Overview and Translational Impact of Space Cell Biology Research

  • Neal R. Pellis
  • Alexander Chouker
  • B. Yic
  • Svantje Tauber
  • Oliver Ullrich
  • A. Sundaresan


Space life sciences research is critical to preparation for long-duration space exploration. It is expected that this research will increase our knowledge of basic biological processes, and provide insight into critical mechanisms for treatment of various medical conditions in space and here on Earth. The study of terrestrial organisms and human cells in space poses many challenges, but offers unique opportunities that may be infrequent in ground-based research settings.

Cell biology and microbiology provide windows into terrestrial living systems for much of the basic and applied research in the biological sciences today. As we proceed into the next phase of spaceflight and exploration wherein humans will travel beyond low Earth orbit and even beyond the solar system, it is essential that we understand the impact of hypogravity and the space environment on life. Cells and microbes offer an expeditious and cost effective tool to begin addressing the critical questions on the adaptation of terrestrial life to space and planetary environments. Animal experiments can have extensive design, hardware, time, and personnel requirements. In the beginning, while resources are precious, we can avail ourselves of the technology to study microbial cells and mammalian cell and tissue culture models in spaceflight. Likewise, this is a great opportunity to embark on spaceflight studies to understand the role of physical forces in the form and function of life. Investigations into the response of cells during microgravity and ground-based microgravity analogue culture have and will continue to unveil novel biomedically relevant responses that may not be observed using conventional experimental approaches. Indeed, significant discoveries in biological research and translational advancements to the healthcare setting are achieved through study of the response of biological systems to extreme environments. The spaceflight and ground-based spaceflight analogue environments are no exception. The intent of this book is to emphasize the immeasurable opportunity of these innovative research platforms to fundamentally advance our understanding of how human and microbial cells behave normally or transition to disease-causing phenotypes and the potential for translation of these findings into novel strategies to advance human health and quality of life on Earth and for space exploration.

As the intensive investigative phase of cell biology and microbiology in spaceflight research and the parallel development research technologies continues to be advanced in terms of its capabilities, modularity, and experimental flexibility, it is essential that we establish a research plan consist with attaining answers to the key questions that are critical for safe missions in the hostile environment beyond Earth. Indeed, evolution has not designed a proscribed format for the adaptation of terrestrial life to microgravity. As we observe terrestrial life transition to space over the next century, we will gain useful insight into the role of gravitational as well as other forces in life processes. Furthermore, cell-based research will afford new opportunities to understand how life operates in these conditions, and give new fundamental mechanistic insight into disease processes beneficial to explorers and to the general public.

This chapter will discuss the implementation of cell and tissue culture models and microbial cell culture technology and prepare us for an era of biology with an emphasis on the impact of physical forces on terrestrial life.


Microbiology Cell biology Microgravity Ground-based microgravity analogue culture Cell culture technology Adaptation 



The author acknowledges the steadfast dedication and expertise of Universities Space Research Association employee Mildred D. Young in the preparation of the manuscript.


  1. 1.
    Cogoli, A. (1996). Gravitational physiology of human immune cells: A review of in vivo, ex vivo and in vitro studies. Journal of Gravitational Physiology, 3(1), 1–9.PubMedGoogle Scholar
  2. 2.
    Sundaresan, A., Risin, D., & Pellis, N. R. (2004). Cell growth in microgravity. In R. A. Meyers, A. Sendtko, & P. Henheik (Eds.), Encyclopedia of molecular cell biology and molecular medicine (Vol. 2, 2nd ed., pp. 303–321). Weinheim, Germany: Wiley-VCH.Google Scholar
  3. 3.
    Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R., & Pierson, D. L. (2004). Microbial responses to microgravity and other low-shear environments. Microbiology and Molecular Biology Reviews, 68(2), 345–361.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Horneck, G., Klaus, D. M., & Mancinelli, R. L. (2010). Space microbiology. Microbiology and Molecular Biology Reviews, 74(1), 121–156.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kim, W., Tengra, F. K., Shong, J., Marchand, N., Chan, H. K., Young, Z., et al. (2013). Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability. BMC Microbiology, 13, 241.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kim, W., Tengra, F. K., Young, Z., Shong, J., Marchand, N., Chan, H. K., et al. (2013). Spaceflight promotes biofilm formation by Pseudomonas aeruginosa. PloS One, 8(4), e62437.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ott, C. M., Crabbe, A., Wilson, J. W., Barrila, J. B., & Nickerson, C. A. (2011). Effect of spaceflight on microbial gene expression and virulence. In A. Chouker (Ed.), Stress challenges and immunity in space (pp. 203–225). Heidelberg, Germany: Springer.Google Scholar
  8. 8.
