuller G, Klein CA (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13(1):58–68CrossRefPubMedGoogle Scholar
  56. 56.
    Eyles J, Puaux AL, Wang X, Toh B, Prakash C, Hong M, Tan TG, Zheng L, Ong LC, Jin Y, Kato M, Prevost-Blondel A, Chow P, Yang H, Abastado JP (2010) Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Invest 120(6):2030–2039PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ, Pai SY, Ho IC, Werb Z (2008) GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13(2):141–152PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Ossowski L, Aguirre-Ghiso JA (2010) Dormancy of metastatic melanoma. Pigment Cell Melanoma Res 23(1):41–56PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Klein CA, Schmidt-Kittler O, Schardt JA, Pantel K, Speicher MR, Riethmuller G (1999) Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci U S A 96(8):4494–4499PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Klein CA, Blankenstein TJ, Schmidt-Kittler O, Petronio M, Polzer B, Stoecklein NH, Riethmuller G (2002) Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360(9334):683–689CrossRefPubMedGoogle Scholar
  61. 61.
    Cox TR, Bird D, Baker AM, Barker HE, Ho MW, Lang G, Erler JT (2013) LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res 73(6):1721–1732PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254CrossRefPubMedGoogle Scholar
  63. 63.
    Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Schrader J, Gordon-Walker TT, Aucott RL, van Deemter M, Quaas A, Walsh S, Benten D, Forbes SJ, Wells RG, Iredale JP (2011) Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology 53(4):1192–1205PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Gao H, Chakraborty G, Lee-Lim AP, Mo Q, Decker M, Vonica A, Shen R, Brogi E, Brivanlou AH, Giancotti FG (2012) The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 150(4):764–779PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D, Koller A, Hajjar KA, Stainier DY, Chen EI, Lyden D, Bissell MJ (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15(7):807–817CrossRefPubMedGoogle Scholar
  67. 67.
    Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M, Yan J, Hua Y, Tiede BJ, Haffty BG, Pantel K, Massague J, Kang Y (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell 20(6):701–714PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Giancotti FG (2013) Mechanisms governing metastatic dormancy and reactivation. Cell 155(4):750–764PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, Downey RJ, Manova-Todorova K, Brogi E, Massague J (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17(7):867–874PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J (2012) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481(7379):85–89CrossRefGoogle Scholar
  71. 71.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Wendt MK, Taylor MA, Schiemann BJ, Schiemann WP (2011) Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Mol Biol Cell 22(14):2423–2435PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Folkman J (2003) Fundamental concepts of the angiogenic process. Curr Mol Med 3(7):643–651CrossRefPubMedGoogle Scholar
  74. 74.
    Weis SM, Cheresh DA (2011) Tumor angiogenesis molecular pathways and therapeutic targets. Nat Med 17(11):1359–1370CrossRefPubMedGoogle Scholar
  75. 75.
    Cook KM, Figg WD (2010) Angiogenesis inhibitors current strategies and future prospects. CA Cancer J Clin 60(4):222–243PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    O’Reilly MS, Holmgren L, Chen C, Folkman J (1996) Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 2(6):689–692CrossRefPubMedGoogle Scholar
  77. 77.
    Rogers MS, Novak K, Zurakowski D, Cryan LM, Blois A, Lifshits E, Bo TH, Oyan AM, Bender ER, Lampa M, Kang SY, Naxerova K, Kalland KH, Straume O, Akslen LA, Watnick RS, Folkman J, Naumov GN (2014) Spontaneous reversion of the angiogenic phenotype to a nonangiogenic and dormant state in human tumors. Mol Cancer Res 12(5):754–764PubMedCentralCrossRefPubMedGoogle Scholar
  78. 78.
    Almog N, Ma L, Schwager C, Brinkmann BG, Beheshti A, Vajkoczy P, Folkman J, Hlatky L, Abdollahi A (2012) Consensus micro RNAs governing the switch of dormant tumors to the fast-growing angiogenic phenotype. PLoS One 7(8):e44001PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339(6219):58–61CrossRefPubMedGoogle Scholar
  80. 80.
    Benzekry S, Gandolfi A, Hahnfeldt P (2014) Global dormancy of metastases due to systemic inhibition of angiogenesis. PLoS One 9(1):e84249PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, Smyth MJ, Schreiber RD (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450(7171):903–907CrossRefPubMedGoogle Scholar
  82. 82.
    Romero I, Garrido C, Algarra I, Collado A, Garrido F, Garcia-Lora AM (2014) T lymphocytes restrain spontaneous metastases in permanent dormancy. Cancer Res 74(7):1958–1968CrossRefPubMedGoogle Scholar
  83. 83.
    Quesnel B (2008) Tumor dormancy and immunoescape. Acta Pathol Microbiol Immunol Scand 116(7–8):685–694CrossRefGoogle Scholar
  84. 84.
    Saudemont A, Quesnel B (2004) In a model of tumor dormancy, long-term persistent leukemic cells have increased B7-H1 and B7.1 expression and resist CTL-mediated lysis. Blood 104(7):2124–2133CrossRefPubMedGoogle Scholar
  85. 85.
    Liang H, Deng L, Burnette B, Weichselbaum RR, Fu YX (2013) Radiation-induced tumor dormancy reflects an equilibrium between the proliferation and T lymphocyte-mediated death of malignant cells. Oncoimmunology 2(9):e25668PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu YX (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124(2):687–695PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    Saudemont A, Hamrouni A, Marchetti P, Liu J, Jouy N, Hetuin D, Colucci F, Quesnel B (2007) Dormant tumor cells develop cross-resistance to apoptosis induced by CTLs or imatinib mesylate via methylation of suppressor of cytokine signaling 1. Cancer Res 67(9):4491–4498CrossRefPubMedGoogle Scholar
  88. 88.
    Uhr JW, Pantel K (2011) Controversies in clinical cancer dormancy. Proc Natl Acad Sci U S A 108(30):12396–12400PubMedCentralCrossRefPubMedGoogle Scholar
  89. 89.
    Magnus N, Garnier D, Meehan B, McGraw S, Lee TH, Caron M, Bourque G, Milsom C, Jabado N, Trasler J, Pawlinski R, Mackman N, Rak J (2014) Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations. Proc Natl Acad Sci U S A 111(9):3544–3549PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratory of Tumor Dormancy and Metastasis, Department of Biology and Human Biology, Faculty of Natural SciencesUniversity of HaifaMount CarmelIsrael
  2. 2.Departments of Oncology, Medical Biophysics and Pathology & Laboratory Medicine, London Regional Cancer ProgramLondon Health Sciences Centre/University of Western OntarioLondonCanada

Personalised recommendations