DTI Analysis Methods: Voxel-Based Analysis

  • Wim Van HeckeEmail author
  • Alexander Leemans
  • Louise Emsell


Voxel-based analysis (VBA) of diffusion tensor imaging (DTI) data permits the investigation of voxel-wise differences or changes in DTI metrics in every voxel of a brain dataset. It is applied primarily in the exploratory analysis of hypothesized group-level alterations in DTI parameters, as it does not require prior knowledge of where in the brain such changes may occur. Whilst VBA is a widely used, powerful preclinical research tool, there are a number of methodological issues that should be considered when applying the technique to study (pre)clinical populations. This chapter reviews the component steps of a typical VBA study pipeline and includes a comprehensive introduction to image registration, DTI template/atlas selection, smoothing, and statistical analysis. The popular tract-based spatial (TBSS) technique is introduced and contrasted with traditional VBA approaches. At each stage, guidance on optimizing parameter settings is presented along with the pros and cons of different methods to assist the reader in choosing the best approach for their application.


Image registration Atlas selection Smoothing Voxel-based statistics 


  1. 1.
    Fitzpatrick J, Hill DLM, Maurer Jr C. Chapter 8. Image registration. In: Medical image processing and analysis, Handbook of medical image registration, vol. 2. Bellingham, WA: SPIE Press; 2000. p. 447–513.Google Scholar
  2. 2.
    Maintz JBA, Viergever MA. A survey of medical image registration. Med Image Anal. 1998;2:1–36.CrossRefPubMedGoogle Scholar
  3. 3.
    Peeters THJM, Rodrigues PR, Vilanova A, ter Haar Romeny BM. Analysis of distance/similarity measures for diffusion tensor imaging, visualization and processing of tensor fields. New York, NY: Springer; 2006.Google Scholar
  4. 4.
    Alexander DC, Gee JC. Elastic matching of diffusion tensor MRIs. Comput Vis Image Underst. 2000;77:233–50.CrossRefGoogle Scholar
  5. 5.
    Muñoz-Moreno E, Cárdenes-Almeida R, Martin-Fernandez M. Review of techniques for registration of diffusion tensor imaging, tensors in image processing and computer vision. New York, NY: Springer; 2009.Google Scholar
  6. 6.
    Park HJ, Kubicki M, Shenton ME, Guimond A, McCarley RW, Maier SE, Kikinis R, Jolesz FA, Westin CF. Spatial normalization of diffusion tensor MRI using multiple channels. Neuroimage. 2003;20:1995–2009.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Van Hecke W, Leemans A, D’Agostino E, De Backer S, Vandervliet E, Parizel PM, Sijbers J. Nonrigid coregistration of diffusion tensor images using a viscous fluid model and mutual information. IEEE Trans Med Imaging. 2007;26:1598–612.CrossRefPubMedGoogle Scholar
  8. 8.
    Sage CA, Van Hecke W, Peeters R, Sijbers J, Robberecht W, Parizel P, Marchal G, Leemans A, Sunaert S. Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: revisited. Hum Brain Mapp. 2009;30(11):3657–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Guimond A, Guttmann CRG, Warfield SK, Westin CF. Deformable registration of DT MRI data based on transformation invariant tensor characteristics. In: International symposium on biomedical imaging. Washington, DC: IEEE; 2002. p. 761–4.CrossRefGoogle Scholar
  10. 10.
    Ruiz-Alzola J, Westin CF, Warfield SK, Alberola C, Maier S, Kikinis R. Nonrigid registration of 3D tensor medical data. Med Image Anal. 2002;6:143–61.CrossRefPubMedGoogle Scholar
  11. 11.
    Rohde GK, Pajevic S, Pierpaoli C, Basser PJ. A comprehensive approach for multichannel image registration. Biomedical image registration. Berlin: Springer; 2003. p. 214–23.CrossRefGoogle Scholar
  12. 12.
    Zhang H, Yushkevich PA, Alexander DC, Gee JC. Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med Image Anal. 2006;10:764–85.CrossRefPubMedGoogle Scholar
  13. 13.
    Chiang MC, Leow AD, Klunder AD, Dutton RA, Barysheva M, Rose SE, McMahon KL, de Zubicaray GI, Toga AW, Thompson PM. Fluid registration of diffusion tensor images using information theory. IEEE Trans Med Imaging. 2008;27:442–56.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Verma R, Davatzikos C. Matching of diffusion tensor images using Gabor features. In: IEEE international symposium on biomedical imaging: nano to macro, vol. 391. Washington, DC: IEEE; 2004. p. 396–9.Google Scholar
  15. 15.
    Yap PT, Wu G, Zhu H, Lin W, Shen D. TIMER: tensor image morphing for elastic registration. Neuroimage. 2009;47:549–63.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Yap PT, Wu G, Zhu H, Lin W, Shen D. F-TIMER: fast tensor image morphing for elastic registration. IEEE Trans Med Imaging. 2010;29:1192–203.CrossRefPubMedGoogle Scholar
  17. 17.
    Leemans A, Sijbers J, Vandervliet E, Parizel PM. Multiscale white matter fiber tract coregistration: a new feature-based approach to align diffusion tensor data. Magn Reson Med. 2006;55:1414–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Goodlett C, Davis B, Jean R, Gilmore J, Gerig G. Improved correspondence for DTI population studies via unbiased atlas building. In: MICCAI, 2006. Berlin: Springer; 2006. p. 260–7.Google Scholar
  19. 19.
    Li H, Xue Z, Guo L, Wong SC. Simultaneous consideration of spatial deformation and tensor orientation in diffusion tensor image registration using local fast marching patterns. In: Prince J, Pham D, Myers K, editors. Information processing in medical imaging. Berlin: Springer; 2009. p. 63–75.CrossRefGoogle Scholar
  20. 20.
    O’Donnell LJ, Westin CF, Golby AJ. Tract-based morphometry for white matter group analysis. Neuroimage. 2009;45(3):832–44.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Zhang S, Peng H, Dawe JR, Arfanakis K. Enhanced ICBM diffusion tensor template of the human brain. Neuroimage. 2011;54:974–84.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Van Hecke W, Leemans A, Sage CA, Emsell L, Veraart J, Sijbers J, Sunaert S, Parizel PM. The effect of template selection on diffusion tensor voxel-based analysis results. Neuroimage. 2011;55(2):566–73.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang S, Arfanakis K. Role of standardized and study-specific human brain diffusion tensor templates in inter-subject spatial normalization. J Magn Reson Imaging. 2013;37(2):372–81.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Comput Assist Tomogr. 1994;18(2):192–205.CrossRefGoogle Scholar
  25. 25.
    Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM. 3D statistical neuroanatomical models from 305 MRI volumes. In: IEEE nuclear science symposium and medical imaging conference. Washington, DC: IEEE; 1993. p. 1813–7.Google Scholar
  26. 26.
    Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J. A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM). Neuroimage. 1995;2(2):89–101.CrossRefPubMedGoogle Scholar
  27. 27.
    Mori S, Oishi K, Jiang H, et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage. 2008;40:570–82.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Peng H, Orlichenko A, Dawe RJ, Agam G, Zhang S, Arfanakis K. Development of a human brain diffusion tensor template. Neuroimage. 2009;46(4):967–80.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Zhang H, Yushkevich PA, Rueckert D, Gee JC. Unbiased white matter atlas construction using diffusion tensor images. Med Image Comput Comput Assist Interv. 2007;10(Pt 2):211–8.PubMedGoogle Scholar
  30. 30.
    Van Hecke W, Sijbers J, D’Agostino E, Maes F, De Backer S, Vandervliet E, Parizel PM, Leemans A. On the construction of an inter-subject diffusion tensor magnetic resonance atlas of the healthy human brain. Neuroimage. 2008;43(1):69–80.CrossRefPubMedGoogle Scholar
  31. 31.
    Jones DK, Symms MR, Cercignani M, Howard RJ. The effect of filter size on VBM analyses of DT-MRI data. Neuroimage. 2005;26(2):546–54.CrossRefPubMedGoogle Scholar
  32. 32.
    Van Hecke W, Leemans A, De Backer S, Jeurissen B, Parizel PM, Sijbers J. Comparing isotropic and anisotropic smoothing for voxel-based DTI analyses: a simulation study. Hum Brain Mapp. 2010;31(1):98–114.PubMedGoogle Scholar
  33. 33.
    Rosenfeld A, Kak AC. Digital picture processing 2. Orlando, FL: Academic; 1982. p. 42.Google Scholar
  34. 34.
    Lee JE, Chung MK, Lazar M, DuBray MB, Kim J, Bigler ED, Lainhart JE, Alexander AL. A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis. Neuroimage. 2009;44(3):870–83.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Worsley KJ, Evans AC, Marrett S, Neelin P. A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab. 1992;12:900–18.CrossRefPubMedGoogle Scholar
  36. 36.
    Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage. 2002;15:870–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15:1–25.CrossRefPubMedGoogle Scholar
  38. 38.
    Jones DK, Chitnis XA, Job D, Khong PL, Leung LT, Marenco S, Smith SM, Symms MR. In Proceedings of the 15th Annual Meeting ISMRM. Berlin, 2007; 74.Google Scholar
  39. 39.
    Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, et al. Tract-based spatial statistics: voxelwise analysis of multisubject diffusion data. Neuroimage. 2006;31:1487–505.CrossRefPubMedGoogle Scholar
  40. 40.
    Zalesky A. Moderating registration misalignment in voxelwise comparisons of DTI data: a performance evaluation of skeleton projection. Magn Reson Imaging. 2011;29:111–25.CrossRefPubMedGoogle Scholar
  41. 41.
    Keihaninejad S, Ryan NS, Malone IB, Modat M, Cash D, Ridgway GR, Zhang H, Fox NC, Ourselin S. The importance of group-wise registration in tract based spatial statistics study of neurodegeneration: a simulation study in Alzheimer’s disease. PLoS One. 2012;7(11):e45996.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Edden RA, Jones DK. Spatial and orientational heterogeneity in the statistical sensitivity of skeleton-based analyses of diffusion tensor MR imaging data. J Neurosci Methods. 2011;201:213–9.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Jones DK, Cercignani M. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed. 2010;23(7):803–20.CrossRefPubMedGoogle Scholar
  44. 44.
    Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. 2013;34(11):2747–66.CrossRefPubMedGoogle Scholar
  45. 45.
    Preti MG, Laganà MM, Baglio F, Griffanti L, Nemni R, Cecconi P, Baselli G. Comparison between skeleton-based and atlas-based approach in the assessment of corpus callosum damages in Mild Cognitive Impairment and Alzheimer Disease. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:7808–11.PubMedGoogle Scholar
  46. 46.
    Schwarz CG, Reid RI, Gunter JL, Senjem ML, Przybelski SA, Zuk SM, Whitwell JL, Vemuri P, Josephs KA, Kantarci K, Thompson PM, Petersen RC, Jack Jr CR, Alzheimer’s Disease Neuroimaging Initiative. Improved DTI registration allows voxel-based analysis that outperforms Tract-Based Spatial Statistics. Neuroimage. 2014;94:65–78.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Lipton ML, Kim N, Park YK, Hulkower MB, Gardin TM, et al. Robust detection of traumatic axonal injury in individual mild traumatic brain injury patients: intersubject variation, change over time and bidirectional changes in anisotropy. Brain Imaging Behav. 2012;6:329–42.CrossRefPubMedGoogle Scholar
  48. 48.
    Kim N, Branch CA, Kim M, Lipton ML. Whole brain approaches for identification of microstructural abnormalities in individual patients: comparison of techniques applied to mild traumatic brain injury. PLoS One. 2013;8(3):e59382.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Patel SA, Hum BA, Gonzalez CF, Schwartzman RJ, Faro SH, et al. Application of voxelwise analysis in the detection of regions of reduced fractional anisotropy in multiple sclerosis patients. J Magn Reson Imaging. 2007;26:552–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Wim Van Hecke
    • 1
    • 2
    Email author
  • Alexander Leemans
    • 3
  • Louise Emsell
    • 4
    • 5
  1. 1.icometrixLeuvenBelgium
  2. 2.Department of RadiologyAntwerp University HospitalAntwerpBelgium
  3. 3.PROVIDI Lab, Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
  4. 4.Translational MRI and RadiologyUniversity Hospital Leuven, KU LeuvenLeuvenBelgium
  5. 5.Universitair Psychiatrisch Centrum (UPC)KU LeuvenLeuvenBelgium

Personalised recommendations