Advertisement

A Model-Theoretic Analysis of Space-Time Theories

  • Claus BeisbartEmail author
Chapter
Part of the Einstein Studies book series (EINSTEIN, volume 13)

Abstract

This paper studies space-time theories from the perspective of the Semantic View of theories. Set-theoretic models are used to reconstruct several non-quantum space-time theories and to characterize their mutual relationships. Further, the Semantic View is adopted to discuss the question of what a space-time theory is to begin with. While the space-time theories incorporated in Newtonian theories, on the one hand, and in Einstein’s General theory of relativity (GTR), on the other hand, are markedly different, GTR and many rival theories of gravitation do not differ on their space-time theory, but only on the way the structure of a space-time is explained.

Keywords

Space-time Space-time theories General theory of Relativity Brans–Dicke theory PPN formalism Semantic View of theories Axiomatization Inter-theoretic relationships Reduction 

Notes

Acknowledgements

I’m grateful for very helpful and constructive criticism by Dennis Lehmkuhl and Erhard Scholz. Thanks also to Raphael Bolinger for his comments.

References

  1. 1.
    Balzer, W., Moulines, C. U., & Sneed, J., An Architectonic for Science. The Structuralist Program, Reidel, Dordrecht, 1987.CrossRefzbMATHGoogle Scholar
  2. 2.
    Balzer, W., Die Wissenschaft und ihre Methoden, Karl Alber, Freiburg und München, 1997.Google Scholar
  3. 3.
    Bartelborth, T., Hierarchy versus Holism: A Structuralist View on General Relativity, Erkenntnis 39 (1993), no. 3, 383–412.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bekenstein, J. D., Relativistic Gravitation Theory for the Modified Newtonian Dynamics Paradigm, Phys. Rev. D 70 (2004), no. 8, 083509.Google Scholar
  5. 5.
    Bergmann, P., Comments on the Scalar-tensor Theory, International Journal of Theoretical Physics 1 (1968), 25–36.CrossRefGoogle Scholar
  6. 6.
    Brans, C. & Dicke, R. H., Mach’s Principle and a Relativistic Theory of Gravitation, Phys. Rev. 124 (1961), 925–935.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Brown, H. R., Physical Relativity. Space-time Structure from a Dynamical Perspective, Oxford University Press, Oxford, 2005.CrossRefzbMATHGoogle Scholar
  8. 8.
    Capozziello, S. & Faraoni, V., Beyond Einstein Gravity. A Survey of Gravitational Theories for Cosmology and Astrophysics, Springer, Dordrecht, 2011.zbMATHGoogle Scholar
  9. 9.
    Carrier, M., Constructing or Completing Physical Geometry? On the Relation between Theory and Evidence in Accounts of Space-time Structure, Philosophy of Science 57 (1990), no. 3, 369–394.MathSciNetGoogle Scholar
  10. 10.
    Carrier, M., The Completeness of Scientific Theories. On the Derivation of Empirical Indicators within a Theoretical Framework: The Case of Physical Geometry, Kluwer, Dordrecht, 1994.CrossRefGoogle Scholar
  11. 11.
    Costa, N. C. A., Bueno, O., & French, S., Suppes Predicates for Space-time, Synthese 112 (1997), no. 2, 271–279.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    da Costa, N. C. A. & French, S., The Model Theoretic Approach in Philosophy of Science, Philosophy of Science 57 (1990), 248–265.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Earman, J. & Norton, J. D., What Price Spacetime Substantivalism? The Hole Story, The British Journal for the Philosophy of Science 38 (1987), 515–525.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Earman, J., A Primer on Determinism, Kluwer, Dordrecht, 1986.CrossRefGoogle Scholar
  15. 15.
    Earman, J., World Enough and Space-time. Absolute versus Relational Theories of Space and Time, MIT Press, Cambridge (MA), 1989.Google Scholar
  16. 16.
    Ehlers, J., Pirani, F. A. E., & Schild, A., The Geometry of Free Fall and Light Propagation, in: General Relativity. Papers in Honour of J. L. Synge (O’Raifeartaigh, L., ed.), Clarendon Press, Oxford, 1972, pp. 63–84.Google Scholar
  17. 17.
    French, S., The Structure of Theories, in: The Routledge Companion to Philosophy of Science (Psillos, S. & Curd, M., eds.), Routledge, 2008, pp. 269–280.Google Scholar
  18. 18.
    Friedman, M., Foundations of Space-time Theories. Relativistic Physics and Philosophy of Science, Princeton University Press, Princeton, 1983.Google Scholar
  19. 19.
    Hendry, R. F. & Psillos, S., How to Do Things with Theories: An Interactive View of language and Models in Science, in: The Courage of Doing Philosophy. Essays Dedicated to Leszek Nowak (Brzeziński, J., Klawiter, A., Kuipers, T. A. F., Łastowski, K., Paprzycka, K., & Przybysz, P., eds.), Rodopi, Amsterdam, 2007, pp. 123–157.Google Scholar
  20. 20.
    Hodges, W., Model Theory, in: The Stanford Encyclopedia of Philosophy (Zalta, E. N., ed.), fall 2009 ed., 2009, http://plato.stanford.edu/archives/fall2009/entries/model-theory/.
  21. 21.
    Hoefer, C., The Metaphysics of Space-time Substantivalism, Journal of Philosophy 93 (1996), no. 1, 5–27.CrossRefMathSciNetGoogle Scholar
  22. 22.
    Humphreys, P., Extending Ourselves: Computational Science, Empiricism, and Scientific Method, Oxford University Press, New York, 2004.CrossRefGoogle Scholar
  23. 23.
    Ludwig, G. & Thurler, G., A New Foundation of Physical Theories, Springer, Berlin etc., 2006.CrossRefzbMATHGoogle Scholar
  24. 24.
    Matveev, V. S., Geodesically Equivalent Metrics in General Relativity, Journal of Geometry and Physics 62 (2012), no. 3, 675–691, Recent Developments in Mathematical Relativity.Google Scholar
  25. 25.
    Mühlhölzer, F., Science without Reference?, Erkenntnis 42 (1995), no. 2, 203–222.CrossRefMathSciNetGoogle Scholar
  26. 26.
    Quine, W. V. O., On What There Is, Review of Metaphysics 2 (1948), 21–38, nachgedruckt in Quine, From a Logical Point of View. Harvard 1961.Google Scholar
  27. 27.
    Rindler, W., Essential Relatvity. Special, General, and Cosmological, 2nd ed., J. Springer, New York, 1977.Google Scholar
  28. 28.
    Rosen, N., A Bi-metric Theory of Gravitation, General Relativity and Gravitation 4 (1973), 435–447.CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Scheibe, E., Die Reduktion physikalischer Theorien. Ein Beitrag zur Einheit der Physik. Teil I: Grundlagen und elementare Theorie, Springer, Heidelberg, 1997.CrossRefGoogle Scholar
  30. 30.
    Scheibe, E., Die Reduktion physikalischer Theorien. Ein Beitrag zur Einheit der Physik. Teil I: Inkommensurabilität und Grenzfallreduktion, Springer, Heidelberg, 1999.CrossRefGoogle Scholar
  31. 31.
    Schlimm, D., On the Creative Role of Axiomatics. The Discovery of Lattices by Schröder, Dedekind, Birkhoff, and Others, Synthese 183 (2011), 47–68, DOI: 10.1007/s11229-009-9667-9.
  32. 32.
    Scott, D. & Suppes, P., Foundational Aspects of Theories of Measurement, Journal of Symbolic Logic 23 (1958), 113–128.CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Sneed, J., The Logical Structure of Mathematical Physics, Reidel, Dordrecht, 1979, revised edition; first edition 1971.Google Scholar
  34. 34.
    Suppe, F., The Search for Philosophical Understanding of Scientific Theories, in: The Structure of Scientific Theories (Suppe, F., ed.), University of Illinois Press, Urbana, IL, 1977, second edition.Google Scholar
  35. 35.
    Suppes, P., Some Remarks on Problems and Methods in the Philosophy of Science, Philosophy of Science 21 (1954), no. 3, pp. 242–248 (English).Google Scholar
  36. 36.
    Suppes, P., Introduction to Logic, van Nostrand Reinhold Company, New York etc., 1957.Google Scholar
  37. 37.
    Suppes, P., Models of data, in: Logic, Methodology and Philosophy of Science: Proceedings of the 1960 International Congress (Nagel, E., Suppes, P., & Tarski, A., eds.), Stanford University Press, Stanford, 1962, here quoted from reprint in: Patrick Suppes: Studies in the Methodology and Foundations of Science. Selected Papers from 1951 to 1969. Dordrecht: Reidel 1969, 24–35, pp. 252–261.Google Scholar
  38. 38.
    Synge, J. L., Relativity: The General Theory, North-Holland, Amsterdam, 1966.zbMATHGoogle Scholar
  39. 39.
    van Fraassen, B., The Scientific Image, Clarendon Press, Oxford, 1980.CrossRefGoogle Scholar
  40. 40.
    Wald, R. M., General Relativity, University of Chicago Press, Chicago, 1984.CrossRefzbMATHGoogle Scholar
  41. 41.
    Will, C. M., Theory and Experiment in Gravitational Physics, Cambridge University Press, Cambridge, 1993, revised edition.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Institut für PhilosophieUniversity of BernBernSwitzerland

Personalised recommendations