    Vunjak-Novakovic, G., Searby, N., De Luis, J., & Freed, L. E. (2002). Microgravity studies of cells and tissues. Annals of the New York Academy of Sciences, 974, 504–517.CrossRefPubMedGoogle Scholar
  9. 9.
    Fitzgerald, W., Chen, S., Walz, C., Zimmerberg, J., Margolis, L., & Grivel, J. C. (2009). Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the international space station. In Vitro Cellular & Developmental Biology Animal, 45(10), 622–632.CrossRefGoogle Scholar
  10. 10.
    Wilson, J. W., Ott, C. M., Honer zu Bentrup, K., Ramamurthy, R., Quick, L., Porwollik, S., et al. (2007). Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16299–16304.Google Scholar
  11. 11.
    Wilson, J. W., Ott, C. M., Quick, L., Davis, R., Honer zu Bentrup, K., Crabbe, A., et al. (2008). Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PloS One, 3(12), e3923.Google Scholar
  12. 12.
    Crabbe, A., Schurr, M. J., Monsieurs, P., Morici, L., Schurr, J., Wilson, J. W., et al. (2011). Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Applied and Environmental Microbiology, 77(4), 1221–1230.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Crabbe, A., Nielsen-Preiss, S. M., Woolley, C. M., Barrila, J., Buchanan, K., McCracken, J., et al. (2013). Spaceflight enhances cell aggregation and random budding in Candida albicans. PloS One, 8(12), e80677.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ma, X., Wehland, M., Schulz, H., Saar, K., Hubner, N., Infanger, M., et al. (2013). Genomic approach to identify factors that drive the formation of three-dimensional structures by EA.hy926 endothelial cells. PloS One, 8(5), e64402.Google Scholar
  15. 15.
    Leach, J. E., Ryba-White, M., Sun, Q., Wu, C. J., Hilaire, E., Gartner, C., et al. (2001). Plants, plant pathogens, and microgravity--a deadly trio. Gravitational and Space Biology Bulletin, 14(2), 15–23.Google Scholar
  16. 16.
    Fengler, S., Spirer, I., Neef, M., Ecke, M., Nieselt, K., & Hampp, R. (2015). A whole-genome microarray study of Arabidopsis thaliana semisolid callus cultures exposed to microgravity and nonmicrogravity related spaceflight conditions for 5 days on board of Shenzhou 8. BioMed Research International, 2015, 547495.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ferl, R. J., Koh, J., Denison, F., & Paul, A. L. (2015). Spaceflight induces specific alterations in the proteomes of Arabidopsis. Astrobiology, 15(1), 32–56.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Moorman, S. J., & Shorr, A. Z. (2008). The primary cilium as a gravitational force transducer and a regulator of transcriptional noise. Developmental Dynamics, 237(8), 1955–1959.CrossRefPubMedGoogle Scholar
  19. 19.
    Ingber, D. E., Wang, N., & Stamenovic, D. (2014). Tensegrity, cellular biophysics, and the mechanics of living systems. Reports on Progress in Physics, 77(4), 046603.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Paul, A. L., Wheeler, R. M., Levine, H. G., & Ferl, R. J. (2013). Fundamental plant biology enabled by the space shuttle. American Journal of Botany, 100(1), 226–234.CrossRefPubMedGoogle Scholar
  21. 21.
    Ingber, D. (1999). How cells (might) sense microgravity. The FASEB Journal, 13(Suppl), S3–15.PubMedGoogle Scholar
  22. 22.
    Albrecht-Buehler, G. (1991). Possible mechanisms of indirect gravity sensing by cells. ASGSB Bulletin, 4(2), 25–34.PubMedGoogle Scholar
  23. 23.
    Iskratsch, T., Wolfenson, H., & Sheetz, M. P. (2014). Appreciating force and shape-the rise of mechanotransduction in cell biology. Nature Reviews Molecular Cell Biology, 15(12), 825–833.CrossRefPubMedGoogle Scholar
  24. 24.
    Orr, A. W., Helmke, B. P., Blackman, B. R., & Schwartz, M. A. (2006). Mechanisms of mechanotransduction. Developmental Cell, 10(1), 11–20.CrossRefPubMedGoogle Scholar
  25. 25.
    Vogel, V., & Sheetz, M. P. (2009). Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. Current Opinion in Cell Biology, 21(1), 38–46.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Singla, V., & Reiter, J. F. (2006). The primary cilium as the cell’s antenna: Signaling at a sensory organelle. Science, 313(5787), 629–633.CrossRefPubMedGoogle Scholar
  27. 27.
    Satir, P., Pedersen, L. B., & Christensen, S. T. (2010). The primary cilium at a glance. Journal of Cell Science, 123(Pt 4), 499–503.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bhat, R., & Bissell, M. J. (2014). Of plasticity and specificity: Dialectics of the microenvironment and macroenvironment and the organ phenotype. Wiley Interdisciplinary Reviews: Developmental Biology, 3(2), 147–163.CrossRefPubMedGoogle Scholar
  29. 29.
    Polacheck, W. J., German, A. E., Mammoto, A., Ingber, D. E., & Kamm, R. D. (2014). Mechanotransduction of fluid stresses governs 3D cell migration. Proceedings of the National Academy of Sciences of the United States of America, 111(7), 2447–2452.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bissell, M. J., & Barcellos-Hoff, M. H. (1987). The influence of extracellular matrix on gene expression: Is structure the message? Journal of Cell Science Supplement, 8, 327–343.CrossRefPubMedGoogle Scholar
  31. 31.
    Nelson, C. M., & Bissell, M. J. (2005). Modeling dynamic reciprocity: Engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Seminars in Cancer Biology, 15(5), 342–352.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Roskelley, C. D., & Bissell, M. J. (1995). Dynamic reciprocity revisited: A continuous, bidirectional flow of information between cells and the extracellular matrix regulates mammary epithelial cell function. Biochemical Cell Biology, 73(7–8), 391–397.CrossRefGoogle Scholar
  33. 33.
    Xu, R., Boudreau, A., & Bissell, M. J. (2009). Tissue architecture and function: Dynamic reciprocity via extra- and intra-cellular matrices. Cancer and Metastasis Reviews, 28(1–2), 167–176.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang, N., Butler, J. P., & Ingber, D. E. (1993). Mechanotransduction across the cell surface and through the cytoskeleton. Science, 260(5111), 1124–1127.CrossRefPubMedGoogle Scholar
  35. 35.
    Ciobanasu, C., Faivre, B., & Le Clainche, C. (2013). Integrating actin dynamics, mechanotransduction and integrin activation: The multiple functions of actin binding proteins in focal adhesions. European Journal of Cell Biology, 92(10–11), 339–348.CrossRefPubMedGoogle Scholar
  36. 36.
    Vogel, V., & Sheetz, M. (2006). Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology, 7(4), 265–275.CrossRefPubMedGoogle Scholar
  37. 37.
    Humphrey, J. D., Dufresne, E. R., & Schwartz, M. A. (2014). Mechanotransduction and extracellular matrix homeostasis. Nature Reviews Molecular Cell Biology, 15(12), 802–812.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Olesen, S. P., Clapham, D. E., & Davies, P. F. (1988). Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature, 331(6152), 168–170.CrossRefPubMedGoogle Scholar
  39. 39.
    Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689.CrossRefPubMedGoogle Scholar
  40. 40.
    Reed, A., Kohl, P., & Peyronnet, R. (2014). Molecular candidates for cardiac stretch-activated ion channels. Global Cardiology Science & Practice, 2014(2), 9–25.CrossRefGoogle Scholar
  41. 41.
    Ingber, D. E. (1997). Integrins, tensegrity, and mechanotransduction. Gravitational and Space Biology Bulletin, 10(2), 49–55.PubMedGoogle Scholar
  42. 42.
    Ingber, D. (1998). In search of cellular control: Signal transduction in context. Journal of Cellular Biochemistry Supplement, 30–31, 232–237.CrossRefPubMedGoogle Scholar
  43. 43.
    Zahir, N., & Weaver, V. M. (2004). Death in the third dimension: Apoptosis regulation and tissue architecture. Current Opinion in Genetics & Development, 14(1), 71–80.CrossRefGoogle Scholar
  44. 44.
    Jessup, J. M., Frantz, M., Sonmez-Alpan, E., Locker, J., Skena, K., Waller, H., et al. (2000). Microgravity culture reduces apoptosis and increases the differentiation of a human colorectal carcinoma cell line. In Vitro Cellular & Developmental Biology Animal, 36(6), 367–373.CrossRefGoogle Scholar
  45. 45.
    Schatten, H., Lewis, M. L., & Chakrabarti, A. (2001). Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronautica, 49(3–10), 399–418.CrossRefPubMedGoogle Scholar
  46. 46.
    Gaboyard, S., Blanchard, M. P., Travo, C., Viso, M., Sans, A., & Lehouelleur, J. (2002). Weightlessness affects cytoskeleton of rat utricular hair cells during maturation in vitro. Neuroreport, 13(16), 2139–2142.CrossRefPubMedGoogle Scholar
  47. 47.
    Sytkowski, A. J., & Davis, K. L. (2001). Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotating wall vessel bioreactor. In Vitro Cellular & Developmental Biology Animal, 37(2), 79–83.CrossRefGoogle Scholar
  48. 48.
    Ingber, D. E. (2003). Mechanobiology and diseases of mechanotransduction. Annals of Medicine, 35(8), 564–577.CrossRefPubMedGoogle Scholar
  49. 49.
    Hashemi, B. B., Penkala, J. E., Vens, C., Huls, H., Cubbaqge, M., & Sams, C. F. (1999). T cell activation responses are differentially regulated during clinorotation and in spaceflight. The FASEB Journal, 13(14), 2071–2082.PubMedGoogle Scholar
  50. 50.
    Pellis, N. R. (1998, November/December). Microgravity: A medical research and treatment tool (Vol. 6, Issue 6, pp. 3–6). NASA Office of Aero-Space Technology.Google Scholar
  51. 51.
    Cooper, D., & Pellis, N. R. (1998). Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C. Journal of Leukocyte Biology, 63(5), 550–562.PubMedGoogle Scholar
  52. 52.
    Sundaresan, A., Risin, D., & Pellis, N. R. (2002). Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity. In Vitro Cellular & Developmental Biology Animal, 38(2), 118–122.CrossRefGoogle Scholar
  53. 53.
    Uva, B. M., Masini, M. A., Sturla, M., Prato, P., Passalacqua, M., Giuliani, M., et al. (2002). Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Research, 934(2), 132–139.CrossRefPubMedGoogle Scholar
  54. 54.
    Uva, B. M., Masini, M. A., Sturla, M., Tagliafierro, G., & Strollo, F. (2002). Microgravity-induced programmed cell death in astrocytes. Journal of Gravitational Physiology, 9(1), 275–276.Google Scholar
  55. 55.
    Moorman, S. J., Shimada, N., Sokunbi, G., & Pfirrm, C. (2007). Simulated-microgravity induced changes in gene expression in zebrafish embryos suggest that the primary cilium is involved in gravity transduction. Gravitational and Space Biology Bulletin, 20(2), 79–86.Google Scholar
  56. 56.
    Altshuler, B. (1981). Modeling of dose–response relationships. Environmental Health Perspectives, 42, 23–27.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    DeLean, A., Munson, P. J., & Rodbard, D. (1978). Simultaneous analysis of families of sigmoidal curves: Application to bioassay, radioligand assay, and physiological dose–response curves. The American Journal of Physiology, 235(2), E97–102.PubMedGoogle Scholar
  58. 58.
    Gargaud, M. (2011). Encyclopedia of Astrobiology. In M. Gargaud, R. Amils, J. Cernicharo Quintanilla, H. J. Cleaves, W. M. Irvine, D. Pinti, & M. Viso (Eds.), Encyclopedia of astrobiology. New York, NY: Springer.CrossRefGoogle Scholar
  59. 59.
    Dickson, K. J. (1991). Summary of biological spaceflight experiments with cells. ASGSB Bulletin, 4(2), 151–260.PubMedGoogle Scholar
  60. 60.
    Johnston, R. S., & Dietlein, L. F. (1977). Biomedical results from Skylab (Vol. SP-377). Washington, DC: NASA Government Printing Office.Google Scholar
  61. 61.
    Pellis, N. R., Goodwin, T. J., Risin, D., McIntyre, B. W., Pizzini, R. P., Cooper, D., et al. (1997). Changes in gravity inhibit lymphocyte locomotion through type I collagen. In Vitro Cellular & Developmental Biology Animal, 33(5), 398–405.CrossRefGoogle Scholar
  62. 62.
    Cogoli, A. (1997). Signal transduction in T lymphocytes in microgravity. Gravitational and Space Biology Bulletin, 10(2), 5–16.PubMedGoogle Scholar
  63. 63.
    Cogoli, A., & Cogoli-Greuter, M. (1997). Activation and proliferation of lymphocytes and other mammalian cells in microgravity. Advances in Space Biology and Medicine, 6, 33–79.CrossRefPubMedGoogle Scholar
  64. 64.
    Manchester, J. K., Chi, M. M., Norris, B., Ferrier, B., Krasnov, I., Nemeth, P. M., et al. (1990). Effect of microgravity on metabolic enzymes of individual muscle fibers. The FASEB Journal, 4(1), 55–63.PubMedGoogle Scholar
  65. 65.
    Gao, H., Liu, Z., & Zhang, L. (2011). Secondary metabolism in simulated microgravity and space flight. Protein & Cell, 2(11), 858–861.CrossRefGoogle Scholar
  66. 66.
    Huang, B., Liu, N., Rong, X., Ruan, J., & Huang, Y. (2015). Effects of simulated microgravity and spaceflight on morphological differentiation and secondary metabolism of Streptomyces coelicolor A3(2). Applied Microbiology and Biotechnology, 99(10), 4409–4422.CrossRefPubMedGoogle Scholar
  67. 67.
    Unsworth, B. R., & Lelkes, P. I. (1998). Growing tissues in microgravity. Nature Medicine, 4(8), 901–907.CrossRefPubMedGoogle Scholar
  68. 68.
    Freed, L. E., Langer, R., Martin, I., Pellis, N. R., & Vunjak-Novakovic, G. (1997). Tissue engineering of cartilage in space. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13885–13890.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Sultan, C., Stamenovic, D., & Ingber, D. E. (2004). A computational tensegrity model predicts dynamic rheological behaviors in living cells. Annals of Biomedical Engineering, 32(4), 520–530.CrossRefPubMedGoogle Scholar
  70. 70.
    Tixador, R., Richoilley, G., Gasset, G., Templier, J., Bes, J. C., Moatti, N., et al. (1985). Study of minimal inhibitory concentration of antibiotics on bacteria cultivated in vitro in space (Cytos 2 experiment). Aviation, Space, and Environmental Medicine, 56(8), 748–751.PubMedGoogle Scholar
  71. 71.
    Kacena, M. A., & Todd, P. (1999). Gentamicin: Effect on E. coli in space. Microgravity Science and Technology, 12(3–4), 135–137.PubMedGoogle Scholar
  72. 72.
    Malicki, J., & Avidor-Reiss, T. (2014). From the cytoplasm into the cilium: Bon voyage. Organogenesis, 10(1), 138–157.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Berndt, J. D. (2013). The cilium gets excited. Science Signaling, 6(306), ec312.Google Scholar
  74. 74.
    Louvi, A., & Grove, E. A. (2011). Cilia in the CNS: The quiet organelle claims center stage. Neuron, 69(6), 1046–1060.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Resnick, A., & Hopfer, U. (2007). Force-response considerations in ciliary mechanosensation. Biophysical Journal, 93(4), 1380–1390.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Navran, S. (2008). The application of low shear modeled microgravity to 3-D cell biology and tissue engineering. Biotechnology Annual Review, 14, 275–296.CrossRefPubMedGoogle Scholar
  77. 77.
    Becker, J. L., & Blanchard, D. K. (2007). Characterization of primary breast carcinomas grown in three-dimensional cultures. The Journal of Surgical Research, 142(2), 256–262.CrossRefPubMedGoogle Scholar
  78. 78.
    Zhau, H. E., Goodwin, T. J., Chang, S. M., Baker, T. L., & Chung, L. W. (1997). Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions: Evaluation of androgen-induced growth and PSA expression. In Vitro Cellular & Developmental Biology Animal, 33(5), 375–380.CrossRefGoogle Scholar
  79. 79.
    Cortiella, J., Niles, J., Cantu, A., Brettler, A., Pham, A., Vargas, G., et al. (2010). Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Engineering Part A, 16(8), 2565–2580.CrossRefPubMedGoogle Scholar
  80. 80.
    Crabbe, A., Liu, Y., Sarker, S. F., Bonenfant, N. R., Barrila, J., Borg, Z. D., et al. (2015). Recellularization of decellularized lung scaffolds is enhanced by dynamic suspension culture. PloS One, 10(5), e0126846.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Kida, N., Mochizuki, Y., & Taguchi, F. (2007). Sporicidal activity of the KMT reagent in its vapor phase against Geobacillus stearothermophilus spores. Microbiology and Immunology, 51(1), 99–103.CrossRefPubMedGoogle Scholar
  82. 82.
    Sundaresan, A., & Pellis, N. R. (2009). Cellular and genetic adaptation in low-gravity environments. The Annals of the New York Academy of Sciences, 1161, 135–146.CrossRefPubMedGoogle Scholar
  83. 83.
    Sundaresan, A. (2011). A possible cardiovascular predictor of susceptibility to microgravity. International Journal of Transport Phenomena, 12(1–2), 93–100.Google Scholar
  84. 84.
    Uhran, M. (2012, June 26–29). Microgravity related patent history. In First Annual International Space Station (ISS) Research and Development Conference. Denver, CO.Google Scholar
  85. 85.
    Grosse, J., Wehland, M., Pietsch, J., Schulz, H., Saar, K., Hubner, N., et al. (2012). Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids. The FASEB Journal, 26(12), 5124–5140.CrossRefPubMedGoogle Scholar
  86. 86.
    Cameron, D. F., Hushen, J. J., Nazian, S. J., Willing, A., Saporta, S., & Sanberg, P. R. (2001). Formation of Sertoli cell-enriched tissue constructs utilizing simulated microgravity technology. The Annals of the New York Academy of Sciences, 944, 420–428.CrossRefPubMedGoogle Scholar
  87. 87.
    Qiu, Q. Q., Ducheyne, P., & Ayyaswamy, P. S. (2001). 3D bone tissue engineered with bioactive microspheres in simulated microgravity. In Vitro Cellular & Developmental Biology Animal, 37(3), 157–165.CrossRefGoogle Scholar
  88. 88.
    Hanke, W., Fernandes de Lima, V. M., Wiedemann, M., & Meissner, K. (2006). Microgravity dependence of excitable biological and physicochemical media. Protoplasma, 229(2–4), 235–242.CrossRefPubMedGoogle Scholar
  89. 89.
    Doolin, E. J., Geldziler, B., Strande, L., Kain, M., & Hewitt, C. (1999). Effects of microgravity on growing cultured skin constructs. Tissue Engineering, 5(6), 573–582.CrossRefPubMedGoogle Scholar
  90. 90.
    Blasi, P., Luca, G., Mancuso, F., Schoubben, A., Calvitti, M., Giovagnoli, S., et al. (2013). Conformal polymer coatings for pancreatic islets transplantation. International Journal of Pharmaceutics, 440(2), 141–147.CrossRefPubMedGoogle Scholar
  91. 91.
    Holland, P. M., Abramson, R. D., Watson, R., & Gelfand, D. H. (1991). Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of thermus aquaticus DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 88(16), 7276–7280.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Brock, T. D. (1967). Life at high temperatures. Evolutionary, ecological, and biochemical significance of organisms living in hot springs is discussed. Science, 158(3804), 1012–1019.CrossRefPubMedGoogle Scholar
  93. 93.
    Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., et al. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239(4839), 487–491.CrossRefPubMedGoogle Scholar
  94. 94.
    Vastag, B. (2001). Cell biology update: A decade of simulating space on earth. Journal of the American Medical Association, 285(17), 2181–2182.CrossRefPubMedGoogle Scholar
  95. 95.
    Nakamura, K., Kuga, H., Morisaki, T., Baba, E., Sato, N., Mizumoto, K., et al. (2002). Simulated microgravity culture system for a 3-D carcinoma tissue model. Biotechniques, 33(5), 1068–1070, 1072, 1074–1076.Google Scholar
  96. 96.
    Margolis, L. B., Fitzgerald, W., Glushakova, S., Hatfill, S., Amichay, N., Baibakov, B., et al. (1997). Lymphocyte trafficking and HIV infection of human lymphoid tissue in a rotating wall vessel bioreactor. AIDS Research and Human Retroviruses, 13(16), 1411–1420.CrossRefPubMedGoogle Scholar
  97. 97.
    Hatton, J. P., Gaubert, F., Cazenave, J. P., & Schmitt, D. (2002). Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells. Journal of Cellular Biochemistry, 87(1), 39–50.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Neal R. Pellis
    • 1
  • Alexander Chouker
    • 2
  • B. Yic
    • 2
  • Svantje Tauber
    • 3
  • Oliver Ullrich
    • 3
  • A. Sundaresan
    • 4
  1. 1.Division of Space Life SciencesUniversities Space Research AssociationHoustonUSA
  2. 2.Department of AnesthesiologyStress and Immunology Lab, Hospital of the University of MunichMunichGermany
  3. 3.Division of Cell- and NeurobiologyInstitute of Anatomy, University of ZürichZürichSwitzerland
  4. 4.Department of BiologyTexas Southern UniversityHoustonUSA

Personalised recommendations