# Preference Modelling

• Stefano Moretti
• Meltem Öztürk
• Alexis Tsoukiàs
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 233)

## Abstract

This chapter provides the reader with a presentation of preference modelling fundamental notions as well as some recent results in this field. Preference modelling is an inevitable step in a variety of fields: economy, sociology, psychology, mathematical programming, even medicine, archaeology, and obviously decision analysis. Our notation and some basic definitions, such as those of binary relation, properties and ordered sets, are presented at the beginning of the chapter. We start by discussing different reasons for constructing a preference model. We then go through a number of issues that influence the construction of preference models. Different formalisations besides classical logic such as fuzzy sets and non-classical logics become necessary. We then present different types of preference structures reflecting the behavior of a decision-maker: classical, extended and valued ones. It is relevant to have a numerical representation of preferences: functional representations, value functions. The concepts of thresholds and minimal representation are also introduced in this section. We also deal with the problem of how to extend a preference relation over a set A of “objects” to the set of all subsets of A. In Sect. 3.9, we briefly explore the concept of deontic logic (logic of preference) and other formalisms associated with “compact representation of preferences” introduced for special purposes. We end the chapter with some concluding remarks.

## Keywords

Preference modelling Decision aiding Uncertainty Fuzzy sets Ordered relations Binary relations Preference extensions

## References

1. 1.
Abbas, M.: Any complete preference structure without circuit admits an interval representation. Theor. Decis. 39, 115–126 (1995)
2. 2.
Abbas, M., Vincke, P.: Preference structures and threshold models. J. Multi-Criteria Decis. Anal. 2, 171–178 (1993)
3. 3.
Abbas, M., Pirlot, M., Vincke, P.: Tangent circle graphs and orders. Discret. Appl. Math. 155, 429–441 (2007)
4. 4.
Agaev, R., Aleskerov, F.: Interval choice: classic and general cases. Math. Soc. Sci. 26, 249–272 (1993)
5. 5.
Aleskerov, F., Bouyssou, D., Monjardet, B.: Utility Maximization, Choice and Preference, 2nd edn. Springer, Berlin (2007)Google Scholar
6. 6.
Allen, J.F.: Maintaining knowledge about temporal intervals. J. ACM 26, 832–843 (1983)
7. 7.
Alsina, C.: On a family of connectives for fuzzy sets. Fuzzy Sets Syst. 16, 231–235 (1985)
8. 8.
Åqvist, L.: Deontic logic. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical Logic, vol. II, pp. 605–714. D. Reidel, Dordrecht (1986)Google Scholar
9. 9.
Arieli, O., Avron, A.: The value of the four values. Artif. Intell. 102, 97–141 (1998)
10. 10.
Arieli, O., Cornelis, C., Deschrijver, G.: Preference modeling by rectangular bilattices. In: Proceedings of the 3rd International Conference on Modeling Decisions for Artificial Intelligence (MDAI’06). Lecture Notes in Artificial Intelligence, vol. 3885, pp. 22–33. Springer, Berlin (2006)Google Scholar
11. 11.
Arieli, O., Avron, A., Zamansky, A.: Ideal paraconsistent logics. Stud. Logica 99, 31–60 (2011)
12. 12.
Armstrong, W.E.: The determinateness of the utility function. Econ. J. 49, 453–467 (1939)
13. 13.
Armstrong, W.E.: Uncertainty and utility function. Econ. J. 58, 1–10 (1948)
14. 14.
Armstrong, W.E.: A note on the theory of consumer’s behavior. Oxf. Econ. 2, 119–122 (1950)Google Scholar
15. 15.
Bacchus, F., Grove, A.J.: Graphical models for preference and utility. In: UAI, pp. 3–10 (1995)Google Scholar
16. 16.
Baharad, E., Nitzan, S.: Extended preferences and freedom of choice. Soc. Choice Welf. 17, 629–637 (2000)
17. 17.
Bana e Costa, C., Vansnick, J.: Preference relation and MCDM. In: Gal, T., Stewart, T., Hanne, T. (eds.) Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications. International Series in Operations Research & Management Science, pp. 4.1–4.23. Kluwer Academic, Dordrecht (1999)Google Scholar
18. 18.
Barberà, S., Pattanaik, P.K.: Extending an order on a set to the power set: some remarks on kannai and peleg’s approach* 1. J. Econ. Theory 32(1), 185–191 (1984)
19. 19.
Barberà, S., Barrett, C.R., Pattanaik, P.K.: On some axioms for ranking sets of alternatives. J. Econ. Theory 33, 301–308 (1984)
20. 20.
Barberà, S., Bossert, W., Pattanaik, P.K.: Ranking sets of objects. In: Barberà, S., Hammond, P., Seidl, C. (eds.) Handbook of Utility Theory, vol. II, pp. 893–977. Kluwer Academic Publishers, Dordrecht (2004)
21. 21.
Barthélémy, J.-P., Monjardet, B.: The median procedure in cluster analysis and social choice theory. Math. Soc. Sci. 1(3), 235–267 (1981)
22. 22.
Barthélemy, J.-P., Flament, C., Monjardet, B.: Ordered sets and social sciences. In: Rankin, I. (ed.) Ordered Sets. 42(3), 721–787. D. Reidel, Dordrecht (1982)Google Scholar
23. 23.
Barthélémy, J.-P., Guénoche, A., Hudry, O.: Median linear orders: heuristics and a branch and bound algorithm. Eur. J. Oper. Res. 42(3), 313–325 (1989)
24. 24.
Baujard, A.: Conceptions of freedom and ranking opportunity sets: a typology. Technical Report, CREM-CNRS (2006)Google Scholar
25. 25.
Beardon, A.F., Candeal, J.C., Herden, G., Induráin, E., Mehta, G.B.: The non-existence of a utility function and a structure of non-representable preference relations. J. Math. Econ. 37, 17–38 (2002)
26. 26.
Belnap, N.D.: How a computer should think. In: Proceedings of the Oxford International Symposium on Contemporary Aspects of Philosophy, pp. 30–56. Oxford, England (1976)Google Scholar
27. 27.
Belnap, N.D.: A useful four-valued logic. In: Epstein, G., Dunn, J. (eds.) Modern Uses of Multiple Valued Logics, pp. 8–37. D. Reidel, Dordrecht (1977)Google Scholar
28. 28.
Benferhat, S., Kaci, S.: A possibilistic logic handling of strong preferences. In: Proceedings 9th IFSA World Congress and 20th NAFIPS International Conference, vol. 2, pp. 962–967. IEEE Press, Piscataway (2001)Google Scholar
29. 29.
Benferhat, S., Dubois, D., Prade, H.: Towards a possibilistic logic handling of preferences. Appl. Intell. 14, 403–417 (2001)
30. 30.
Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar representation and fusion of preferences in the possibilistic logic framework. In: Proceedings of the 8th International Conference on Knowledge Representation and Reasoning, KR’02, pp. 421–432. Morgan Kauffamn, San Francisco (2002)Google Scholar
31. 31.
Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Possibilistic logic representation of preferences: relating prioritized goals and satisfaction levels expressions. In: Proceedings of the 15th European Conference on Artificial Intelligence, ECAI 2002, pp. 685–689. ISO Press, Amsterdam (2002)Google Scholar
32. 32.
Benzer, S.: The fine structure of the gene. Sci. Am. 206(1), 70–84 (1962)Google Scholar
33. 33.
Bergstra, J.A., Bethke, I., Rodenburg, P.: A propositional logic with four values: true, false, divergent and meaningless. J. Appl. Non-Classical Log. 5, 199–217 (1995)
34. 34.
Bermond, J.C.: Ordres à distance minimum d’un tournoi et graphes partiels sans circuits maximaux. Math. Sci. Humaines 37, 5–25 (1972)Google Scholar
35. 35.
Bosi, G., Candeal, J.C., Induráin, E.: Continuous representability of interval orders and biorders. J. Math. Psychol. 51, 122–125 (2007)
36. 36.
Bossert, W.: Preference extension rules for ranking sets of alternatives with a fixed cardinality. Theor. Decis. 39, 301–317 (1995)
37. 37.
Bossert, W.: Opportunity sets and individual well-being. Soc. Choice Welf. 14, 97–112 (1996)
38. 38.
Bossert, W., Pattanaik, P.K., Xu, Y.: Ranking opportunity sets: an axiomatic approach. J. Econ. Theory 63, 326–345 (1994)
39. 39.
Bossert, W., Pattanaik, P.K., Xu, Y.: Choice under complete uncertainty: axiomatic characterizations of some decision rules. Econ. Theory 16, 295–312 (2000)
40. 40.
Bossert, W., Sprumont, Y., Suzumura, K.: Upper semicontinuous extensions of binary relations. J. Math. Econ. 37, 231–246 (2002)
41. 41.
Boutilier, C.: Toward a logic for qualitative decision theory. In: Proceedings of the 4th International Conference on Knowledge Representation and Reasoning, KR’94, pp. 75–86. Morgan Kaufmann, San Francisco (1994)Google Scholar
42. 42.
Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Reasoning with conditional ceteris paribus preference statements. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, UAI’99, pp. 71–80. Morgan Kaufmann, San Francisco (1999)Google Scholar
43. 43.
Boutilier, C., Brafman, R., Domshlak, C., Hoos, H.H., Poole, D.: Cp-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res. 21(1), 135–191 (2004)Google Scholar
44. 44.
Bouveret, S., Endriss, U., Lang, J.: Conditional importance networks: a graphical language for representing ordinal, monotonic preferences over sets of goods. In: Proceedings of IJCAI 2009, pp. 67–72 (2009)Google Scholar
45. 45.
Bouyssou, D.: Modelling inaccurate determination, uncertainty, imprecision using multiple criteria. In: Lockett, A., Islei, G. (eds.) Improving Decision Making in Organisations. Lecture Notes in Economics and Mathematical Systems, vol. 335, pp. 78–87. Springer, Berlin (1989)
46. 46.
Bouyssou, D.: Outranking relations: do they have special properties? J. Multi-Criteria Decis. Anal. 5, 99–111 (1996)
47. 47.
Bouyssou, D., Marchant, T.: Biorders with frontier. Order 28, 53–87 (2011)
48. 48.
Bouyssou, D., Pirlot, M.: Conjoint measurement without additivity and transitivity. In: Meskens, N., Roubens, M. (eds.) Advances in Decision Analysis, pp. 13–29. Kluwer Academic, Dordrecht (1999)
49. 49.
Bouyssou, D., Pirlot, M.: A characterization of strict concordance relations. In: Bouyssou, D., Jacquet-Lagrèze, E., Perny, P., Słowiński, R., Vanderpooten, D., Vincke, P. (eds.) Aiding Decisions with Multiple Criteria: Essays in Honour of Bernard Roy, pp. 121–145. Kluwer, Dordrecht (2002)
50. 50.
Bouyssou, D., Pirlot, M.: Non transitive decomposable conjoint measurement. J. Math. Psychol. 46, 677–703 (2002)
51. 51.
Bouyssou, D., Marchant, T., Pirlot, M., Perny, P., Tsoukiàs, A., Vincke, P.: Evaluation and Decision Models: A Critical Perspective. Kluwer Academic, Dordrecht (2000)
52. 52.
Brafman, R.I., Friedman, N.: On decision-theoretic foundations for defaults. Artif. Intell. 133, 1–33 (2001)
53. 53.
Brafman, R.I., Domshlak, C., Shimony, S.E.: On graphical modeling of preference and importance. J. Artif. Intell. Res. 25(1), 389–424 (2006)Google Scholar
54. 54.
Brams, S.J., Fishburn, P.C.: Voting procedures. In: Arrow, K., Sen, A.K., Suzumura, K. (eds.) Handbook of Social Choice and Welfare, vol. 1, pp. 173–236. Elsevier, Amsterdam (2002)
55. 55.
Brams, S.J., Kilgour, D.M., Sanver, M.R.: A minimax procedure for electing committees. Public Choice 132(3), 401–420 (2007)
56. 56.
Brans, J.P., Mareschal, B., Vincke, P.: PROMETHEE: a new family of outranking methods in multicriteria analysis. In: Brans, J.P. (ed.) Operational Research. IFORS, vol. 84, pp. 477–490. North Holland, Amsterdam (1984)Google Scholar
57. 57.
Braziunas, D., Boutilier, C.: Local utility elicitation in gai models. In: UAI, pp. 42–49 (2005)Google Scholar
58. 58.
Braziunas, D., Boutilier, C.: Minimax regret based elicitation of generalized additive utilities. In: UAI, pp. 25–32 (2007)Google Scholar
59. 59.
Briges, D.S., Mehta, G.B.: Representations of Preference Orderings. Springer, Berlin (1995)
60. 60.
Broome, J.: Weighting Goods. Basil Blackwell, London (1991)Google Scholar
61. 61.
Carbonell, J., Goldstein, J.: The use of mmr, diversity-based reranking for reordering documents and producing summaries. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 335–336. ACM, New York (1998)Google Scholar
62. 62.
Carrano, A.V.: Establishing the order to human chromosome-specific DNA fragments. In: Woodhead, A., Barnhart, B. (eds.) Biotechnology and the Human Genome, pp. 37–50. Plenum Press, New York (1988)
63. 63.
Charon-Fournier, I., Germa, A., Hudry, O.: Utilisation des scores dans des méthodes exactes déterminant les ordres médians des tournois. Math. Inf. Sci. Humaines 119, 53–74 (1992)Google Scholar
64. 64.
Chateauneuf, A.: Continuous representation of a preference relation on a connected topological space. J. Math. Econ. 16, 139–146 (1987)
65. 65.
Chevaleyre, Y., Endriss, U., Lang, J.: Expressive power of weighted propositional formulas for cardinal preference modeling. In: Proceedings of KR’06, pp. 145–152 (2006)Google Scholar
66. 66.
Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: Preference handling in combinatorial domains: from ai to social choice. AI Mag. 29(4), 37 (2009)Google Scholar
67. 67.
Chisholm, R.M., Sosa, E.: Intrinsic preferability and the problem of supererogation. Synthese 16, 321–331 (1966)
68. 68.
Chisholm, R.M., Sosa, E.: On the logic of intrinsically better. Am. Philos. Q. 3, 244–249 (1966)Google Scholar
69. 69.
Cohen, M., Jaffray, J.-Y.: Rational behavior under complete ignorance. Econometrica 48, 1281–1299 (1980)
70. 70.
Coombs, C.H.: A Theory of Data. Wiley, New York (1964)Google Scholar
71. 71.
Coombs, C.H., Smith, J.E.K.: On the detection of structures in attitudes and developmental processes. Psychol. Rev. 80, 337–351 (1973)
72. 72.
Coste-Marquis, S., Lang, J., Liberatore, P., Marquis, P.: Expressive power and succinctness of propositional languages for preference representation. In: Proceedings of KR’04, pp. 203–212 (2004)Google Scholar
73. 73.
Cowan, T.A., Fishburn, P.C.: Foundations of preferences. In: Eberlein, G., Berghel, H. (eds.) Essays in Honor of Werner Leinfellner, pp. 261–271. D. Reidel, Dordrecht (1988)Google Scholar
74. 74.
Cozzens, M.B., Roberts, F.S.: Double semiorders and double indifference graphs. SIAM J. Algebraic Discret. Methods 3, 566–583 (1982)
75. 75.
De Baets, B., Kerre, E., Van De Walle, B.: Fuzzy preference structures and their characterization. J. Fuzzy Math. 3, 373 (1995)Google Scholar
76. 76.
De Finetti, B.: Sul significato soggettivo della probabilità. Fundam. Math. 17, 298–329 (1931)Google Scholar
77. 77.
De Morgan, A.: On the symbols of logic i. Trans. Camb. Philos. Soc. 9, 78–127 (1864)Google Scholar
78. 78.
De Saint-Cyr, F.D., Lang, J., Schiex, T.: Penalty logic and its link with Dempster-Shafer theory. In: Proceedings of the Tenth International Conference on Uncertainty in Artificial Intelligence, pp. 204–211. Morgan Kaufmann, Los Altos (1994)Google Scholar
79. 79.
Debreu, G.: Representation of a preference ordering by a numerical function. In: Thrall, R., Coombs, C.H., Davies, R. (eds.) Decision Processes, pp. 159–175. Wiley, New York (1954)Google Scholar
80. 80.
Debreu, G.: Theory of Value: An Axiomatic Analysis of Economic Equilibrium. Wiley, New York (1959)Google Scholar
81. 81.
Deschrijver, G., Arieli, O., Cornelis, C., Kerre, E.: A bilattice-based framework for handling graded truth and imprecision. Int. J. Uncertainty Fuzziness Knowledge Based Syst. 15, 13–41 (2007)
82. 82.
desJardins, M., Eaton, E., Wagstaff, K.L.: Learning user preferences for sets of objects. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 273–280. ACM, New York (2006)Google Scholar
83. 83.
Dias, L.C, Tsoukiàs, A.: On the constructive and other approaches in decision aiding. In: Hengeller Antunes, C.A., Figueira, J. (eds.) Proceedings of the 57th Meeting of the EURO MCDA Working Group, pp. 13–28. CCDRC, Coimbra (2004)Google Scholar
84. 84.
Diaye, M.A.: Variable interval orders. Math. Soc. Sci. 38, 21–33 (1999)
85. 85.
Doherty, P., Driankov, D., Tsoukiàs, A.: Partial logics and partial preferences. In: Proceedings of the CEMIT 92 International Conference, Tokyo, pp. 525–528 (1992)Google Scholar
86. 86.
Doignon, J.P.: Thresholds representation of multiple semiorders. SIAM J. Algebraic Discret Methods 8, 77–84 (1987)
87. 87.
Doignon, J.P.: Sur les représentations minimales des semiordres et des ordres d’intervalles. Math. Sci. Humaines 101, 49–59 (1988)Google Scholar
88. 88.
Doignon, J.P., Falmagne, J.: Well graded families of relations. Discret. Math. 173(1–3), 35–44 (1997)
89. 89.
Doignon, J.P., Ducamp, A., Falmagne, J.C.: On realizable biorders and the biorder dimension of a relation. J. Math. Psychol. 28, 73–109 (1984)
90. 90.
Doignon, J.P., Monjardet, B., Roubens, M., Vincke, P.: Biorder families, valued relations and preference modelling. J. Math. Psychol. 30, 435–480 (1986)
91. 91.
Dombi, J.: A general class of fuzzy operators, the de morgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets Syst. 8(2), 149–163 (1982)
92. 92.
Domshlak, C.: Modeling and reasoning about preferences with CP-nets. Ph.D. thesis, Ben-Gurion University (2002)Google Scholar
93. 93.
Domshlak, C., Brafman, R.I.: CP-nets - reasoning and consistency testing. In: Proceedings of the 8th International Conference on Knowledge Representation and Reasoning, KR’02, pp. 121–132. Morgan Kaufmann, San Francisco (2002)Google Scholar
94. 94.
Doyle, J.: Constructive belief and rational representation. Comput. Intell. 5, 1–11 (1989)
95. 95.
Doyle, J.: Rationality and its roles in reasoning. In: Proceedings of the 8th National Conference on Artificial Intelligence, AAAI 90, pp. 1093–1100. MIT Press, Cambridge (1990)Google Scholar
96. 96.
Doyle, J.: Reasoned assumptions and rational psychology. Fundam. Inform. 20, 35–73 (1994)Google Scholar
97. 97.
Doyle, J., Wellman, M.P.: Modular utility representation for decision-theoretic planning. In: Proceeding of the 1st International Conference on Artificial Intelligence Planning Systems, pp. 236–242 (1992)Google Scholar
98. 98.
Dubarle, D.: Essai sur la généralisation naturelle de la logique usuelle. Math. Inf. Sci. Humaines 107, 17–73 (1989). 1963 Manuscript, Published PosthumouslyGoogle Scholar
99. 99.
Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9, 613–626 (1978)
100. 100.
101. 101.
Dubois, D., Prade, H.: Ranking fuzzy numbers in the setting of possibility theory. Inf. Sci. 30, 183–224 (1983)
102. 102.
Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)
103. 103.
Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: a clarification. Ann. Math. Artif. Intell. 32, 35–66 (2001)
104. 104.
Dushnik, B., Miller, E.W.: Partially ordered sets. Am. J. Math. 63, 600–610 (1941)
105. 105.
Dutta, B., Sen, A.K.: Ranking opportunity sets and arrow impossibility theorems: correspondence results. J. Econ. Theory 71, 90–101 (1996)
106. 106.
Fages, F., Ruet, P.: Combining explicit negation and negation by failure via belnap’s logic. Theor. Comput. Sci. 171, 61–75 (1997)
107. 107.
Fechner, G.T.: Elemente der Psychophysik. Breitkof und Hartel, Leipzig (1860)Google Scholar
108. 108.
Fishburn, P.C.: Methods of estimating additive utilities. Manag. Sci. 13, 435–453 (1967)
109. 109.
Fishburn, P.C.: Utility Theory for Decision Making. Wiley, New York (1970)Google Scholar
110. 110.
Fishburn, P.C.: Interval representations for interval orders and semiorders. J. Math. Psychol. 10, 91–105 (1973)
111. 111.
Fishburn, P.C.: Nontransitive measurable utility. J. Math. Psychol. 26, 31–67 (1982)
112. 112.
Fishburn, P.C.: Interval Orders and Interval Graphs. J. Wiley, New York (1985)Google Scholar
113. 113.
Fishburn, P.C.: Nontransitive additive conjoint measurement. J. Math. Psychol. 35, 1–40 (1991)
114. 114.
Fishburn, P.C. Nontransitive preferences in decision theory. J. Risk Uncertain. 4, 113–134 (1991)
115. 115.
Fishburn, P.C.: Signed orders and power set extensions. J. Econ. Theory 56, 1–19 (1992)
116. 116.
Fishburn, P.C.: Generalisations of semiorders: a review note. J. Math. Psychol. 41, 357–366 (1997)
117. 117.
Fishburn, P.C.: Preference structures and their numerical presentations. Theor. Comput. Sci. 217, 359–389 (1999)
118. 118.
Fishburn, P.C., Monjardet, B.: Norbert wiener on the theory of measurement (1914, 1915, 1921). J. Math. Psychol. 36, 165–184 (1992)
119. 119.
Fitting, M.C.: Bilattices and the semantics of logic programming. J. Log. Program. 11, 91–116 (1991)
120. 120.
Fodor, J.C.: An axiomatic approach to fuzzy preference modelling. Fuzzy Sets Syst. 52, 47–52 (1992)
121. 121.
Fodor, J.C.: Valued preference structures. Eur. J. Oper. Res. 79, 277–286 (1994)
122. 122.
Fodor, J.C., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Boston (1994)
123. 123.
Font, J.M., Moussavi, M.: Note on a six valued extension of three valued logics. J. Appl. Non-Classical Log. 3, 173–187 (1993)
124. 124.
Fortemps, P., Słowiński, R.: A graded quadrivalent logic for ordinal preference modelling: loyola-like approach. Fuzzy Optim. Decis. Making 1, 93–111 (2002)
125. 125.
Frank, M.: On the simultaneous associativity of f(x, y) and $$x + y - f(x,y)$$. Aequationes Math. 19, 194–226 (1979)
126. 126.
Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69, 9–15 (1962)
127. 127.
Gärdenfors, P.: Manipulation of social choice functions. J. Econ. Theory 13, 217–228 (1976)
128. 128.
Geist, C., Endriss, U.: Automated search for impossibility theorems in social choice theory: ranking sets of objects. J. Artif. Intell. Res. 40, 143–174 (2011)Google Scholar
129. 129.
Georgescu-Roegen, N.: The pure theory of consumer’s behavior. Q. J. Econ. 50, 545–593 (1936)
130. 130.
Goldsmith, J., Lang, J., Truszczynski, M., Wilson, N.: The computational complexity of dominance and consistency in cp-nets. In: IJCAI, pp. 144–149 (2005)Google Scholar
131. 131.
Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning about time: a graph theoretic approach. J. ACM 40, 1108–1133 (1993)
132. 132.
Gonzales, C., Perny, P.: Gai networks for utility elicitation. In: KR, pp. 224–234 (2004)Google Scholar
133. 133.
Gougen, J.A.: The logic of inexact concepts. Synthese 19, 325–373 (1969)
134. 134.
Gravel, N.: Can a ranking of opportunity sets attach an intrinsic importance to freedom of choice? Am. Econ. Rev. 84, 454–458 (1994)Google Scholar
135. 135.
Gravel, N.: Ranking opportunity sets on the basis of their freedom of choice and their ability to satisfy preferences: a difficulty. Soc. Choice Welf. 15, 371–382 (1998)
136. 136.
Gravel, N.: What is freedom. In: Peil, J., Van Staveren, I. (eds.) Handbook of Economics and Ethics, pp. 166–174. Edward Edgar Publishing, London (2008)Google Scholar
137. 137.
Gravel, N., Laslier, J.-F., Trannoy, A.: Individual freedom of choice in a social setting. In: Laslier, J.-F., Fleurbaey, M., Gravel, N., Trannoy, A. (eds.) Freedom in Economics: New Perspectives in Normative Analysis, pp. 76–92. Routledge, London (1997)Google Scholar
138. 138.
Green, P.E., Tull, D.S., Albaum, G.: Research for Marketing Decisions, 2nd edn. Prentice Hall, Englewood Cliffs (1988)Google Scholar
139. 139.
Haddawy, P., Hanks S.: Representations for decision-theoretic planning: utility functions for deadline goals. In: Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR’92). Cambridge, pp. 71–82, 25-29 October 1992Google Scholar
140. 140.
Halldén, S.: On the Logic of Better. Library of Theoria, Lund (1957)Google Scholar
141. 141.
Halldin, C.: Preference and the cost of preferential choice. Theor. Decis. 21, 35–63 (1986)
142. 142.
Halphen, E.: La notion de vraisemblance. Technical Report 4(1), Publication de l’I.S.U.P (1955)Google Scholar
143. 143.
Hand, D.J.: Discrimination and Classification. Wiley, New York (1981)Google Scholar
144. 144.
Hansen, E.: Global Optimization Using Interval Analysis. M. Dekker, New York (1992)Google Scholar
145. 145.
Hansson, B.: Choice structures and preference relations. Synthese 18, 443–458 (1966)
146. 146.
Hansson, B.: Fundamental axioms for preference relations. Synthese 18, 423–442 (1966)
147. 147.
Hayek, F.A.: The Constitution of Liberty. University of Chicago Press, Chicago (1960)Google Scholar
148. 148.
Hodson, F.R., Kendall, D.G., Tautu, P.: Mathematics in the Archaeological and Historical Sciences. Edinburgh University Press, Edinburgh (1971)Google Scholar
149. 149.
Houthakker, H.S.: The logic of preference and choice. In: Tymieniecka, A. (ed.) Contributions to Logic and Methodology in Honour of J.M. Bochenski, pp. 193–207. North Holland, Amsterdam (1965)Google Scholar
150. 150.
Huber, O.: An axiomatic system for multidimensional preferences. Theor. Decis. 5, 161–184 (1974)
151. 151.
Huber, O.: Non transitive multidimensional preferences. Theor. Decis. 10, 147–165 (1979)
152. 152.
Hudry, O., Woirgard, F.: Ordres médians et ordres de Slater des tournois. Math. Inf. Sci. Humaines 133, 23–56 (1996)Google Scholar
153. 153.
Jaffray, J.-Y., Wakker, P.P.: Decision making with belief functions: compatibility and incompatibility with the sure-thing principle. J. Risk Uncertain. 7, 255–271 (1993)
154. 154.
Janowitz, M., LaPointe, F.-J., McMorris, F.R., Mirkin, B., Roberts, F.S. (eds.): Bioconsensus. DIMACS Series, vol. 61. American Mathematical Society, Providence (2003)Google Scholar
155. 155.
Jeffrey, R.C.: The Logic of Decision. McGraw Hill, New York (1965)Google Scholar
156. 156.
Jones, P., Sugden, R.: Evaluating choice. Int. Rev. Law Econ. 2, 47–65 (1982)
157. 157.
Kacprzyk, J., Roubens, M.: Non Conventional Preference Relations in Decision Making. LNMES, vol. 301. Springer, Berlin (1988)Google Scholar
158. 158.
Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979)
159. 159.
Kahneman, D., Slovic, P., Tversky, A.: Judgement Under Uncertainty: Heuristics and Biases. Cambridge University Press, Cambridge (1981)Google Scholar
160. 160.
Kaluzhny, Y., Muravitsky, A.Y.: A knowledge representation based on the Belnap’s four valued logic. J. Appl. Non-Classical Log. 3, 189–203 (1993)
161. 161.
Kannai, Y., Peleg, B.: A note on the extension of an order on a set to the power set. J. Econ. Theory 32, 172–175 (1984)
162. 162.
Karp, R.M.: Mapping the genome: some combinatorial problems arising in molecular biology. In: Proceeding 25th STOC, pp. 278–285. ACM Press, New York (1993)Google Scholar
163. 163.
164. 164.
Kaufmann, A., Gupta, M.M.: Introduction to Fuzzy Arithmetic-Theory and Application. Van Nostrand Reinhold, New York (1985)Google Scholar
165. 165.
Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. Wiley, New York (1976)Google Scholar
166. 166.
Kilgour, D.M., Brams, S.J., Sanver, M.R.: How to elect a representative committee using approval balloting. In: Simeone, B., Pukelsheim, F. (eds.) Mathematics and Democracy, pp. 83–95. Springer, Berlin (2006)
167. 167.
Klemisch-Ahlert, M.: Freedom of choice: a comparison of different rankings of opportunity sets. Soc. Choice Welf. 10, 189–207 (1993)
168. 168.
Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement, Vol. 1: Additive and Polynomial Representations. Academic, New York (1971)Google Scholar
169. 169.
Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement, Vol. 2: Geometrical, Threshold and Probabilistic Representations. Academic, New York (1989)Google Scholar
170. 170.
Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44, 167–207 (1990)
171. 171.
Kreps, D.M.: A representation theorem for preference for flexibility. Econometrica: Journal of the Econometric Society, pp. 565–577 (1979)Google Scholar
172. 172.
Lafage, C., Lang, J.: Logical representation of preferences for group decision making. In: Proceedings of the 7th International Conference on Knowledge Representation and Reasoning, KR’2000, pp. 457–468 (2000)Google Scholar
173. 173.
Lafage, C., Lang, J.: Propositional distances and preference representation. In: Proceedings of the ECSQARU’2001, pp. 48–59 (2001)Google Scholar
174. 174.
Lang, J.: Logical representation of preferences. In: Bouyssou, D., Dubois, D., Pirlot, M., Prade, H. (eds.) Decision Making Process, pp. 321–355. Wiley, New York (2006)Google Scholar
175. 175.
Lang, J., Xia, L.: Sequential composition of voting rules in multi-issue domains. Math. Soc. Sci. 57(3), 304–324 (2009)
176. 176.
Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart & Winston, New York (1976)Google Scholar
177. 177.
Lehmann, D.: Nonmonotonic logics and semantics. J. Log. Comput. 11, 229–256 (2001)
178. 178.
Li, E., Lee, R.J.: Comparison of fuzzy numbers based on the probabiliy measure of fuzzy events. Comput. Math. Appl. 15, 887–896 (1988)
179. 179.
Luce, R.D.: Semiorders and a theory of utility discrimination. Econometrica 24, 178–191 (1956)
180. 180.
Markowitz, H.M.: Portfolio Selection: Efficient Diversification of Investments. Yale University Press, New Haven (1968)Google Scholar
181. 181.
Massaglia, R., Ostanello, A.: N-tomic: a support system for multicriteria segmentation problems. In: Korhonen, P., Lewandowski, A., Wallenius, J. (eds.) Multiple Criteria Decision Support. LNEMS, vol. 356, pp. 167–174. Springer, Berlin (1991)Google Scholar
182. 182.
May, K.O.: Intransitivity, utility and the aggregation of preference patterns. Econometrica 22, 1–13 (1954)
183. 183.
Mendelson, E.: Introduction to Mathematical Logic. Van Nostrand, Princeton (1964)Google Scholar
184. 184.
Mitas, J.: Minimal representation of semiorders with intervals of same length. In: Bouchitté, V., Morvan, M. (eds.) Orders, Algorithms and Applications. LNCS, vol. 831, pp. 162–175. Springer, Berlin (1994)
185. 185.
Mizumoto, M., Tanaka, K.: The four operations of arithmetic on fuzzy numbers. Syst. Comput. Controls 7(5), 73–81 (1976)Google Scholar
186. 186.
Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type 2. Inf. Control 31, 312–340 (1976)
187. 187.
Monjardet, B.: Axiomatiques et propriétés des quasi ordres. Math. Sci. Humaines 63, 51–82 (1978)Google Scholar
188. 188.
Monjardet, B.: Relations à éloignement minimum des relations binaires: note bibliographique. Math. Inf. Sci. Humaines 67, 115–122 (1979)Google Scholar
189. 189.
Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)Google Scholar
190. 190.
Moreno, J.A.: A transitivity approach to preference relational systems. Eur. J. Oper. Res. 60(1) 68–75 (1992)
191. 191.
Moretti, S., Patrone, F.: Transversality of the shapley value. Top 16(1), 1–41 (2008)
192. 192.
Moretti, S., Tsoukiàs, A.: Ranking sets of possibly interacting objects using Shapley extensions. In: Proceedings of the 13th International Conference on Principles of Knowledge Representation and Reasoning (KR 2012), pp. 199–209. AAAI Publications (2012)Google Scholar
193. 193.
Moscarola, J., Roy, B.: Procédure automatique d’examen de dossiers fondée sur une segmentation trichotomique en présence de critères multiples. RAIRO Rech. Opér. 11(2), 145–173 (1977)Google Scholar
194. 194.
Mullen, J.D.: Does the logic of preference rest on a mistake? Metaphilosophy 10, 247–255 (1979)
195. 195.
Nagaraja, R.: Current approaches to long-range physical mapping of the human genome. In: Anand, R. (ed.) Techniques for the Analysis of Complex Genomes, pp. 1–18. Academic Publishers, New York (1992)Google Scholar
196. 196.
Nahmias, S.: Fuzzy variables. Fuzzy Sets Syst. 1, 97–110 (1976)
197. 197.
Nakamura, Y.: Real interval representations. J. Math. Psychol. 46, 140–177 (2002)
198. 198.
Ngo The, A.: Structures de préférence non conventionnelles en aide à la décision. Ph.D. thesis, Université Paris Dauphine, Paris (2002)Google Scholar
199. 199.
Ngo The, A., Tsoukiàs, A.: Numerical representation of PQI interval orders. Discret. Appl. Math. 147, 125–146 (2005)
200. 200.
Ngo The A., Tsoukiàs, A., Vincke, P..: A polynomial time algorithm to detect PQI interval orders. Int. Trans. Oper. Res. 7, 609–623 (2000)
201. 201.
Nguyen, T.H., Kreinovitch, V., Nesterov, V., Nakamura, M.: On hardware support for interval computations and for soft computing: theorems. IEEE Trans. Fuzzy Syst. 5, 108–127 (1978)
202. 202.
Nisan, N.: Bidding and allocation in combinatorial auctions. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, pp. 1–12. ACM, New York (2000)Google Scholar
203. 203.
Nitzan, S.I., Pattanaik, P.K.: Median-based extensions of an ordering over a set to the power set: An axiomatic characterization* 1. J. Econ. Theory 34(2), 252–261 (1984)
204. 204.
Nute, D.: Defeasible Deontic Logic. Kluwer Academic, Dordrecht (1997)
205. 205.
Oloriz, E., Candeal, J.C., Induráin, E.: Representability of interval orders. J. Econ. Theory 78, 219–227 (1998)
206. 206.
Orlovsky, S.A.: Decision making with a fuzzy preference relation. Fuzzy Sets Syst. 1, 155–167 (1978)
207. 207.
Ovchinnikov, S.N., Roubens, M.: On strict preference relations. Fuzzy Sets Syst. 43, 319–326 (1991)
208. 208.
Öztürk, M.: Logical and mathematical structures for interval comparisons. Ph.D. thesis, Université Paris Dauphine, Paris (2005)Google Scholar
209. 209.
Öztürk, M., Marquis, P.: Representing interval orders by weighted bases: some complexity results. Math. Soc. Sci. 57, 367–388 (2009)
210. 210.
Öztürk, M., Tsoukiàs, A.: Modelling uncertain positive and negative reasons in decision aiding. Decis. Support. Syst. 43(4), 1512–1526 (2007)
211. 211.
Öztürk, M., Tsoukiàs, A.: Bipolar preference modelling and aggregation in decision support. Int. J. Intell. Syst. 23, 970–984 (2008)
212. 212.
Öztürk, M., Pirlot, M., Tsoukiàs, A.: Representing preferences using intervals. Artif. Intell. 175(7–8), 1194–1222 (2011)
213. 213.
Pattanaik, P.K., Peleg, B.: An axiomatic characterization of the lexicographic maximin extension of an ordering over a set to the power set. Soc. Choice Welf. 1(2), 113–122 (1984)
214. 214.
Pattanaik, P.K., Xu, Y.: On ranking opportunity sets in terms of freedom of choice. Rech. Écon. Louvain 56(3–4), 383–390 (1990)Google Scholar
215. 215.
Pattanaik, P.K., Xu, Y.: On diversity and freedom of choice. Math. Soc. Sci. 40(2), 123–130 (2000)
216. 216.
Pawlak, Z., Słowiński, R.: Decision analysis using rough sets. Int. Trans. Oper. Res. 1, 107–114 (1994)
217. 217.
Pe’er, I., Shamir, R.: Satisfiability problems on intervals and unit intervals. Theor. Comput. Sci. 175, 349–372 (1997)
218. 218.
Peirce, C.S.: On the algebra of logic. Am. J. Math. 3, 15–57 (1880)
219. 219.
Peirce, C.S.: On the logic of number. Am. J. Math. 4, 85–95 (1881)
220. 220.
Peirce, C.S.: A Theory of Probable Inference, pp. 187–203. John Hopkins University, Baltimore (1883)Google Scholar
221. 221.
Perny, P.: Multicriteria filtering methods based on concordance/non-discordance principles. Ann. Oper. Res. 80, 137–167 (1998)
222. 222.
Perny, P., Roubens, M.: Fuzzy preference modelling. In: Słowiński, R. (ed.) Fuzzy Sets in Decision Analysis, Operations Research and Statistics, pp. 3–30. Kluwer Academic, Dordrecht (1998)
223. 223.
Perny, P., Roy, B.: The use of fuzzy outranking relations in preference modelling. Fuzzy Sets Syst. 49, 33–53 (1992)
224. 224.
Perny, P., Spanjaard, O.: Preference-based search in state space graphs. In: Proceedings of the AAAI’2002 Conference, Edmonton, pp. 751–756 (2002)Google Scholar
225. 225.
Perny, P., Spanjaard, O.: A preference-based approach to spanning trees and shortest paths problems. Eur. J. Oper. Res. 162(3), 584–601 (2005)
226. 226.
Perny, P., Tsoukiàs, A.: On the continuous extension of a four valued logic for preference modelling. In: Proceedings of the IPMU 1998 Conference, Paris, pp. 302–309 (1998)Google Scholar
227. 227.
Pinkas, G.: Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge. Artif. Intell. 77, 203–247 (1995)
228. 228.
Pirlot, M.: Minimal representation of a semiorder. Theor. Decis. 28, 109–141 (1990)
229. 229.
230. 230.
Poincaré, H.: La Valeur de la Science. Flammarion, Paris (1905)Google Scholar
231. 231.
Puppe, C.: An axiomatic approach to preference for freedom of choice. J. Econ. Theory 68(1), 174–199 (1996)
232. 232.
Puppe, C.: Individual freedom and social choice. In: Fleurbaey, M., Laslier, J.-F., Gravel, N., Trannoy, A. (eds.) Freedom in Economics: New Perspectives in Normative Analysis, pp. 49–68. Routledge, London (1997)Google Scholar
233. 233.
Rescher, N.: Semantic foundations for the logic of preference. In: Rescher, N. (ed.) The Logic of Decision and Action, pp. 37–62. University of Pittsburgh, Pittsburgh (1967)Google Scholar
234. 234.
Rescher, N.: Introduction to Value Theory. Prentice Hall, Englewood Cliffs (1969)Google Scholar
235. 235.
Roberts, F.S.: Measurement Theory, with Applications to Decision Making, Utility and the Social Sciences. Addison-Wesley, Boston (1979)Google Scholar
236. 236.
Rosenbaum, E.F.: On measuring freedom. J. Theor. Polit. 12(2), 205 (2000)
237. 237.
Roth, A.E.: The college admissions problem is not equivalent to the marriage problem. J. Econ. Theory 36(2), 277–288 (1985)
238. 238.
Roubens, M., Vincke, P.: On families of semiorders and interval orders imbedded in a valued structure of preference: a survey. Inf. Sci. 34, 187–198 (1984)
239. 239.
Roubens, M., Vincke, P.: Preference Modelling. LNEMS, vol. 250. Springer, Berlin (1985)Google Scholar
240. 240.
Roubens, M., Vincke, P.: Fuzzy possibility graphs and their application to ranking fuzzy numbers. In: Kacprzyk, J., Roubens, M. (eds.) Non-conventional Preference Relations in Decision Making. LNEMS, vol. 301, pp. 119–128. Springer, Berlin (1988)
241. 241.
Roy, B.: Partial preference analysis and decision aid: the fuzzy outranking relation concept. In: Bell, D.E., Keeney, R.L., Raiffa, H. (eds.) Conflicting Objectives in Decisions, pp. 40–75. Wiley, New York (1977)Google Scholar
242. 242.
Roy, B.: Multicriteria Methodology for Decision Aiding. Kluwer Academic, Dordrecht (1996). First edition in French. Economica, Paris (1985)Google Scholar
243. 243.
Roy, B.: Main sources of inaccurate determination, uncertainty and imprecision in decision models. In: Munier, B., Shakun, M. (eds.) Compromise, Negotiation and Group Decision, pp. 43–67. Reidel, Dordrecht (1988)
244. 244.
Roy, B.: The outranking approach and the foundations of ELECTRE methods. Theor. Decis. 31, 49–73 (1991)
245. 245.
Roy, B., Bouyssou, D.: Aide Multicritère à la Décision: Méthodes et Cas. Economica, Paris (1993)Google Scholar
246. 246.
Roy, B., Vincke, P.: Relational systems of preference with one or more pseudo-criteria: some new concepts and results. Manag. Sci. 30, 1323–1335 (1984)
247. 247.
Roy, B., Vincke, P.: Pseudo-orders: definition, properties and numerical representation. Math. Soc. Sci. 14, 263–274 (1987)
248. 248.
Saint-Cyr, D., Dupin, F., Lang, Jérôme, Schiex, Thomas.: Penalty logic and its link with Dempster-Shafer theory. Proceedings of the Tenth international conference on Uncertainty in artificial intelligence, pp. 204–211. Morgan Kaufmann San Francisco (1994)Google Scholar
249. 249.
Salo, A., Keisler, J., Morton, A.: Portfolio Management. Springer, Berlin (2011)Google Scholar
250. 250.
Samuelson, P.A.: General proof that diversification pays. J. Financ. Quant. Anal. 2(1), 1–13 (1967)
251. 251.
Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier Science, New York (1983)Google Scholar
252. 252.
Scott, D.: Some ordered sets in computer science. In: Rival, I. (ed.) Ordered Sets, pp. 677–718. D. Reidel, Dordrecht (1982)
253. 253.
Scott, D., Suppes, P.: Foundational aspects of theories of measurement. J. Symb. Log. 23, 113–128 (1958)
254. 254.
Sen, A.K.: Social choice theory. In: Arrow, K.J., Intriligator, M.D. (eds.) Handbook of Mathematical Economics, vol. 3, pp. 1073–1181. North-Holland, Amsterdam (1986)Google Scholar
255. 255.
Shapley, L.: A value for n-person games. In: Kuhn, H., Tucker, A.W. (eds.) Contributions to the Theory of Games II, pp. 307–317. Princeton University Press, Princeton (1953)Google Scholar
256. 256.
Shoham, Y.: Nonmonotonic logic: meaning and utility. In: Proceedings of the 10th International Joint Conference in Artificial Intelligence, IJCAI87, pp. 388–393. Morgan Kaufmann, San Francisco (1987)Google Scholar
257. 257.
Slater, P.: Inconsistencies in a schedule of paired comparisons. Biometrika 48, 303–312 (1961)
258. 258.
Słowiński, R.: Fuzzy Sets in Decision Analysis, Operations Research and Statistics. Kluwer Academic, Dordrecht (1998)
259. 259.
Subiza, B.: Numerical representation of acyclic preferences. J. Math. Psychol. 38, 467–476 (1994)
260. 260.
Tanguiane, A.S.: Aggregation and Representation of Preferences. Springer, Berlin (1991)
261. 261.
Tarski, A.: Contributions to the theory of models i, ii. Indag. Math. 16, 572–588 (1954)
262. 262.
Tarski, A.: Contributions to the theory of models iii. Indag. Math. 17, 56–64 (1955)
263. 263.
Tatman, J.A., Shachter, R.D.: Dynamic programming and influence diagrams. IEEE Trans. Syst. Man Cybern. 20(2), 365–379 (1990)
264. 264.
Thomason, R., Horty, J.: Logics for inheritance theory. In: Reinfrank, M., de Kleer, J., Ginsberg, M.L., Sandewall, E. (eds.) Non-monotonic Reasoning. Lecture Notes in Artificial Intelligence, vol. 346, pp. 220–237. Springer, Berlin (1987)
265. 265.
Trotter, W.T.: Combinatorics and Partially Ordered Sets. John Hopkins University Press, Baltimore (1992)Google Scholar
266. 266.
Tsoukiàs, A.: Preference modelling as a reasoning process: a new way to face uncertainty in multiple criteria decision support systems. Eur. J. Oper. Res. 55, 309–318 (1991)
267. 267.
Tsoukiàs, A.: Sur la généralisation des concepts de concordance et discordance en aide multicritr̀e à la décision. In: Mémoire présenté pour l’obtention de l’habilitation à diriger des recherches, Université Paris Dauphine, Paris (1997). Appeared also as Document du LAMSADE no. 117Google Scholar
268. 268.
Tsoukiàs, A.: A first-order, four valued, weakly paraconsistent logic and its relation to rough sets semantics. Found. Comput. Decis. Sci. 12, 85–108 (2002)Google Scholar
269. 269.
Tsoukiàs, A., Vincke, P.: A survey on non conventional preference modelling. Ricerca Operativa 61, 5–49 (1992)Google Scholar
270. 270.
Tsoukiàs A., Vincke, P.: A new axiomatic foundation of partial comparability. Theor. Decis. 39, 79–114 (1995)
271. 271.
Tsoukiàs, A., Vincke, P.: Extended preference structures in MCDA. In: Climaco, J. (ed.) Multicriteria Analysis, pp. 37–50. Springer, Berlin (1997)
272. 272.
Tsoukiàs, A., Vincke, P.: Double threshold orders: a new axiomatization. J. Multi-Criteria Decis. Anal. 7, 285–301 (1998)
273. 273.
Tsoukiàs, A., Vincke, P.: A characterization of PQI interval orders. Discret. Appl. Math. 127, 387–397 (2003)
274. 274.
Tsoukiàs, A., Perny, P., Vincke, P.: From concordance/discordance to the modelling of positive and negative reasons in decision aiding. In: Bouyssou, D., Jacquet-Lagrèze, E., Perny, P., Słowiński, R., Vanderpooten, D., Vincke, P. (eds.) Aiding Decisions with Multiple Criteria: Essays in Honour of Bernard Roy, pp. 147–174. Kluwer Academic, Dordrecht (2002)
275. 275.
Turunen, E., Öztürk, M., Tsoukiàs, A.: Paraconsistent semantics for pavelka style fuzzy-sentential logic. Fuzzy Sets Syst. 161, 1926–1940 (2010)
276. 276.
Tversky, A.: Intransitivity of preferences. Psychol. Rev. 76, 31–48 (1969)
277. 277.
Uckelman, J.: More than the sum of its parts: compact preference representation over combinatorial domains. Ph.D. thesis, University of Amsterdam (2009). ILLC Publication DS-2009-12.Google Scholar
278. 278.
Valadares Tavares, L.: Generalized transitivity and preferences modelling: the concept of hyper-order. Eur. J. Oper. Res. 36, 14–26 (1988)
279. 279.
van Dalen, D.: Logic and Structure. Springer, Berlin (1983)
280. 280.
Van De Walle, B., De Baets, B., Kerre, E.: Recent advances in fuzzy preference modelling. In: Ruan, D., D’hondt, P., Govaerts, P., Kerre, E.E. (eds.) Intelligent Systems and Soft Computing for Nuclear Science and Industry pp. 98–104. World Scientific, Publishing, Singapore Singapore, (1996)Google Scholar
281. 281.
Van De Walle, B., De Baets, B., Kerre, E.: Charaterizable fuzzy preference structures. Ann. Oper. Res. 80, 105–136 (1998)
282. 282.
Van Hees, M.: On the analysis of negative freedom. Theor. Decis. 45(2), 175–197 (1998)
283. 283.
Vincke, P.: P,Q,I preference structures. In: Kacprzyk, J., Roubens, M. (eds.) Non conventional Preference Relations in Decision Making. LNEMS, vol. 301, pp. 72–81. Springer, Berlin (1988)
284. 284.
Vincke, P.: Multicriteria Decision-Aid. Wiley, New York (1992)Google Scholar
285. 285.
Vincke, P.: Preferences and numbers. In: Colorni, A., Paruccini, M., Roy, B. (eds.) A-MCD-A - Aide Multi Critère à la Décision: Multiple Criteria Decision Aiding, pp. 343–354. Joint Research Center, The European Commission, Luxembourg (2001)Google Scholar
286. 286.
Vind, K.: Independent preferences. J. Math. Econ. 20, 119–135 (1991)
287. 287.
von Winterfeldt, D., Edwards, W.: Decision Analysis and Behavioral Research. Cambridge University Press, Cambridge (1986)Google Scholar
288. 288.
von Wright, G.: The Logic of Preference. Edinburgh University Press, Edinburgh (1963)Google Scholar
289. 289.
von Wright, G.: The logic of preference reconsidered. Theor. Decis. 3, 140–169 (1972)
290. 290.
Weber, S.: A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms. Fuzzy Sets Syst. 11(2), 115–134 (1983)
291. 291.
Widmeyer, G.R.: Logic modeling with partially ordered preferences. Decis. Support Syst. 4, 87–95 (1988)
292. 292.
Widmeyer, G.R.: Reasoning with preferences and values. Decis. Support Syst. 6, 183–191 (1990)
293. 293.
Wilson, N.: Extending CP-nets with stronger conditional preference statements. In: Proceedings of the 19th National Conference on Artificial Intelligence (AAAI-04), San Jose. AAAI Press, San Jose (2004)Google Scholar
294. 294.
Yager, R.R.: On the general class of fuzzy connectives. Fuzzy Sets Syst. 4(3), 235–242 (1980)
295. 295.
Yager, R.R.: A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 24, 143–161 (1981)
296. 296.
Yu, Y.D.: Triangular norms and tnf-sigma-algebras. Fuzzy Sets Syst. 16(3), 251–264 (1985)
297. 297.
Yu, W.: Aide multicritère à la décision dans le cadre de la problématique du tri: méthodes et applications. Ph.D. thesis, LAMSADE, Université Paris Dauphine, Paris (1992)Google Scholar
298. 298.
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
299. 299.
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 1, 119–249 (1975)Google Scholar
300. 300.
Zhai, C.X., Cohen, W.W., Lafferty, J.: Beyond independent relevance: methods and evaluation metrics for subtopic retrieval. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 10–17. ACM, New York (2003)Google Scholar
301. 301.
Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Kluwer Academic, Dordrecht (1985)
302. 302.
Zopounidis, C.: Multicriteria decision aid in financial management. Eur. J. Oper. Res. 119(2), 404–415 (1999)
303. 303.
Zopounidis, C., Doumpos, M.: Multicriteria classification and sorting methods: a literature review. Eur. J. Oper. Res. 138, 229–246 (2002)

## Authors and Affiliations

• Stefano Moretti
• 1
Email author
• Meltem Öztürk
• 1
• Alexis Tsoukiàs
• 1
1. 1.LAMSADE-CNRSUniversité Paris DauphineParis Cedex 16France