Towards a Theory of Spacetime Theories pp 13-42

Part of the Einstein Studies book series (EINSTEIN, volume 13) | Cite as

Inertial Motion, Explanation, and the Foundations of Classical Spacetime Theories

Chapter

Abstract

I begin by reviewing some recent work on the status of the geodesic principle in general relativity and the geometrized formulation of Newtonian gravitation. I then turn to the question of whether either of these theories might be said to “explain” inertial motion. I argue that there is a sense in which both theories may be understood to explain inertial motion, but that the sense of “explain” is rather different from what one might have expected. This sense of explanation is connected with a view of theories—I call it the “puzzleball view”—on which the foundations of a physical theory are best understood as a network of mutually interdependent principles and assumptions.

Keywords

General relativity Newtonian gravitation Explanation Inertial motion 

References

  1. 1.
    Batterman, R., 2002. The Devil in the Details. Oxford University Press, New York.MATHGoogle Scholar
  2. 2.
    Blanchet, L., 2000. Post-Newtonian gravitational radiation. In: Schmidt, B. (Ed.), Einstein’s Field Equations and Their Physical Implications. Springer, Berlin, pp. 225–271.Google Scholar
  3. 3.
    Bromberger, S., 1966. Why-questions. In: Brody, B. A. (Ed.), Readings in the Philosophy of Science. Prentice Hall, Inc., Englewood Cliffs, pp. 66–84.Google Scholar
  4. 4.
    Brown, H., 2005. Physical Relativity. Oxford University Press, New York.CrossRefMATHGoogle Scholar
  5. 5.
    Cartan, E., 1923. Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie). Annales scientifiques de l’École Normale Supérieure 40, 325–412.MATHGoogle Scholar
  6. 6.
    Cartan, E., 1924. Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie) (suite). Annales scientifiques de l’École Normale Supérieure 41, 1–25.MATHGoogle Scholar
  7. 7.
    Christian, J., 1997. Exactly soluble sector of quantum gravity. Physical Review D 56 (8), 4844 –4877.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Curiel, E., 2012. On tensorial concomitants and the non-existence of a gravitational stress-energy tensor, available at: http://arxiv.org/abs/0908.3322v3.
  9. 9.
    Curiel, E., 2017. Towards a theory of spacetime theories. Birkauser, Boston, Ch. A Primer on Energy Conditions.Google Scholar
  10. 10.
    Damour, T., 1989. The problem of motion in Newtonian and Einsteinian gravity. In: Hawking, S. W., Israel, W. (Eds.), Three Hundred Years of Gravitation. Cambridge University Press, New York, pp. 128–198.Google Scholar
  11. 11.
    Dixon, W. G., 1964. A covariant multipole formalism for extended test bodies in general relativity. Il Nuovo Cimento 34 (2), 317–339.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Dixon, W. G., 1975. On the uniqueness of the Newtonian theory as a geometric theory of gravitation. Communications in Mathematical Physics 45, 167–182.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Duval, C., Künzle, H. P., 1978. Dynamics of continua and particles from general covariance of Newtonian gravitation theory. Reports on Mathematical Physics 13 (3).Google Scholar
  14. 14.
    Earman, J., Friedman, M., 1973. The meaning and status of Newton’s law of inertia and the nature of gravitational forces. Philosophy of Science 40, 329.CrossRefGoogle Scholar
  15. 15.
    Earman, J., Glymour, C., 1978. Einstein and Hilbert: Two months in the history of general relativity. Archive for History of Exact Sciences 19 (3), 291–308.Google Scholar
  16. 16.
    Earman, J., Glymour, C., 1978. Lost in the tensors: Einstein’s struggles with covariance principles 1912–1916. Studies in the History and Philosophy of Science 9 (4), 251–278.Google Scholar
  17. 17.
    Eddington, A. S., 1924. The Mathematical Theory of Relativity. Cambridge University Press, Cambridge.MATHGoogle Scholar
  18. 18.
    Ehlers, J., Geroch, R., 2004. Equation of motion of small bodies in relativity. Annals of Physics 309, 232–236.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Einstein, A., Grommer, J., 1927. Allgemeine Relativitätstheorie und Bewegungsgesetz. Verlag der Akademie der Wissenschaften, Berlin.MATHGoogle Scholar
  20. 20.
    Einstein, A., Infeld, L., Hoffman, B., 1938. The gravitational equations and the problem of motion. Annals of Mathematics 39 (1), 65–100.CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Feynman, R. C., 1967. The Character of Physical Law. Cornell University Press, Ithaca, NY.Google Scholar
  22. 22.
    Friedrichs, K. O., 1927. Eine invariante Formulierung des Newtonschen Gravitationsgesetzes und der Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz. Mathematische Annalen 98, 566–575.CrossRefMATHGoogle Scholar
  23. 23.
    Geroch, R., Jang, P. S., 1975. Motion of a body in general relativity. Journal of Mathematical Physics 16 (1), 65.CrossRefMathSciNetGoogle Scholar
  24. 24.
    Geroch, R., Weatherall, J. O., 2017. Equations of motion. Unpublished manuscript.Google Scholar
  25. 25.
    Harper, W. L., 2012. Isaac Newton’s Scientific Method: Turning Data into Evidence about Gravity and Cosmology. Oxford University Press, New York.MATHGoogle Scholar
  26. 26.
    Havas, P., 1989. The early history of the ‘problem of motion’ in general relativity. In: Howard, D., Stachel, J. (Eds.), Einstein and the History of General Relativity. Vol. 11 of Einstein Studies. Birkhäuser, Boston, pp. 234–276.Google Scholar
  27. 27.
    Hawking, S. W., Ellis, G. F. R., 1973. The Large Scale Structure of Space-time. Cambridge University Press, New York.CrossRefMATHGoogle Scholar
  28. 28.
    Kennefick, D., 2005. Einstein and the problem of motion: A small clue. In: Kox, A. J., Eisenstaedt, J. (Eds.), The Universe of General Relativity. Vol. 11 of Einstein Studies. Birkhäuser, Boson, pp. 109–124.CrossRefGoogle Scholar
  29. 29.
    Kvanvig, J., 2007. Coherentist theories of epistemic justification. In: Zalta, E. N. (Ed.), The Stanford Encyclopedia of Philosophy. Stanford University, Stanford, CA, available at: http://plato.stanford.edu/entries/justep-coherence/.
  30. 30.
    Lovelock, D., 1971. The Einstein tensor and its generalizations. Journal of Mathematical Physics 12 (3), 498–501.CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Lovelock, D., 1972. The four-dimensionality of space and the Einstein tensor. Journal of Mathematical Physics 13 (6), 874–876.CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Malament, D., 2012. A remark about the “geodesic principle” in general relativity. In: Frappier, M., Brown, D. H., DiSalle, R. (Eds.), Analysis and Interpretation in the Exact Sciences: Essays in Honour of William Demopoulos. Springer, New York, pp. 245–252.Google Scholar
  33. 33.
    Malament, D. B., 2012. Topics in the Foundations of General Relativity and Newtonian Gravitation Theory. University of Chicago Press, Chicago.Google Scholar
  34. 34.
    Mathisson, M., 1931. Bewegungsproblem der feldphysik und elektronenkonstanten. Zeitschrift für Physik 69, 389Â408.Google Scholar
  35. 35.
    Mathisson, M., 1931. Die mechanik des materieteilchens in der allgemeinen relativitätstheorie. Zeitschrift für Physik 67, 826–844.Google Scholar
  36. 36.
    Misner, C. W., Thorne, K. S., Wheeler, J. A., 1973. Gravitation. W. H. Freeman.Google Scholar
  37. 37.
    Navarro, J., Sancho, J., 2008. On the naturalness of Einstein’s equation. Journal of Geometry and Physics 58, 1007–1014.Google Scholar
  38. 38.
    Newman, E. T., Posadas, R., 1969. Motion and structure of singularities in general relativity. Physical Review 187 (5), 1784–1791.CrossRefMATHGoogle Scholar
  39. 39.
    Newman, E. T., Posadas, R., 1971. Motion and structure of singularities in general relativity, ii. Journal of Mathematical Physics 12 (11), 2319–2327.CrossRefGoogle Scholar
  40. 40.
    Quine, W. V. O., 1951. Two dogmas of empiricism. The Philosophical Review 60, 20–43.CrossRefMATHGoogle Scholar
  41. 41.
    Quine, W. V. O., 1960. Carnap and logical truth. Synthese 12 (4), 350–374.CrossRefMATHGoogle Scholar
  42. 42.
    Reyes, G. E., 2009. A derivation of Einstein’s vacuum field equations, available at: http://marieetgonzalo.files.wordpress.com/2009/12/a-derivation-of-einsteins-vacuum-field-equations1.pdf.
  43. 43.
    Sachs, R. K., Wu, H., 1973. General Relativity for Mathematicians. Springer-Verlag, New York.MATHGoogle Scholar
  44. 44.
    Sauer, T., Trautman, A., 2008. Myron Matthison: What little we know of his life, http://arxiv.org/abs/802.2971.
  45. 45.
    Souriau, J.-M., 1974. Modèle de particule à spin dans le champ électromagnétique et gravitationnel. Annales de l’Institut Henri Poincaré Sec. A 20, 315.Google Scholar
  46. 46.
    Stein, H., 1967. Newtonian space-time. The Texas Quarterly 10, 174–200.Google Scholar
  47. 47.
    Sternberg, S., 2003. Semi-riemannian geometry and general relativity, available at: http://www.math.harvard.edu/~shlomo/.
  48. 48.
    Sus, A., 2011. On the explanation of inertia, unpublished.Google Scholar
  49. 49.
    Tamir, M., 2011. Proving the principle: Taking geodesic dynamics too seriously in Einstein’s theory, available online at http://philsci-archive.pitt.edu/8779/.
  50. 50.
    Taub, A. H., 1962. On Thomas’ result concerning the geodesic hypothesis. Proceedings of the National Academy of the USA 48 (9), 1570–1571.CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Thomas, T. Y., 1962. On the geodesic hypothesis in the theory of gravitation. Proceedings of the National Academy of the USA 48 (9), 1567–1569.CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    Trautman, A., 1965. Foundations and current problem of general relativity. In: Deser, S., Ford, K. W. (Eds.), Lectures on General Relativity. Prentice-Hall, Englewood Cliffs, NJ, pp. 1–248.Google Scholar
  53. 53.
    van Fraassen, B., 1980. The Scientific Image. Clarendon Press, Oxford.CrossRefGoogle Scholar
  54. 54.
    Wald, R. M., 1984. General Relativity. University of Chicago Press, Chicago.CrossRefMATHGoogle Scholar
  55. 55.
    Weatherall, J. O., 2011. The motion of a body in Newtonian theories. Journal of Mathematical Physics 52 (3), 032502.Google Scholar
  56. 56.
    Weatherall, J. O., 2011. On the status of the geodesic principle in Newtonian and relativistic physics. Studies in the History and Philosophy of Modern Physics 42 (4), 276–281.Google Scholar
  57. 57.
    Weatherall, J. O., 2012. A brief remark on energy conditions and the Geroch-Jang theorem. Foundations of Physics 42 (2), 209–214.CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    Wimsatt, W. C., 1981. Robustness, reliability, and overdetermination. In: Brewer, M., Collins, B. (Eds.), Scientific Inquiry in the Social Sciences. Jossey-Brass, San Francisco, pp. 123–162.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Logic and Philosophy of ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations