Skip to main content

Perspectives on the Functional Characterization and In Vitro Maintenance of Circulating Tumor Cells

  • Chapter
  • First Online:

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Circulating tumor cells (CTCs) that detach and migrate from primary tumors are implicated in the metastatic spread of cancer. The identification of CTCs in peripheral blood samples has been associated with poor survival outcomes in various cancer types. As a readily accessible source of tumor tissue there is a vast potential to develop CTCs as a biomarker to advance cancer diagnosis, prognosis and the development of novel and targeted therapies. The fact that CTCs occur as extremely rare events in whole blood presents a technical challenge for characterization, requiring enrichment techniques that are both highly sensitive and sufficiently specific. The culture and expansion of CTCs is desirable as a means of yielding a population suitable for comprehensive functional characterization and drug testing. Reports of successful in vitro culture of CTCs are rare, but various approaches have been attempted and significant progress has been made. The development of protocols for reliable and efficient culture of viable CTCs will advance our biological understanding of cancer metastasis and facilitate the development of personalized therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bidard FC, Vincent-Salomon A, Sigal-Zafrani B, Dieras V, Mathiot C, Mignot L, Thiery JP, Sastre-Garau X, Perga JY (2007) Prognosis of women with stage IV breast cancer depends on detection of CTC rather than disseminated tumor cells. Ann Oncol 19:496–500

    Article  Google Scholar 

  2. Cristofanilli M, Budd T, Ellis MJ, Stopeck A, Matera J, Miller C et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791

    Article  CAS  PubMed  Google Scholar 

  3. Cristofanilli M, Hayes DF, Budd GT, Ellis MJ, Stopeck A, Reuben JM et al (2005) Circulating tumor cells A novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol 23:1420–1430

    Article  PubMed  Google Scholar 

  4. Danila DC, Heller G, Gignac GA, Gonzalez-Espinoza R, Anand A, Tanaka E et al (2007) Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res 13:7053–7058

    Article  CAS  PubMed  Google Scholar 

  5. Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC et al (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 12:4218–4224

    Article  CAS  PubMed  Google Scholar 

  6. Cohen SJ, Punt CJA, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY et al (2009) Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer. Ann Oncol 20(7):1223–1229

    Article  CAS  PubMed  Google Scholar 

  7. Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV et al (2008) Detection of mutations in EGFR in circulating lung cancer cells. N Engl J Med 359:366–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Choesmel V, Pierga JY, Nos C, Vincent-Salomon A, Sigal-Safrani B, Thiery JP et al (2004) Enrichment methods to detect bone marrow micrometastases in breast carcinoma patients Clinical relevance. Breast Cancer Res 6:R556–R570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Rolle A, Gunzel R, Pachmann U, Willen B, Hoffken K, Pachmann K (2005) Increase in number of circulating disseminated epithelial cells after surgery for non-small cell lung cancer monitored by MAINTRAC® is a predictor for relapse A preliminary report. World J Surg Oncol 3:18

    Article  PubMed Central  PubMed  Google Scholar 

  10. Tewes M, Aktas B, Welt A, Muelller S, Hauch S, Kimmig R et al (2009) Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer an option for monitoring response to breast cancer related therapies. Breast Cancer Res Treat 115:581–590

    Article  PubMed  Google Scholar 

  11. Lankiewicz S, Zimmermann S, Hollmann C, Hillemann T, Greten TF (2008) Circulating tumour cells as a predictive factor for response to chemotherapy in patients with advanced colorectal cancer. Mol Oncol 2(4):349–355

    Article  PubMed  Google Scholar 

  12. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S (2009) Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11:R46

    Article  PubMed Central  PubMed  Google Scholar 

  13. Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci 107(43):18292–18297

    Article  Google Scholar 

  14. Bhagat AAS, Hou HW, Li LD, Lim CT, Han J (2011) Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11:1870–1878

    Article  CAS  PubMed  Google Scholar 

  15. Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT, Brachtel E et al (2013) Inertial Focusing for Tumor Antigen-Dependent and -Independent Sorting of Rare Circulating Tumor Cells. Sci Transl Med 5(179):179ra47

