Skip to main content

DTI Analysis Methods: Region of Interest Analysis

  • Chapter
Diffusion Tensor Imaging

Abstract

Region of interest (ROI) analysis is a widely used method for the analysis of DTI data. An anatomically defined region—either based on anatomical borders or a geometrical shape—is used to extract DTI measures for each subject, which can later be analyzed statistically. ROI analysis can be done either automatically by aligning all subjects to a template, or by manual delineation. In this chapter the basic principles of ROI analysis are discussed, as well as the appropriate use of ROI analysis and potential pitfalls. Finally some examples using real data are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soares JM, Marques P, et al. A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci. 2013;7:31.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Cercignani M. Strategies for patient–control comparison of diffusion MR data. In: Jones DK, editor. Diffusion MRI theory, methods, and applications. New York, NY: Oxford University Press; 2011.

    Google Scholar 

  3. Law M, Young R, et al. Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. AJNR Am J Neuroradiol. 2007;28(4):761–6.

    CAS  PubMed  Google Scholar 

  4. Young R, Babb J, et al. Comparison of region-of-interest analysis with three different histogram analysis methods in the determination of perfusion metrics in patients with brain gliomas. J Magn Reson Imaging. 2007;26(4):1053–63.

    Article  PubMed  Google Scholar 

  5. Snook L, Plewes C, et al. Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. Neuroimage. 2007;34(1):243–52.

    Article  PubMed  Google Scholar 

  6. Smith SM, Jenkinson M, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31(4):1487–505.

    Article  PubMed  Google Scholar 

  7. Wu O, Dijkhuizen RM, et al. Multiparametric magnetic resonance imaging of brain disorders. Top Magn Reson Imaging. 2010;21(2):129–38.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Kleiser R, Staempfli P, et al. Impact of fMRI-guided advanced DTI fiber tracking techniques on their clinical applications in patients with brain tumors. Neuroradiology. 2010;52(1):37–46.

    Article  PubMed  Google Scholar 

  9. Mazerolle EL, Beyea SD, et al. Confirming white matter fMRI activation in the corpus callosum: co-localization with DTI tractography. Neuroimage. 2010;50(2):616–21.

    Article  PubMed  Google Scholar 

  10. Preti MG, Makris N, et al. A novel approach of fMRI-guided tractography analysis within a group: construction of an fMRI-guided tractographic atlas. Conf Proc IEEE Eng Med Biol Soc. 2010;2012:2283–6.

    Google Scholar 

  11. Oishi K, Zilles K, et al. Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage. 2008;43(3):447–57.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Eickhoff SB, Stephan KE, et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage. 2005;25(4):1325–35.

    Article  PubMed  Google Scholar 

  13. Irfanoglu MO, Walker L, et al. Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. Neuroimage. 2012;61(1):275–88.

    Article  PubMed  Google Scholar 

  14. Pajevic S, Basser PJ. Parametric and non-parametric statistical analysis of DT-MRI data. J Magn Reson. 2003;161(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  15. Vos SB, Jones DK, et al. Partial volume effect as a hidden covariate in DTI analyses. Neuroimage. 2011;55(4):1566–76.

    Article  PubMed  Google Scholar 

  16. Jones DK, Cercignani M. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed. 2010;23(7):803–20.

    Article  PubMed  Google Scholar 

  17. Chen NK, Wyrwicz AM. Correction for EPI distortions using multi-echo gradient-echo imaging. Magn Reson Med. 1999;41(6):1206–13.

    Article  CAS  PubMed  Google Scholar 

  18. Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med. 1995;34(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  19. Robson MD, Gore JC, et al. Measurement of the point spread function in MRI using constant time imaging. Magn Reson Med. 1997;38(5):733–40.

    Article  CAS  PubMed  Google Scholar 

  20. Zeng H, Constable RT. Image distortion correction in EPI: comparison of field mapping with point spread function mapping. Magn Reson Med. 2002;48(1):137–46.

    Article  PubMed  Google Scholar 

  21. Andersson JL, Skare S. A model-based method for retrospective correction of geometric distortions in diffusion-weighted EPI. Neuroimage. 2002;16(1):177–99.

    Article  PubMed  Google Scholar 

  22. Chang H, Fitzpatrick JM. A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities. IEEE Trans Med Imaging. 1992;11(3):319–29.

    Article  CAS  PubMed  Google Scholar 

  23. Leemans A, Jeurissen B, et al. ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. Proceedings 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Honolulu; 2009.

    Google Scholar 

  24. Evans AC, Janke AL, et al. Brain templates and atlases. Neuroimage. 2012;62(2):911–22.

    Article  PubMed  Google Scholar 

  25. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system - an approach to cerebral imaging. New York, NY: Thieme Medical Publishers; 1988.

    Google Scholar 

  26. Evans AC, Collins DL, et al. 3D statistical neuroanatomical models from 305 MRI volumes. Nuclear Science Symposium and Medical Imaging Conference, 1993. 1993 IEEE Conference Record; 1993.

    Google Scholar 

  27. Tamietto M, Pullens P, et al. Subcortical connections to human amygdala and changes following destruction of the visual cortex. Curr Biol. 2012;22(15):1449–55.

    Article  CAS  PubMed  Google Scholar 

  28. Arsigny V, Fillard P, et al. Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn Reson Med. 2006;56(2):411–21.

    Article  PubMed  Google Scholar 

  29. Dupont WD, editor. Statistical modeling for biomedical researchers. Cambridge: Cambridge University Press; 2009.

    Google Scholar 

  30. Miller RG, editor. Simultaneous statistical inference. New York, NY: Springer; 1981.

    Google Scholar 

  31. Ozturk A, Sasson AD, et al. Regional differences in diffusion tensor imaging measurements: assessment of intrarater and interrater variability. AJNR Am J Neuroradiol. 2008;29(6):1124–7.

    Article  CAS  PubMed  Google Scholar 

  32. Astrakas LG, Argyropoulou MI. Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping. Pediatr Radiol. 2010;40(12):1857–67.

    Article  PubMed  Google Scholar 

  33. Chanraud S, Zahr N, et al. MR diffusion tensor imaging: a window into white matter integrity of the working brain. Neuropsychol Rev. 2010;20(2):209–25.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Mukherjee P, Chung SW, et al. Diffusion tensor MR imaging and fiber tractography: technical considerations. AJNR Am J Neuroradiol. 2008;29(5):843–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn Froeling PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Froeling, M., Pullens, P., Leemans, A. (2016). DTI Analysis Methods: Region of Interest Analysis. In: Van Hecke, W., Emsell, L., Sunaert, S. (eds) Diffusion Tensor Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3118-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3118-7_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3117-0

  • Online ISBN: 978-1-4939-3118-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics