Advertisement

The Hurdle Concept in Fruit Processing

  • Stella Maris Alzamora
  • Aurelio López-Malo
  • Sandra Norma Guerrero
  • María Soledad Tapia
Chapter
Part of the Food Engineering Series book series (FSES)

Abstract

Today, and increasingly more often, humans tend to eat healthy diets that include an increase in the intake of fruits and vegetables as their beneficial effects on health have been evidenced. The produce industry is faced with an ever-increasing demand for fresh-likeness, convenience, and “health” in foods with the minimally processed fruit sector becoming one of its fastest growing segments. The trend for mildly preserved fruits comes with the combined preservation/hurdle technology as the principle in designing the overall treatment. Targeted application of the hurdle concept has aimed to improving quality and safety of fruit products at the farm level, and in the whole and fresh-cut minimally processed fruit industry.

The objectives of this chapter were: (1) to revise some basic aspects of the hurdle concept, (2) to present a panoramic view of recent combinations of traditional and novel stressors explored for the conservation of tropical and subtropical fruits and their subproducts, and (3) to point out some areas of study to fully exploit the potential of the hurdle concept in the design and optimization of preservation techniques.

Keywords

Fruit preservation Design Hurdle concept Novel and traditional stressors 

Notes

Acknowledgments

The authors want to thank the support from Universidad de Buenos Aires, CONICET and ANPCyT–BID from Argentina, from the Universidad de Las Americas, Puebla, and CONACyT from Mexico, and from Universidad Central de Venezuela from Venezuela.

References

  1. Allende, A., and F. Artes. 2003. UV-C radiation as a novel technique for keeping quality of fresh processed “Lollo Rosso” lettuce. Food Research International 36: 739–746.CrossRefGoogle Scholar
  2. Allende, A., F.A. Tomás-Barberán, and M.I. Gil. 2006. Minimal processing for healthy traditional foods. Trends in Food Science and Technology 17: 513–519.CrossRefGoogle Scholar
  3. Alzamora, S.M., and A. López-Malo. 2002. Microbial behavior modeling as a tool in the design and control of processed foods. In Engineering and food for the 21st century, ed. J. Welti-Chanes, G. Barbosa-Cánovas, and J.M. Aguilera, 631–650. Boca Raton: CRC Press.Google Scholar
  4. Alzamora, S.M., L.N. Gerschenson, P. Cerrutti, and A.M. Rojas. 1989. Shelf stable pineapple for long-term non refrigerated storage. Lebensmittel Wissenschaft und Technologie 22: 233–236.Google Scholar
  5. Alzamora, S.M., M.S. Tapia, A. Argaiz, and J. Welti. 1993. Application of combined methods technology in minimally processed fruits. Food Research International 26: 125–130.CrossRefGoogle Scholar
  6. Alzamora, S.M., P. Cerrutti, S. Guerrero, and A. López-Malo. 1995. Minimally processed fruits by combined methods. In Food preservation by moisture control—Fundamentals and applications (International symposium on the properties of water—ISOPOW Practicum II, June 19–24, 1994, México), ed. J. Welti-Chanes and G. Barbosa-Cánovas, 463–492. Lancaster: Technomic Pub. Co.Google Scholar
  7. Alzamora, S.M., A. López-Malo, and M.S. Tapia. 2000. Minimally processed fruits and vegetables: Fundamentals and applications. Gaithersburg: Aspen Publishers, Inc.Google Scholar
  8. Alzamora, S.M., S. Guerrero, A. López-Malo, and E. Palou. 2003. Plant antimicrobials combined with conventional preservatives for fruit products. In Natural antimicrobials for the minimal processing of foods, ed. S. Roller, 235–249. Boca Raton: CRC Press/Woodhead Publishing Limited.CrossRefGoogle Scholar
  9. Alzamora, S.M., S.N. Guerrero, A. López-Malo, E. Palou, C.D. Char, and S. Raffellini. 2010. Models for microbial inactivation: Application in food preservation design. In Processing effects on safety and quality of foods, ed. E. Ortega-Rivas, 87–115. Boca Raton: CRC Press.Google Scholar
  10. Alzamora, S.M., S. Guerrero, M. Schenk, S. Raffellini, and A. López-Malo. 2011. Inactivation of microorganisms. In Ultrasound technologies for food and bioprocessing, ed. H. Feng, G. Barbosa Cánovas, and J. Weiss, 321–344. New York: Springer.CrossRefGoogle Scholar
  11. Ananta, E., V. Heinz, and D. Knorr. 2004. Assessment of high pressure induced damage on Lactobacillus rhamnosus GG by flow cytometry. Food Microbiology 21: 567–577.CrossRefGoogle Scholar
  12. Ananta, E., D. Voight, M. Zenker, V. Heinz, and D. Knorr. 2005. Cellular injuries upon exposure of Escherichia coli and Lactobacillus rhamnosus to high-intensity ultrasound. Journal of Applied Microbiology 99: 271–278.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Argaiz, A., A. López-Malo, and J. Welti-Chanes. 1995. Considerations for the development and the stability of high moisture fruit products during storage. In Food preservation by moisture control—Fundamentals and applications (International symposium on the properties of water—ISOPOW Practicum II, June 19–24, 1994, México), ed. J. Welti-Chanes and G. Barbosa-Cánovas, 761–792. Lancaster: Technomic Pub. Co.Google Scholar
  14. Aronsson, K., and U. Rönner. 2001. Influence of pH, water activity and temperature on the inactivation of Escherichia coli and Saccharomyces cerevisiae by pulsed electric fields. Innovative Food Science & Emerging Technologies 2: 105–112.CrossRefGoogle Scholar
  15. Bartz, J.A. 1982. Infiltration of tomatoes immersed at different temperatures to different depths in suspensions of Erwinia caratovora subsp. Caratovora. Plant Disease 66: 302–305.CrossRefGoogle Scholar
  16. Baumann, A.R., S.E. Martín, and H. Feng. 2005. Power ultrasound treatment of Listeria monocytogenes in apple cider. Journal of Food Protection 68: 2333–2340.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bermúdez-Aguirre, D., and G.V. Barbosa-Cánovas. 2012. Inactivation of Saccharomyces cerevisiae in pineapple, grape and cranberry juices under pulsed and continuous thermo-sonication treatments. Journal of Food Engineering 108: 383–392.CrossRefGoogle Scholar
  18. Beuchat, L. 2000. Use of sanitizers in raw fruit and vegetable processing. In Minimally processed fruits and vegetables. Fundamental aspects and applications, ed. S.M. Alzamora, M.S. Tapia, and A. López-Malo, 63–75. Gaithesburg: Aspen Publishers, Inc.Google Scholar
  19. Booth, I.R., and R.G. Kroll. 1989. The preservation of foods by low pH. In Mechanisms of action of food preservation procedures, ed. G.W. Gould, 119–160. New York: Elsevier Applied Science.Google Scholar
  20. Bracket, R.E. 2001. Fruits, vegetables, and grains. In Food microbiology: Fundamentals and frontiers, 2nd ed, ed. M.P. Doyle, L.R. Beuchat, and T.J. Montville. Washington: ASM Press.Google Scholar
  21. Brul, S., and P. Coote. 1999. Preservative agents in foods. Mode of action and microbial resistance mechanisms. International Journal of Food Microbiology 50: 1–17.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Brul, S., F.M. Klis, S.J.C.M. Oomes, R.C. Montijn, F.H.J. Schuren, P. Coote, and K.J. Hellingwerf. 2002. Detailed process design based on genomics of survivors of food preservation processes. Trends in Food Science and Technology 13: 325–333.CrossRefGoogle Scholar
  23. Brul, S., F. Schuren, R. Montijn, B.J.F. Keijser, H. van der Spek, and S.J.C.M. Oomes. 2006. The impact of functional genomics on microbiological food quality and safety. International Journal of Food Microbiology 112: 195–199.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Buchow, R., U. Weiss, and D. Knorr. 2009. Inactivation kinetics of apple polyphenol oxidase in different pressure-temperature domains. Innovative Food Science & Emerging Technologies 10: 441–448.CrossRefGoogle Scholar
  25. Caminiti, I.M., I. Palgan, F. Noci, A. Muñoz, P. Whyte, D.A. Cronin, D.J. Morgan, and J.G. Lyng. 2011. The effect of pulsed electric fields (PEF) in combination with high intensity light pulses (HILP) on Escherichia coli inactivation and quality attributes in apple juice. Innovative Food Science & Emerging Technologies 12: 118–123.CrossRefGoogle Scholar
  26. Capozzi, V., D. Fiocco, M.L. Amodio, A. Gallone, and G. Spano. 2009. Bacterial stressors in minimally processed food. International Journal of Molecular Sciences 10: 3076–3105.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cerrutti, P., S.M. Alzamora, and S.L. Vidales. 1997. Vanillin as antimicrobial for producing shelf-stable strawberry purée. Journal of Food Science 62: 608–610.CrossRefGoogle Scholar
  28. Chang, E.T., K.E. Smedby, S.M. Zhang, H. Hjalgrim, M. Melbye, A. Ost, B. Glimelius, A. Wolk, and H.O. Adami. 2005. Dietary factors and risk of non-Hodgkin lymphoma in men and women. Cancer Epidemiology, Biomarkers & Prevention 14: 512–520.CrossRefGoogle Scholar
  29. Char, C., E. Mitilinaki, S. Guerrero, and S.M. Alzamora. 2010. Use of high-intensity ultrasound and UV-C light to inactivate some microorganisms in fruit juices. Food and Bioprocess Technology 3: 797–803.CrossRefGoogle Scholar
  30. Chen, Z., and C. Zhu. 2011. Combined effects of aqueous chlorine dioxide and ultrasonic treatments on postharvest storage quality of plum fruit (Prunus salicina L.). Postharvest Biology and Technology 61: 117–123.CrossRefGoogle Scholar
  31. Chirife, J., and C. Ferro Fontán. 1982. Water activity of fresh foods. Journal of Food Science 47: 661–663.CrossRefGoogle Scholar
  32. Dauchet, L., J. Ferrières, D. Arveiler, J.W. Yarnell, F. Gey, P. Ducimetière, J.-B. Ruidavets, B. Haas, A. Evans, A. Bingham, P. Amouyel, and J. Dallongeville. 2004. Frequency of fruit and vegetable consumption and coronary heart disease in France and Northern Ireland: The PRIME study. British Journal of Nutrition 92: 963–972.PubMedCrossRefPubMedCentralGoogle Scholar
  33. De Stefani, E., P. Boffetta, H. Deneo-Pellegrini, A.L. Ronco, P. Correa, and M. Mendilaharsu. 2005. The role of vegetable and fruit consumption in the etiology of squamous cell carcinoma of the esophagus: A case-control study in Uruguay. International Journal of Cancer 116: 130–135.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Díaz, M., M. Herrero, L.A. García, and C. Quirós. 2010. Application of flow cytometry to industrial microbial bioprocesses. Biochemical Engineering Journal 48: 385–407.CrossRefGoogle Scholar
  35. Fernández Escartín, E. 2000. Microbiología e Inocuidad de los Alimentos, 555–557. México: Universidad Autónoma de Querétaro.Google Scholar
  36. Ferrante, S., S. Guerrero, and S.M. Alzamora. 2007. Combined use of ultrasound and natural antimicrobials to inactivate Listeria monocytogenes in orange juice. Journal of Food Protection 70: 1850–1856.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Ferrario, M., S.M. Alzamora, and S.N. Guerrero. Use of Weibull and modified Gompertz models to characterize microbial inactivation in orange juice processed with ultraviolet light and natural antimicrobials. Presented at VIII Congreso Iberoamericano de Ingeniería de Alimentos (CIBIA 8). Lima, Perú, 23–26 de octubre de 2011.Google Scholar
  38. Fonseca, J.M., and J.W. Rushing. 2006. Effect of ultraviolet-C light on quality and microbial population of fresh-cut watermelon. Postharvest Biology and Technology 40: 256–261.CrossRefGoogle Scholar
  39. Gachovska, T., S. Kumar, H. Thippareddi, J. Sibbiah, and F. Williams. 2008. Ultraviolet and pulsed electric field treatments have additive effect on inactivation of E. coli in apple juice. Journal of Food Science 73: 412–441.CrossRefGoogle Scholar
  40. Gil, M.I., M.V. Selma, F. Lopez-Galvez, and A. Allende. 2009. Fresh-cut product sanitation and wash water disinfection: Problems and solutions. International Journal of Food Microbiology 134: 37–45.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Gómez, P.L., S.M. Alzamora, M.A. Castro, and D.M. Salvatori. 2010. Effect of ultraviolet-C light dose on quality of cut-apple: Microorganism, color and compression behaviour. Journal of Food Engineering 98: 60–70.CrossRefGoogle Scholar
  42. Gómez, P.L., A. García Loredo, D. Salvatori, S. Guerrero, and S.M. Alzamora. 2011a. Viscoelasticity, texture and ultrastructure of cut apple as affected by sequential anti-browning and ultraviolet-C light treatments. Journal of Food Engineering 107: 214–225.CrossRefGoogle Scholar
  43. Gómez, P.L., D. Salvatori, A. García Loredo, and S.M. Alzamora. 2011b. Pulsed light treatment of cut apple: Dose effect on color, structure and microbiological stability. Food and Bioprocess Technology 5: 2311–2322. https://doi.org/10.1007/s11947-011-0598-3.CrossRefGoogle Scholar
  44. Gómez, P., S.M. Alzamora, and J. Welti-Chanes. 2011c. Hurdle technology in fruit processing. Annual Reviews of Food Science and Technology 2: 447–465.CrossRefGoogle Scholar
  45. Gómez-López, V.M., P. Ragaert, J. Debevere, and F. Devlieghere. 2007. Pulsed light for food decontamination: A review. Trends in Food Science and Technology 18: 464–473.CrossRefGoogle Scholar
  46. Gómez-López, V.M., L. Orsolani, A. Martínez-Yépez, and M.S. Tapia. 2010. Microbiological and sensorial quality of sonicated calcium-added orange juice. LWT – Food Science and Technology 43: 808–813.CrossRefGoogle Scholar
  47. Gould, G.W. 1995. New methods of food preservation. Glasgow: Blackie Academic & Professional.CrossRefGoogle Scholar
  48. ———. 2000. Induced tolerance of microorganisms to stress factors. In Minimally processed fruits and vegetables—Fundamental aspects and applications, ed. S.M. Alzamora, M.S. Tapia, and A. López-Malo, 29–37. Gaithersbug: Aspen Publishers Inc.Google Scholar
  49. Gould, G.W., and M.V. Jones. 1989. Combination and synergistic effect. In Mechanisms of action of food preservation procedures, ed. G.W. Gould, 401–421. London: Elsevier Applied Science.Google Scholar
  50. Guerrero, S., S.M. Alzamora, and L.N. Gerschenson. 1994. Development of a shelf-stable banana purée by combined factors: Microbial stability. Journal of Food Protection 57: 902–907.CrossRefGoogle Scholar
  51. Havelaar, A.H., S. Brul, A. de Jong, R. de Jonge, M.H. Zwietering, and B.H. ter Kuile. 2010. Future challenges to microbial food safety. International Journal of Food Microbiology 139(Suppl.): S79–S94.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Heldman, D.R., D.B. Lund, and A. Husain. 2008. Cross-process issues impacting innovative food processing technologies. Food Science and Technology International 14: 411–412.CrossRefGoogle Scholar
  53. Hewitt, C.J., and G. Nebe-Von-Caron. 2004. The application of multi-parameter flow cytometry to monitor individual microbial cell physiological state. Advances in Biochemical Engineering/Biotechnology 89: 197–223.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Jang, J.-H., and K.-D. Moon. 2011. Inhibition of polyphenol oxidase and peroxidase activities on fresh-cut apple by simultaneous treatment of ultrasound and ascorbic acid. Food Chemistry 124: 444–449.CrossRefGoogle Scholar
  55. Jay, J.M. 2002. Microbiología Moderna de los Alimentos, 4th ed, 123, 283–288, 521–530. España: Editorial Acribia.Google Scholar
  56. Jones, T.M., and F. Widemo. 2005. Survival and reproduction when food is scarce: Implications for a lekking Hawaiian Drosophila. Ecological Entomology 30: 397–405.CrossRefGoogle Scholar
  57. Keenan, D.F., N.P. Brunton, T.R. Gormley, F. Butler, B.K. Tiwari, and A. Patras. 2010. Effect of thermal and high hydrostatic pressure processing on antioxidant activity and colour of fruit smoothies. Innovative Food Science & Emerging Technologies 11: 551–556.CrossRefGoogle Scholar
  58. Keyser, M., I.A. Müller, F.P. Cilliers, W. Nel, and P.A. Gouws. 2008. Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Science & Emerging Technologies 9: 348–354.CrossRefGoogle Scholar
  59. Knorr, D., M. Zenker, V. Heinz, and D.U. Lee. 2004. Applications and potential of ultrasonics in food processing. Trends in Food Science and Technology 15: 261–266.CrossRefGoogle Scholar
  60. Koutchma, T. 2009. Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology 2: 138–155.CrossRefGoogle Scholar
  61. Krebbers, B., A.M. Matser, S.W. Hoogerwerf, R. Moezelaar, M.M. Tomassen, and R.W. van den Berg. 2003. Combined high-pressure and thermal treatments for processing of tomato puree: Evaluation of microbial inactivation and quality parameters. Innovative Food Science & Emerging Technologies 4: 377–385.CrossRefGoogle Scholar
  62. Lee, W.C., M.J. Lee, and J.S. Kim. 2001. Foodborne illness outbreaks in Korea and Japan studied retrospectively. Journal of Food Protection 64: 899–902.PubMedCrossRefGoogle Scholar
  63. Leistner, L., and G.W. Gould. 2002. Hurdle technologies. Combination treatments for food stability, safety and quality. New York: Kluwer Academic/Plenum Publishers.Google Scholar
  64. Liang, Z., Z. Cheng, and G.S. Mittal. 2006. Inactivation of spoilage microorganisms in apple cider using a continuous flow pulsed electric field system. LWT – Food Science and Technology 39: 351–357.CrossRefGoogle Scholar
  65. Lindsay, D., and A. von Holy. 2006. What food safety professionals should know about bacterial biofilms. British Food Journal 108: 27–37.CrossRefGoogle Scholar
  66. López-Malo, A., S. Guerrero, and S.M. Alzamora. 1999. Saccharomyces cerevisiae thermal inactivation kinetics combined with ultrasound. Journal of Food Protection 62: 10–13.CrossRefGoogle Scholar
  67. López-Malo, A., S. Guerrero, A. Santiesteban, and S.M. Alzamora. Inactivation kinetics of Saccharomyces cerevisiae and Listeria monocytogenes in apple juice processed by novel technologies. Paper presented at ENPROMER 2005, Rio das Pedras—Brazil, August 14–18, 2006.Google Scholar
  68. Marquenie, D., J. Lammertyn, A.H. Geeraerd, C. Soontjens, J.F. Van Impe, B.M. Nicolaï, and C.W. Michiels. 2002. Inactivation of conidia of Botrytis cinerea and Monilinia fructigena using UV-C and heat treatment. International Journal of Food Microbiology 74: 27–35.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Martinez Viedma, P., A. Sobrino Lopez, N. Ben Omar, H. Abriouel, R. Lucas Lopez, E. Valdivia, O. Martin Belloso, and A. Galvez. 2008. Enhanced bactericidal effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against Salmonella enterica in apple juice. International Journal of Food Microbiology 128: 244–249.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Martínez, A., R.V. Díaz, and M.S. Tapia. 2000. Microbial ecology of spoilage and pathogenic flora associated to fruit and vegetables. In Minimally processed fruits and vegetables: Fundamental aspects and applications, ed. S.M. Alzamora, M.S. Tapia, and A. López-Malo, 43–62. Gaithersburg: Aspen Publishers, Inc.Google Scholar
  71. Mathys, A., B. Chapman, M. Bull, V. Heinz, and D. Knorr. 2007. Flow cytometric assessment of Bacillus spore response to high pressure and heat. Innovative Food Science and Emerging Technologies 8: 519–527.CrossRefGoogle Scholar
  72. McMeekin, T.A. 2007. Predictive microbiology: Quantitative science delivering quantifiable benefits to the meat industry and other food industries. Meat Science 77: 17–27.PubMedCrossRefPubMedCentralGoogle Scholar
  73. McNamee, C., F. Noci, D.A. Cronin, J.G. Lyng, D.J. Morgan, and A.G. Scannell. 2010. PEF based hurdle strategy to control Pichia fermentans, Listeria innocua and Escherichia coli k12 in orange juice. International Journal of Food Microbiology 138: 13–18.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Messiaen, C.M., D. Blancard, F. Rouxel, and R. Lafon. 1994. Enfermedades de las Hortalizas, 3rd ed, 17. España: Ediciones Mundi-Prensa.Google Scholar
  75. Montonen, J., P. Knekt, T. Härkänen, R. Järvinen, M. Heliövaara, A. Aromaa, and A. Reunanen. 2005. Dietary patterns and the incidence of type 2 diabetes. American Journal of Epidemiology 161: 219–227.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Mosqueda-Melgar, J., R.M. Raybaudi-Massilia, and O. Martin-Belloso. 2008a. Inactivation of Salmonella enterica Ser. Enteritidis in tomato juice by combining of high-intensity pulsed electric fields with natural antimicrobials. Journal of Food Science 73: M47–M53.PubMedCrossRefPubMedCentralGoogle Scholar
  77. ———. 2008b. Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innovative Food Science & Emerging Technologies 9: 328–340.CrossRefGoogle Scholar
  78. Nkondjock, A., D. Krewski, K.C. Johnson, and P. Ghadirian. 2005. Dietary patterns and risk of pancreatic cancer. International Journal of Cancer 114: 817–823.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Noci, F., J. Riener, M. Walkling-Ribeiro, D.A. Cronin, D.J. Morgan, and J.G. Lyng. 2008. Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple juice. Journal of Food Engineering 85: 141–146.CrossRefGoogle Scholar
  80. O’Byrne, C., and I.R. Booth. 2002. Osmoregulation and its importance to food–borne microorganisms. International Journal of Food Microbiology 74: 203–216.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Palgan, I., I.M. Caminiti, A. Muñoz, F. Noci, P. Whyte, D.J. Morgan, D.A. Cronin, and J.G. Lyng. 2011. Combined effect of selected non-thermal technologies on Escherichia coli and Pichia fermentans inactivation in an apple and cranberry juice blend and on product shelf life. International Journal of Food Microbiology 151: 1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Palhano, F.K., T.T.B. Vilches, R.B. Santos, M.T.D. Orlando, J.A. Ventura, and P.M.B. Fernandes. 2004. Inactivation of Colletotrichum gloeosporioides spores by high hydrostatic pressure combined with citral or lemongrass essential oil. International Journal of Food Microbiology 96: 61–66.CrossRefGoogle Scholar
  83. Pan, J., A.R. Vicente, G.A. Martínez, A.R. Chaves, and P.M. Civello. 2004. Combined use of UV-C irradiation and heat treatment to improve postharvest life of strawberry fruit. Journal of the Science of Food and Agriculture 84: 1831–1838.CrossRefGoogle Scholar
  84. Penteado, A.L., B.S. Eblen, and A.J. Millar. 2004. Evidence of Salmonella internalization into fresh mangoes during simulated postharvest insect disinfestations procedures. Journal of Food Protection 67: 181–184.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Pichereau, V., A. Hartke, and Y. Auffray. 2000. Starvation and osmotic stress induced multiresistances influence of extracellular compounds. International Journal of Food Microbiology 55: 19–25.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Piyasena, P., E. Mohareb, and R.C. McKellar. 2003. Inactivation of microbes using ultrasound: A review. International Journal of Food Microbiology 87: 207–216.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Polydera, A.C., E. Galanou, N.G. Stoforos, and P.S. Taoukis. 2004. Inactivation kinetics of pectin methylesterase of Greek Navel orange juice as a function of high hydrostatic pressure and temperature process conditions. Journal of Food Engineering 62: 291–298.CrossRefGoogle Scholar
  88. Raffellini, S., M. Schenk, S. Guerrero, and S.M. Alzamora. 2011. Kinetics of Escherichia coli inactivation employing hydrogen peroxide at varying temperatures, pH and concentrations. Food Control 22: 920–932.CrossRefGoogle Scholar
  89. Rashidkhani, B., P. Lindblad, and A. Wolk. 2005. Fruits, vegetables and risk of renal cell carcinoma: A prospective study of Swedish women. International Journal of Cancer 113: 451–455.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Raso, J., and G.V. Barbosa-Cánovas. 2003. Nonthermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition 43: 265–285.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Raso, J., R. Pagán, and S. Condón. 2005. Nonthermal technologies in combination with other preservation factors. In Novel food processing technologies, ed. G.V. Barbosa-Cánovas, M.S. Tapia, and M.P. Cano, 453–475. Boca Raton: CRC Press.Google Scholar
  92. Ray, A. 2005. Cancer preventive role of selected dietary factors. Indian Journal of Cancer 42: 15–24.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Raybaudi-Massilia, R.M., J. Mosqueda-Melgar, R. Soliva-Fortuny, and O. Martín-Belloso. 2009. Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobials. CRFSFS 8: 157–180.Google Scholar
  94. Richards, G., and L.R. Beuchat. 2004. Attachment of Salmonella Poona to cantaloupe rind and stem scar tissues as affected by temperature of fruit and inoculum. Journal of Food Protection 67: 1359–1364.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Rico, D., A.B. Martín-Diana, J.M. Barat, and C. Barry-Ryan. 2007. Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends in Food Science and Technology 18(2007): 373–386.CrossRefGoogle Scholar
  96. Ritz, M., J.L. Tholozan, M. Federighi, and M.F. Pilet. 2001. Morphological and physiological characterization of Listeria monocytogenes subjected to high hydrostatic pressure. Applied and Environmental Microbiology 67: 2240–2247.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ross, A.I.V., M.W. Griffiths, G.S. Mittal, and H.C. Deeth. 2003. Combining nonthermal technologies to control foodborne microorganisms. International Journal of Food Microbiology 89: 125–138.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Russell, N.J. 2002. Bacterial membranes: The effect of chill storage and food processing. An overview. International Journal of Food Microbiology 79: 27–34.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Schenk, M., S. Guerrero, and S.M. Alzamora. 2008. Response of some microorganisms to ultraviolet treatment on fresh-cut pear. Food and Bioprocess Technology 1: 384–392.CrossRefGoogle Scholar
  100. Schenk, M., S. Raffellini, S. Guerrero, G. Blanco, and S.M. Alzamora. 2011. Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae by UV-C light: Study of cell injury by flow cytometry. LWT – Food Science and Technology 44: 191–198.CrossRefGoogle Scholar
  101. Schenk, M., A. García Loredo, S. Raffellini, S.M. Alzamora, and S. Guerrero. 2012. The effect of UV-C in combination with H2O2 treatments on microbial response and quality parameters of fresh cut pear discs. International Journal of Food Science and Technology 47: 1842–1851.CrossRefGoogle Scholar
  102. Schwentesius, R., and M.A. Gómez. 2000. Internacionalización de la Horticultura, 1–10, 32–35. México: Mundi-Prensa México.Google Scholar
  103. Sewell, A.M., and J.M. Farber. 2001. Foodborne outbreaks in Canada linked to produce. Journal of Food Protection 64: 1863–1877.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Shabala, L., B. Budde, T. Ross, H. Siegumfeldt, M. Jakobsen, and T. McMeekin. 2002. Responses of Listeria monocytogenes to acid stress and glucose availability revealed a novel combination of fluorescence microscopy and microelectrode ion-selective techniques. Applied and Environmental Microbiology 68: 1794–1802.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Shabala, L., T. Ross, T. McMeekin, and S. Shabala. 2006. Non-invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment. FEMS Microbiology Reviews 30: 472–486.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Shama, G. 2006. Ultraviolet light. In Handbook of food science, technology and engineering, vol. 3, ed. Y.H. Hui, 122-1–122-14. Boca Raton: CRC/Taylor & Francis.Google Scholar
  107. Shama, G., and P. Anderson. 2005. UV hormesis in fruits: A concept ripe for commercialization. Trends in Food Science and Technology 16: 128–136.CrossRefGoogle Scholar
  108. Silveira, A.C., E. Aguayo, V.H. Escalona, and F. Artés. 2011. Hot water treatment and peracetic acid to maintain fresh-cut Galia melon quality. Innovative Food Science & Emerging Technologies 12: 569–576.CrossRefGoogle Scholar
  109. Sivapalasingam, S., C.R. Friedman, L. Cohen, and R.V. Tauxe. 2004. Fresh produce: A growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. Journal of Food Protection 67: 2342–2353.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Smelt, J.P.P.M., J.C. Hellemons, P.C. Wouters, and S.J.C. van Gerwen. 2002. Physiological and mathematical aspects in setting criteria for decontamination of foods by physical means. International Journal of Food Microbiology 78: 57–77.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Stewart, C.M., R.B. Tompkin, and M.B. Cole. 2002. Food safety: New concepts for the new millennium. Innovative Food Science & Emerging Technologies 3: 105–112.CrossRefGoogle Scholar
  112. Tapia de Daza, M.S., A. Argaiz, A. López-Malo, and R.V. Díaz. 1995. Microbial stability assessment in high and intermediate moisture foods: Special emphasis on fruit products. In Food preservation by moisture control—Fundamentals and applications (International symposium on the properties of water—ISOPOW Practicum II, June 19–24, 1994, México), ed. J. Welti-Chanes and G. Barbosa-Cánovas, 575–602. Lancaster: Technomic Pub. Co.Google Scholar
  113. Tapia de Daza, M.S., S.M. Alzamora, and J. Welti Chanes. 1996. Combination of preservation factors applied to minimal processing of foods. Critical Reviews in Food Science and Nutrition 36: 629–659.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Tapia, M.S., and J. Welti-Chanes. 2012. Hurdle technology principles applied in decontamination of whole and fresh-cut produce. In Decontamination of fresh and minimally processed produce, 1st ed, ed. Vicente M. Gómez-López, 417–449. New York: John Wiley & Sons, Inc.CrossRefGoogle Scholar
  115. Tapia, M.S., J. Chirife, and S.M. Alzamora. 2007. Effects of water activity (aw) on microbial stability: As a hurdle in food preservation. In Water activity in foods: Fundamental and application, ed. G.B. Barbosa-Cánovas, A.J. Fontana Jr., S.J. Schmidt, and T.P. Labuza. Ames: IFT Press–Blackwell Publishing Professional.Google Scholar
  116. Tapia, M.S., V.M. Gómez-López, and C. Olaizola. 2009. HACCP implementation in the production of fresh-cut fruits and vegetables. Stewart Postharvest Review 4: 1–7.Google Scholar
  117. Terefe, N.S., K. Matthies, L. Simons, and C. Versteeg. 2009. Combined high pressure-mild temperature processing for optimal retention of physical and nutritional quality of strawberries (Fragaria × ananassa). Innovative Food Science & Emerging Technologies 10: 297–307.CrossRefGoogle Scholar
  118. Tran, M.T.T., and M. Farid. 2004. Ultraviolet treatment of orange juice. Innovative Food Science & Emerging Technologies 5: 495–502.CrossRefGoogle Scholar
  119. USDA. 2004. National Nutrient Database for Standard Reference. www.nal.usda.gov/fnic/foodcomp/Data/SR18/reports/sr18page.
  120. ———. 2005. Dietary Guidelines for Americans. www.usda.gov/cnpp/DG2005/.
  121. Valdramidis, V.P., W.D. Gram, A. Beattie, M. Linton, A. McKay, A.M. Fearon, and M.F. Patterson. 2009. Defining the stability interfaces of apple juice: Implications on the optimisation and design of High Hydrostatic Pressure treatment. Innovative Food Science & Emerging Technologies 10: 396–404.CrossRefGoogle Scholar
  122. Venn, B.J., and J.I. Mann. 2004. Cereal grains, legumes and diabetes. European Journal of Clinical Nutrition 58: 1443–1461.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Walkling-Ribeiro, M., F. Noci, D.A. Cronin, J. Riener, J.G. Lyng, and D.J. Morgan. 2008. Reduction of Staphylococcus aureus and quality changes in apple juice processed by ultraviolet irradiation, pre-heating and pulsed electric fields. Journal of Food Engineering 89: 267–273.CrossRefGoogle Scholar
  124. Wang, H., H. Feng, and Y. Luo. 2007. Control of browning and microbial growth on fresh-cut apples by sequential treatment of sanitizers and calcium ascorbate. Journal of Food Science 72: M001–M007.PubMedPubMedCentralGoogle Scholar
  125. Welti-Chanes, J., C.E. Ochoa-Velasco, and J.A. Guerrero-Beltrán. 2009. High pressure homogenization of orange juice to inactivate pectinmethylesterase. Innovative Food Science & Emerging Technologies 10: 457–462.CrossRefGoogle Scholar
  126. World Health Organization. Food and Agriculture Organization of the United Nations (WHO/FAO). 2003. Diet, nutrition and the prevention of chronic diseases. WHO Technical Report Series 916. Report of a Joint WHO/FAO Expert Consultation, 148.Google Scholar
  127. Yaun, B.R., S.S. Summer, J.D. Eifert, and J.E. Marcy. 2004. Inhibition of pathogens on fresh produce by ultraviolet energy. International Journal of Food Microbiology 90: 1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Zhang, Y., S.K. Vareed, and M.G. Nair. 2005. Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Science 76: 1465–1472.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Stella Maris Alzamora
    • 1
  • Aurelio López-Malo
    • 2
  • Sandra Norma Guerrero
    • 1
  • María Soledad Tapia
    • 3
  1. 1.Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.Universidad de las Americas—PueblaCholulaMexico
  3. 3.Universidad Central de VenezuelaCaracasVenezuela

Personalised recommendations