    Article  PubMed Central  PubMed  Google Scholar 

  16. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimina D, Ulkus L et al (2007) Isolation rare circulating tumor cells in cancer patients by microchip technology. Nature 450(7173):1235–1239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lopez-Riquelme N, Minguela A, Villar-Permuy F, Ciprian D, Castillejo A, Alveraez-Lopez MR et al (2013) APMIS 121(12):1139–1143

    Article  CAS  PubMed  Google Scholar 

  18. Samsel L, Dagur PK, Raghavachari N, Seamon C, Kato GJ, McCoy JP (2013) Imaging flow cytometry for morphologic and phenotypic characterization of rare circulating endothelial cells. Cytometry B Clin Cytom 84(6):379–389

    Article  PubMed  Google Scholar 

  19. Zheng S, Lin HK, Lu B, Williams A, Datar R, Cote RJ et al (2011) 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed Microdevices 13(1):203–213

    Article  PubMed  Google Scholar 

  20. Xu T, Lu B, Tai YC, Goldkorn A (2010) A cancer detection platform which measures telomerase activity from live circulating tumor cells captured on a microfilter. Cancer Res 70(16):6420–6426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Harouaka RA, Zhou MD, Yeh YT, Khan WJ, Das A, Liu X et al (2014) Flexible micro spring array device for high-throughput enrichment of viable circulating tumor cells. Clin Chem 60(2):323–333

    Article  CAS  PubMed  Google Scholar 

  22. Zhou M-D, Hao S, Williams A, Haraouaka R, Schrand B, Rawal S et al (2014) Separable bilayer microfiltration device for viable label-free enrichment of circulating tumor cells. Sci Rep 4:7392

    Google Scholar 

  23. Tan SJ, Yobas L, Lee GYH, Ong CN, Lim CT (2009) Microdevice for the isolation and enumeration of cancer cells from blood. Biomed Microdevices 11:883–892

    Article  PubMed  Google Scholar 

  24. Hur SC, Mach AJ, Di Carlo D (2011) High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics 5(2):022206

    Article  PubMed Central  Google Scholar 

  25. Sollier E, Go DE, Che J, Gossett DR, O’Byrne S, Weaver WM et al (2014) Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip 14:63–77

    Article  CAS  PubMed  Google Scholar 

  26. Sun J, Li M, Liu C, Zhang Y, Liu D, Liu W, Hu G, Jiang X (2012) Double spiral microchannel for label-free tumor cell separation and enrichment. Lab Chip 12:3952–3960

    Article  CAS  PubMed  Google Scholar 

  27. Sun J, Liu C, Li M, Wang J, Xianyu Y, Hu G, Jiang X (2013) Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels. Biomicrofluidics 7:011802

    Article  PubMed Central  Google Scholar 

  28. Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DSW, Lim WT, Han J, Bhagat AAS, Lim CT (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 3, 1259

    Google Scholar 

  29. Gleghorn JP, Pratt ED, Denning D, Liu H, Bander N, Tagawa ST et al (2009) Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip 10:27–29

    Article  PubMed Central  PubMed  Google Scholar 

  30. Yu M, Ting DT, Stott SL, Wittner BS, Ozsolak F, Paul S et al (2012) RNA sequencing of pancreatic circulating tumor cells implicates WNT signaling in metastasis. Nat Lett 487:510–513

    Article  CAS  Google Scholar 

  31. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339(6119):580–584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hodkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F et al (2014) Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med 20:897–903

    Article  Google Scholar 

  33. Bacelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31(6):539–544

    Article  Google Scholar 

  34. Howard EW, Leung SCL, Yuen HF, Chua CW, Lee DT, Chan KW et al (2008) Decreased adhesiveness, resistance to anoikis and suppression of GRP94 are integral to the survival of circulating tumor cells in prostate cancer. Clin Exp Metastasis 25:497–508

    Article  CAS  PubMed  Google Scholar 

  35. Carvalho FLF, Simons BW, Antonarakis ES, Rasheed Z, Douglas N, Villegas D et al (2013) Tumorigenic potential of circulating prostate tumor cells. Oncotarget 4(3):413–421

    Article  PubMed Central  PubMed  Google Scholar 

  36. Balic M, Williams A, Lin H, Datar R, Cote RJ (2013) Circulating tumor cells from bench to bedside. Annu Rev Med 64:31–44

    Article  CAS  PubMed  Google Scholar 

  37. Foster BA, Gingrich JR, Kwon ED, Madias C, Greenberg NM (1997) Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res 57:3325–3330

    CAS  PubMed  Google Scholar 

  38. McGregor JR, Samlowski WE, Tharkar S, Donepudi S, Ferrone S (2012) Isolation and expansion of circulating tumor cells (CTC) from melanoma patients using novel cell culture technique. J Clin Oncol 30(suppl), abstr 10614

    Google Scholar 

  39. Kirby BJ, Jodari M, Loftus MS, Gakhar G, Pratt ED, Chanel-Vos C et al (2012) Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device. PLoS One 7(4):e35976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D et al (2013) The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med 5(180):180ra48

    Article  PubMed  Google Scholar 

  41. Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC et al (2014) Ex-vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345(6193):216–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Xu XT, Song QB, Yao Y, Ruan P, Tao ZZ (2012) Inhibition of RhoA/ROCK signaling pathways promotes the apoptosis of gastric cancer cells. Hepatogastroenterology 59(120):2523–2526

    CAS  PubMed  Google Scholar 

  43. Li X, Meng G, Krawetz R, Liu S, Rancourt DE (2008) The ROCK inhibitor Y-27632 enhances the survival rate of human embryonic stem cells following cryopreservation. Stem Cells Dev 17(6):1079–1085

    Article  CAS  PubMed  Google Scholar 

  44. Pipparelli A, Arsenijevic Y, Thuret G, Gain P, Nicolas M, Majo F (2013) Rock inhibitor enhances adhesion and wound healing of human corneal epithelial cells. PLoS One 8(4):e62095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Rheinwald JG, Green H (1975) Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell 6:317–330

    Article  CAS  PubMed  Google Scholar 

  46. Wang CS, Goulet F, Tremblay N, Germain L, Auger F, Tetu B (2001) Selective culture of epithelial cells from primary breast carcinomas using irradiated 3T3 cells as a feeder layer. Pathol Res Pract 197(3):175–181

    Article  CAS  PubMed  Google Scholar 

  47. Chapman S, Liu X, Meyers C, Schlegel R, McBride AA (2010) Human keratinocytes are efficiently immortalized by a Rho kinase inhibitor. J Clin Invest 120(7):2619–2626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B et al (2012) ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol 180(2):599–607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Suprynowicz FA, Upadhyay G, Krawczyk E, Kramer SC, Herbert JD, Liu X et al (2012) Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells. Proc Natl Acad Sci 109(49):20035–20040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Yuan H, Myers S, Wang J, Zhou D, Woo JA, Kallakury B et al (2012) Use of reprogrammed cells to identify therapy for respiratory papillomatosis. N Engl J Med 367(13):1220–1227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Pollock CB, McDonough S, Wang VS, Lee H, Ringer L, Li X et al (2014) Strigolactone analogues induce apoptosis through activation of p38 and the stress response pathway in cancer cell lines and in conditionally reprogrammed primary prostate cancer cells. Oncotarget 5(6):1683–1698

    Article  PubMed Central  PubMed  Google Scholar 

  52. Chapman S, McDermott DH, Shen K, Jang MK, McBride AA (2014) The effect of Rho kinase inhibition on long-term keratinocyte proliferation is rapid and conditional. Stem Cell Res Ther 5(60):scrt449

    Google Scholar 

  53. Sato T, Clevers H (2013) Primary mouse small intestinal epithelial cell cultures. Methods Mol Biol 945:319–328

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Cote M.D., F.R.C.Path., F.C.A.P. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, A. et al. (2016). Perspectives on the Functional Characterization and In Vitro Maintenance of Circulating Tumor Cells. In: Cote, R., Datar, R. (eds) Circulating Tumor Cells. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3363-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3363-1_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3361-7

  • Online ISBN: 978-1-4939-3363-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics