Advertisement

Preference Modelling

  • Stefano MorettiEmail author
  • Meltem Öztürk
  • Alexis Tsoukiàs
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 233)

Abstract

This chapter provides the reader with a presentation of preference modelling fundamental notions as well as some recent results in this field. Preference modelling is an inevitable step in a variety of fields: economy, sociology, psychology, mathematical programming, even medicine, archaeology, and obviously decision analysis. Our notation and some basic definitions, such as those of binary relation, properties and ordered sets, are presented at the beginning of the chapter. We start by discussing different reasons for constructing a preference model. We then go through a number of issues that influence the construction of preference models. Different formalisations besides classical logic such as fuzzy sets and non-classical logics become necessary. We then present different types of preference structures reflecting the behavior of a decision-maker: classical, extended and valued ones. It is relevant to have a numerical representation of preferences: functional representations, value functions. The concepts of thresholds and minimal representation are also introduced in this section. We also deal with the problem of how to extend a preference relation over a set A of “objects” to the set of all subsets of A. In Sect. 3.9, we briefly explore the concept of deontic logic (logic of preference) and other formalisms associated with “compact representation of preferences” introduced for special purposes. We end the chapter with some concluding remarks.

Keywords

Preference modelling Decision aiding Uncertainty Fuzzy sets Ordered relations Binary relations Preference extensions 

References

  1. 1.
    Abbas, M.: Any complete preference structure without circuit admits an interval representation. Theor. Decis. 39, 115–126 (1995)CrossRefGoogle Scholar
  2. 2.
    Abbas, M., Vincke, P.: Preference structures and threshold models. J. Multi-Criteria Decis. Anal. 2, 171–178 (1993)CrossRefGoogle Scholar
  3. 3.
    Abbas, M., Pirlot, M., Vincke, P.: Tangent circle graphs and orders. Discret. Appl. Math. 155, 429–441 (2007)CrossRefGoogle Scholar
  4. 4.
    Agaev, R., Aleskerov, F.: Interval choice: classic and general cases. Math. Soc. Sci. 26, 249–272 (1993)CrossRefGoogle Scholar
  5. 5.
    Aleskerov, F., Bouyssou, D., Monjardet, B.: Utility Maximization, Choice and Preference, 2nd edn. Springer, Berlin (2007)Google Scholar
  6. 6.
    Allen, J.F.: Maintaining knowledge about temporal intervals. J. ACM 26, 832–843 (1983)CrossRefGoogle Scholar
  7. 7.
    Alsina, C.: On a family of connectives for fuzzy sets. Fuzzy Sets Syst. 16, 231–235 (1985)CrossRefGoogle Scholar
  8. 8.
    Åqvist, L.: Deontic logic. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical Logic, vol. II, pp. 605–714. D. Reidel, Dordrecht (1986)Google Scholar
  9. 9.
    Arieli, O., Avron, A.: The value of the four values. Artif. Intell. 102, 97–141 (1998)CrossRefGoogle Scholar
  10. 10.
    Arieli, O., Cornelis, C., Deschrijver, G.: Preference modeling by rectangular bilattices. In: Proceedings of the 3rd International Conference on Modeling Decisions for Artificial Intelligence (MDAI’06). Lecture Notes in Artificial Intelligence, vol. 3885, pp. 22–33. Springer, Berlin (2006)Google Scholar
  11. 11.
    Arieli, O., Avron, A., Zamansky, A.: Ideal paraconsistent logics. Stud. Logica 99, 31–60 (2011)CrossRefGoogle Scholar
  12. 12.
    Armstrong, W.E.: The determinateness of the utility function. Econ. J. 49, 453–467 (1939)CrossRefGoogle Scholar
  13. 13.
    Armstrong, W.E.: Uncertainty and utility function. Econ. J. 58, 1–10 (1948)CrossRefGoogle Scholar
  14. 14.
    Armstrong, W.E.: A note on the theory of consumer’s behavior. Oxf. Econ. 2, 119–122 (1950)Google Scholar
  15. 15.
    Bacchus, F., Grove, A.J.: Graphical models for preference and utility. In: UAI, pp. 3–10 (1995)Google Scholar
  16. 16.
    Baharad, E., Nitzan, S.: Extended preferences and freedom of choice. Soc. Choice Welf. 17, 629–637 (2000)CrossRefGoogle Scholar
  17. 17.
    Bana e Costa, C., Vansnick, J.: Preference relation and MCDM. In: Gal, T., Stewart, T., Hanne, T. (eds.) Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications. International Series in Operations Research & Management Science, pp. 4.1–4.23. Kluwer Academic, Dordrecht (1999)Google Scholar
  18. 18.
    Barberà, S., Pattanaik, P.K.: Extending an order on a set to the power set: some remarks on kannai and peleg’s approach* 1. J. Econ. Theory 32(1), 185–191 (1984)CrossRefGoogle Scholar
  19. 19.
    Barberà, S., Barrett, C.R., Pattanaik, P.K.: On some axioms for ranking sets of alternatives. J. Econ. Theory 33, 301–308 (1984)CrossRefGoogle Scholar
  20. 20.
    Barberà, S., Bossert, W., Pattanaik, P.K.: Ranking sets of objects. In: Barberà, S., Hammond, P., Seidl, C. (eds.) Handbook of Utility Theory, vol. II, pp. 893–977. Kluwer Academic Publishers, Dordrecht (2004)CrossRefGoogle Scholar
  21. 21.
    Barthélémy, J.-P., Monjardet, B.: The median procedure in cluster analysis and social choice theory. Math. Soc. Sci. 1(3), 235–267 (1981)CrossRefGoogle Scholar
  22. 22.
    Barthélemy, J.-P., Flament, C., Monjardet, B.: Ordered sets and social sciences. In: Rankin, I. (ed.) Ordered Sets. 42(3), 721–787. D. Reidel, Dordrecht (1982)Google Scholar
  23. 23.
    Barthélémy, J.-P., Guénoche, A., Hudry, O.: Median linear orders: heuristics and a branch and bound algorithm. Eur. J. Oper. Res. 42(3), 313–325 (1989)CrossRefGoogle Scholar
  24. 24.
    Baujard, A.: Conceptions of freedom and ranking opportunity sets: a typology. Technical Report, CREM-CNRS (2006)Google Scholar
  25. 25.
    Beardon, A.F., Candeal, J.C., Herden, G., Induráin, E., Mehta, G.B.: The non-existence of a utility function and a structure of non-representable preference relations. J. Math. Econ. 37, 17–38 (2002)CrossRefGoogle Scholar
  26. 26.
    Belnap, N.D.: How a computer should think. In: Proceedings of the Oxford International Symposium on Contemporary Aspects of Philosophy, pp. 30–56. Oxford, England (1976)Google Scholar
  27. 27.
    Belnap, N.D.: A useful four-valued logic. In: Epstein, G., Dunn, J. (eds.) Modern Uses of Multiple Valued Logics, pp. 8–37. D. Reidel, Dordrecht (1977)Google Scholar
  28. 28.
    Benferhat, S., Kaci, S.: A possibilistic logic handling of strong preferences. In: Proceedings 9th IFSA World Congress and 20th NAFIPS International Conference, vol. 2, pp. 962–967. IEEE Press, Piscataway (2001)Google Scholar
  29. 29.
    Benferhat, S., Dubois, D., Prade, H.: Towards a possibilistic logic handling of preferences. Appl. Intell. 14, 403–417 (2001)CrossRefGoogle Scholar
  30. 30.
    Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar representation and fusion of preferences in the possibilistic logic framework. In: Proceedings of the 8th International Conference on Knowledge Representation and Reasoning, KR’02, pp. 421–432. Morgan Kauffamn, San Francisco (2002)Google Scholar
  31. 31.
    Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Possibilistic logic representation of preferences: relating prioritized goals and satisfaction levels expressions. In: Proceedings of the 15th European Conference on Artificial Intelligence, ECAI 2002, pp. 685–689. ISO Press, Amsterdam (2002)Google Scholar
  32. 32.
    Benzer, S.: The fine structure of the gene. Sci. Am. 206(1), 70–84 (1962)Google Scholar
  33. 33.
    Bergstra, J.A., Bethke, I., Rodenburg, P.: A propositional logic with four values: true, false, divergent and meaningless. J. Appl. Non-Classical Log. 5, 199–217 (1995)CrossRefGoogle Scholar
  34. 34.
    Bermond, J.C.: Ordres à distance minimum d’un tournoi et graphes partiels sans circuits maximaux. Math. Sci. Humaines 37, 5–25 (1972)Google Scholar
  35. 35.
    Bosi, G., Candeal, J.C., Induráin, E.: Continuous representability of interval orders and biorders. J. Math. Psychol. 51, 122–125 (2007)CrossRefGoogle Scholar
  36. 36.
    Bossert, W.: Preference extension rules for ranking sets of alternatives with a fixed cardinality. Theor. Decis. 39, 301–317 (1995)CrossRefGoogle Scholar
  37. 37.
    Bossert, W.: Opportunity sets and individual well-being. Soc. Choice Welf. 14, 97–112 (1996)CrossRefGoogle Scholar
  38. 38.
    Bossert, W., Pattanaik, P.K., Xu, Y.: Ranking opportunity sets: an axiomatic approach. J. Econ. Theory 63, 326–345 (1994)CrossRefGoogle Scholar
  39. 39.
    Bossert, W., Pattanaik, P.K., Xu, Y.: Choice under complete uncertainty: axiomatic characterizations of some decision rules. Econ. Theory 16, 295–312 (2000)CrossRefGoogle Scholar
  40. 40.
    Bossert, W., Sprumont, Y., Suzumura, K.: Upper semicontinuous extensions of binary relations. J. Math. Econ. 37, 231–246 (2002)CrossRefGoogle Scholar
  41. 41.
    Boutilier, C.: Toward a logic for qualitative decision theory. In: Proceedings of the 4th International Conference on Knowledge Representation and Reasoning, KR’94, pp. 75–86. Morgan Kaufmann, San Francisco (1994)Google Scholar
  42. 42.
    Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Reasoning with conditional ceteris paribus preference statements. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, UAI’99, pp. 71–80. Morgan Kaufmann, San Francisco (1999)Google Scholar
  43. 43.
    Boutilier, C., Brafman, R., Domshlak, C., Hoos, H.H., Poole, D.: Cp-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res. 21(1), 135–191 (2004)Google Scholar
  44. 44.
    Bouveret, S., Endriss, U., Lang, J.: Conditional importance networks: a graphical language for representing ordinal, monotonic preferences over sets of goods. In: Proceedings of IJCAI 2009, pp. 67–72 (2009)Google Scholar
  45. 45.
    Bouyssou, D.: Modelling inaccurate determination, uncertainty, imprecision using multiple criteria. In: Lockett, A., Islei, G. (eds.) Improving Decision Making in Organisations. Lecture Notes in Economics and Mathematical Systems, vol. 335, pp. 78–87. Springer, Berlin (1989)CrossRefGoogle Scholar
  46. 46.
    Bouyssou, D.: Outranking relations: do they have special properties? J. Multi-Criteria Decis. Anal. 5, 99–111 (1996)CrossRefGoogle Scholar
  47. 47.
    Bouyssou, D., Marchant, T.: Biorders with frontier. Order 28, 53–87 (2011)CrossRefGoogle Scholar
  48. 48.
    Bouyssou, D., Pirlot, M.: Conjoint measurement without additivity and transitivity. In: Meskens, N., Roubens, M. (eds.) Advances in Decision Analysis, pp. 13–29. Kluwer Academic, Dordrecht (1999)CrossRefGoogle Scholar
  49. 49.
    Bouyssou, D., Pirlot, M.: A characterization of strict concordance relations. In: Bouyssou, D., Jacquet-Lagrèze, E., Perny, P., Słowiński, R., Vanderpooten, D., Vincke, P. (eds.) Aiding Decisions with Multiple Criteria: Essays in Honour of Bernard Roy, pp. 121–145. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  50. 50.
    Bouyssou, D., Pirlot, M.: Non transitive decomposable conjoint measurement. J. Math. Psychol. 46, 677–703 (2002)CrossRefGoogle Scholar
  51. 51.
    Bouyssou, D., Marchant, T., Pirlot, M., Perny, P., Tsoukiàs, A., Vincke, P.: Evaluation and Decision Models: A Critical Perspective. Kluwer Academic, Dordrecht (2000)CrossRefGoogle Scholar
  52. 52.
    Brafman, R.I., Friedman, N.: On decision-theoretic foundations for defaults. Artif. Intell. 133, 1–33 (2001)CrossRefGoogle Scholar
  53. 53.
    Brafman, R.I., Domshlak, C., Shimony, S.E.: On graphical modeling of preference and importance. J. Artif. Intell. Res. 25(1), 389–424 (2006)Google Scholar
  54. 54.
    Brams, S.J., Fishburn, P.C.: Voting procedures. In: Arrow, K., Sen, A.K., Suzumura, K. (eds.) Handbook of Social Choice and Welfare, vol. 1, pp. 173–236. Elsevier, Amsterdam (2002)CrossRefGoogle Scholar
  55. 55.
    Brams, S.J., Kilgour, D.M., Sanver, M.R.: A minimax procedure for electing committees. Public Choice 132(3), 401–420 (2007)CrossRefGoogle Scholar
  56. 56.
    Brans, J.P., Mareschal, B., Vincke, P.: PROMETHEE: a new family of outranking methods in multicriteria analysis. In: Brans, J.P. (ed.) Operational Research. IFORS, vol. 84, pp. 477–490. North Holland, Amsterdam (1984)Google Scholar
  57. 57.
    Braziunas, D., Boutilier, C.: Local utility elicitation in gai models. In: UAI, pp. 42–49 (2005)Google Scholar
  58. 58.
    Braziunas, D., Boutilier, C.: Minimax regret based elicitation of generalized additive utilities. In: UAI, pp. 25–32 (2007)Google Scholar
  59. 59.
    Briges, D.S., Mehta, G.B.: Representations of Preference Orderings. Springer, Berlin (1995)CrossRefGoogle Scholar
  60. 60.
    Broome, J.: Weighting Goods. Basil Blackwell, London (1991)Google Scholar
  61. 61.
    Carbonell, J., Goldstein, J.: The use of mmr, diversity-based reranking for reordering documents and producing summaries. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 335–336. ACM, New York (1998)Google Scholar
  62. 62.
    Carrano, A.V.: Establishing the order to human chromosome-specific DNA fragments. In: Woodhead, A., Barnhart, B. (eds.) Biotechnology and the Human Genome, pp. 37–50. Plenum Press, New York (1988)CrossRefGoogle Scholar
  63. 63.
    Charon-Fournier, I., Germa, A., Hudry, O.: Utilisation des scores dans des méthodes exactes déterminant les ordres médians des tournois. Math. Inf. Sci. Humaines 119, 53–74 (1992)Google Scholar
  64. 64.
    Chateauneuf, A.: Continuous representation of a preference relation on a connected topological space. J. Math. Econ. 16, 139–146 (1987)CrossRefGoogle Scholar
  65. 65.
    Chevaleyre, Y., Endriss, U., Lang, J.: Expressive power of weighted propositional formulas for cardinal preference modeling. In: Proceedings of KR’06, pp. 145–152 (2006)Google Scholar
  66. 66.
    Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: Preference handling in combinatorial domains: from ai to social choice. AI Mag. 29(4), 37 (2009)Google Scholar
  67. 67.
    Chisholm, R.M., Sosa, E.: Intrinsic preferability and the problem of supererogation. Synthese 16, 321–331 (1966)CrossRefGoogle Scholar
  68. 68.
    Chisholm, R.M., Sosa, E.: On the logic of intrinsically better. Am. Philos. Q. 3, 244–249 (1966)Google Scholar
  69. 69.
    Cohen, M., Jaffray, J.-Y.: Rational behavior under complete ignorance. Econometrica 48, 1281–1299 (1980)CrossRefGoogle Scholar
  70. 70.
    Coombs, C.H.: A Theory of Data. Wiley, New York (1964)Google Scholar
  71. 71.
    Coombs, C.H., Smith, J.E.K.: On the detection of structures in attitudes and developmental processes. Psychol. Rev. 80, 337–351 (1973)CrossRefGoogle Scholar
  72. 72.
    Coste-Marquis, S., Lang, J., Liberatore, P., Marquis, P.: Expressive power and succinctness of propositional languages for preference representation. In: Proceedings of KR’04, pp. 203–212 (2004)Google Scholar
  73. 73.
    Cowan, T.A., Fishburn, P.C.: Foundations of preferences. In: Eberlein, G., Berghel, H. (eds.) Essays in Honor of Werner Leinfellner, pp. 261–271. D. Reidel, Dordrecht (1988)Google Scholar
  74. 74.
    Cozzens, M.B., Roberts, F.S.: Double semiorders and double indifference graphs. SIAM J. Algebraic Discret. Methods 3, 566–583 (1982)CrossRefGoogle Scholar
  75. 75.
    De Baets, B., Kerre, E., Van De Walle, B.: Fuzzy preference structures and their characterization. J. Fuzzy Math. 3, 373 (1995)Google Scholar
  76. 76.
    De Finetti, B.: Sul significato soggettivo della probabilità. Fundam. Math. 17, 298–329 (1931)Google Scholar
  77. 77.
    De Morgan, A.: On the symbols of logic i. Trans. Camb. Philos. Soc. 9, 78–127 (1864)Google Scholar
  78. 78.
    De Saint-Cyr, F.D., Lang, J., Schiex, T.: Penalty logic and its link with Dempster-Shafer theory. In: Proceedings of the Tenth International Conference on Uncertainty in Artificial Intelligence, pp. 204–211. Morgan Kaufmann, Los Altos (1994)Google Scholar
  79. 79.
    Debreu, G.: Representation of a preference ordering by a numerical function. In: Thrall, R., Coombs, C.H., Davies, R. (eds.) Decision Processes, pp. 159–175. Wiley, New York (1954)Google Scholar
  80. 80.
    Debreu, G.: Theory of Value: An Axiomatic Analysis of Economic Equilibrium. Wiley, New York (1959)Google Scholar
  81. 81.
    Deschrijver, G., Arieli, O., Cornelis, C., Kerre, E.: A bilattice-based framework for handling graded truth and imprecision. Int. J. Uncertainty Fuzziness Knowledge Based Syst. 15, 13–41 (2007)CrossRefGoogle Scholar
  82. 82.
    desJardins, M., Eaton, E., Wagstaff, K.L.: Learning user preferences for sets of objects. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 273–280. ACM, New York (2006)Google Scholar
  83. 83.
    Dias, L.C, Tsoukiàs, A.: On the constructive and other approaches in decision aiding. In: Hengeller Antunes, C.A., Figueira, J. (eds.) Proceedings of the 57th Meeting of the EURO MCDA Working Group, pp. 13–28. CCDRC, Coimbra (2004)Google Scholar
  84. 84.
    Diaye, M.A.: Variable interval orders. Math. Soc. Sci. 38, 21–33 (1999)CrossRefGoogle Scholar
  85. 85.
    Doherty, P., Driankov, D., Tsoukiàs, A.: Partial logics and partial preferences. In: Proceedings of the CEMIT 92 International Conference, Tokyo, pp. 525–528 (1992)Google Scholar
  86. 86.
    Doignon, J.P.: Thresholds representation of multiple semiorders. SIAM J. Algebraic Discret Methods 8, 77–84 (1987)CrossRefGoogle Scholar
  87. 87.
    Doignon, J.P.: Sur les représentations minimales des semiordres et des ordres d’intervalles. Math. Sci. Humaines 101, 49–59 (1988)Google Scholar
  88. 88.
    Doignon, J.P., Falmagne, J.: Well graded families of relations. Discret. Math. 173(1–3), 35–44 (1997)CrossRefGoogle Scholar
  89. 89.
    Doignon, J.P., Ducamp, A., Falmagne, J.C.: On realizable biorders and the biorder dimension of a relation. J. Math. Psychol. 28, 73–109 (1984)CrossRefGoogle Scholar
  90. 90.
    Doignon, J.P., Monjardet, B., Roubens, M., Vincke, P.: Biorder families, valued relations and preference modelling. J. Math. Psychol. 30, 435–480 (1986)CrossRefGoogle Scholar
  91. 91.
    Dombi, J.: A general class of fuzzy operators, the de morgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets Syst. 8(2), 149–163 (1982)CrossRefGoogle Scholar
  92. 92.
    Domshlak, C.: Modeling and reasoning about preferences with CP-nets. Ph.D. thesis, Ben-Gurion University (2002)Google Scholar
  93. 93.
    Domshlak, C., Brafman, R.I.: CP-nets - reasoning and consistency testing. In: Proceedings of the 8th International Conference on Knowledge Representation and Reasoning, KR’02, pp. 121–132. Morgan Kaufmann, San Francisco (2002)Google Scholar
  94. 94.
    Doyle, J.: Constructive belief and rational representation. Comput. Intell. 5, 1–11 (1989)CrossRefGoogle Scholar
  95. 95.
    Doyle, J.: Rationality and its roles in reasoning. In: Proceedings of the 8th National Conference on Artificial Intelligence, AAAI 90, pp. 1093–1100. MIT Press, Cambridge (1990)Google Scholar
  96. 96.
    Doyle, J.: Reasoned assumptions and rational psychology. Fundam. Inform. 20, 35–73 (1994)Google Scholar
  97. 97.
    Doyle, J., Wellman, M.P.: Modular utility representation for decision-theoretic planning. In: Proceeding of the 1st International Conference on Artificial Intelligence Planning Systems, pp. 236–242 (1992)Google Scholar
  98. 98.
    Dubarle, D.: Essai sur la généralisation naturelle de la logique usuelle. Math. Inf. Sci. Humaines 107, 17–73 (1989). 1963 Manuscript, Published PosthumouslyGoogle Scholar
  99. 99.
    Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9, 613–626 (1978)CrossRefGoogle Scholar
  100. 100.
    Dubois, D., Prade, H.: Fuzzy Sets System - Theory and Applications. Academic, New York (1980)Google Scholar
  101. 101.
    Dubois, D., Prade, H.: Ranking fuzzy numbers in the setting of possibility theory. Inf. Sci. 30, 183–224 (1983)CrossRefGoogle Scholar
  102. 102.
    Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)CrossRefGoogle Scholar
  103. 103.
    Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: a clarification. Ann. Math. Artif. Intell. 32, 35–66 (2001)CrossRefGoogle Scholar
  104. 104.
    Dushnik, B., Miller, E.W.: Partially ordered sets. Am. J. Math. 63, 600–610 (1941)CrossRefGoogle Scholar
  105. 105.
    Dutta, B., Sen, A.K.: Ranking opportunity sets and arrow impossibility theorems: correspondence results. J. Econ. Theory 71, 90–101 (1996)CrossRefGoogle Scholar
  106. 106.
    Fages, F., Ruet, P.: Combining explicit negation and negation by failure via belnap’s logic. Theor. Comput. Sci. 171, 61–75 (1997)CrossRefGoogle Scholar
  107. 107.
    Fechner, G.T.: Elemente der Psychophysik. Breitkof und Hartel, Leipzig (1860)Google Scholar
  108. 108.
    Fishburn, P.C.: Methods of estimating additive utilities. Manag. Sci. 13, 435–453 (1967)CrossRefGoogle Scholar
  109. 109.
    Fishburn, P.C.: Utility Theory for Decision Making. Wiley, New York (1970)Google Scholar
  110. 110.
    Fishburn, P.C.: Interval representations for interval orders and semiorders. J. Math. Psychol. 10, 91–105 (1973)CrossRefGoogle Scholar
  111. 111.
    Fishburn, P.C.: Nontransitive measurable utility. J. Math. Psychol. 26, 31–67 (1982)CrossRefGoogle Scholar
  112. 112.
    Fishburn, P.C.: Interval Orders and Interval Graphs. J. Wiley, New York (1985)Google Scholar
  113. 113.
    Fishburn, P.C.: Nontransitive additive conjoint measurement. J. Math. Psychol. 35, 1–40 (1991)CrossRefGoogle Scholar
  114. 114.
    Fishburn, P.C. Nontransitive preferences in decision theory. J. Risk Uncertain. 4, 113–134 (1991)CrossRefGoogle Scholar
  115. 115.
    Fishburn, P.C.: Signed orders and power set extensions. J. Econ. Theory 56, 1–19 (1992)CrossRefGoogle Scholar
  116. 116.
    Fishburn, P.C.: Generalisations of semiorders: a review note. J. Math. Psychol. 41, 357–366 (1997)CrossRefGoogle Scholar
  117. 117.
    Fishburn, P.C.: Preference structures and their numerical presentations. Theor. Comput. Sci. 217, 359–389 (1999)CrossRefGoogle Scholar
  118. 118.
    Fishburn, P.C., Monjardet, B.: Norbert wiener on the theory of measurement (1914, 1915, 1921). J. Math. Psychol. 36, 165–184 (1992)CrossRefGoogle Scholar
  119. 119.
    Fitting, M.C.: Bilattices and the semantics of logic programming. J. Log. Program. 11, 91–116 (1991)CrossRefGoogle Scholar
  120. 120.
    Fodor, J.C.: An axiomatic approach to fuzzy preference modelling. Fuzzy Sets Syst. 52, 47–52 (1992)CrossRefGoogle Scholar
  121. 121.
    Fodor, J.C.: Valued preference structures. Eur. J. Oper. Res. 79, 277–286 (1994)CrossRefGoogle Scholar
  122. 122.
    Fodor, J.C., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Boston (1994)CrossRefGoogle Scholar
  123. 123.
    Font, J.M., Moussavi, M.: Note on a six valued extension of three valued logics. J. Appl. Non-Classical Log. 3, 173–187 (1993)CrossRefGoogle Scholar
  124. 124.
    Fortemps, P., Słowiński, R.: A graded quadrivalent logic for ordinal preference modelling: loyola-like approach. Fuzzy Optim. Decis. Making 1, 93–111 (2002)CrossRefGoogle Scholar
  125. 125.
    Frank, M.: On the simultaneous associativity of f(x, y) and \(x + y - f(x,y)\). Aequationes Math. 19, 194–226 (1979)CrossRefGoogle Scholar
  126. 126.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69, 9–15 (1962)CrossRefGoogle Scholar
  127. 127.
    Gärdenfors, P.: Manipulation of social choice functions. J. Econ. Theory 13, 217–228 (1976)CrossRefGoogle Scholar
  128. 128.
    Geist, C., Endriss, U.: Automated search for impossibility theorems in social choice theory: ranking sets of objects. J. Artif. Intell. Res. 40, 143–174 (2011)Google Scholar
  129. 129.
    Georgescu-Roegen, N.: The pure theory of consumer’s behavior. Q. J. Econ. 50, 545–593 (1936)CrossRefGoogle Scholar
  130. 130.
    Goldsmith, J., Lang, J., Truszczynski, M., Wilson, N.: The computational complexity of dominance and consistency in cp-nets. In: IJCAI, pp. 144–149 (2005)Google Scholar
  131. 131.
    Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning about time: a graph theoretic approach. J. ACM 40, 1108–1133 (1993)CrossRefGoogle Scholar
  132. 132.
    Gonzales, C., Perny, P.: Gai networks for utility elicitation. In: KR, pp. 224–234 (2004)Google Scholar
  133. 133.
    Gougen, J.A.: The logic of inexact concepts. Synthese 19, 325–373 (1969)CrossRefGoogle Scholar
  134. 134.
    Gravel, N.: Can a ranking of opportunity sets attach an intrinsic importance to freedom of choice? Am. Econ. Rev. 84, 454–458 (1994)Google Scholar
  135. 135.
    Gravel, N.: Ranking opportunity sets on the basis of their freedom of choice and their ability to satisfy preferences: a difficulty. Soc. Choice Welf. 15, 371–382 (1998)CrossRefGoogle Scholar
  136. 136.
    Gravel, N.: What is freedom. In: Peil, J., Van Staveren, I. (eds.) Handbook of Economics and Ethics, pp. 166–174. Edward Edgar Publishing, London (2008)Google Scholar
  137. 137.
    Gravel, N., Laslier, J.-F., Trannoy, A.: Individual freedom of choice in a social setting. In: Laslier, J.-F., Fleurbaey, M., Gravel, N., Trannoy, A. (eds.) Freedom in Economics: New Perspectives in Normative Analysis, pp. 76–92. Routledge, London (1997)Google Scholar
  138. 138.
    Green, P.E., Tull, D.S., Albaum, G.: Research for Marketing Decisions, 2nd edn. Prentice Hall, Englewood Cliffs (1988)Google Scholar
  139. 139.
    Haddawy, P., Hanks S.: Representations for decision-theoretic planning: utility functions for deadline goals. In: Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR’92). Cambridge, pp. 71–82, 25-29 October 1992Google Scholar
  140. 140.
    Halldén, S.: On the Logic of Better. Library of Theoria, Lund (1957)Google Scholar
  141. 141.
    Halldin, C.: Preference and the cost of preferential choice. Theor. Decis. 21, 35–63 (1986)CrossRefGoogle Scholar
  142. 142.
    Halphen, E.: La notion de vraisemblance. Technical Report 4(1), Publication de l’I.S.U.P (1955)Google Scholar
  143. 143.
    Hand, D.J.: Discrimination and Classification. Wiley, New York (1981)Google Scholar
  144. 144.
    Hansen, E.: Global Optimization Using Interval Analysis. M. Dekker, New York (1992)Google Scholar
  145. 145.
    Hansson, B.: Choice structures and preference relations. Synthese 18, 443–458 (1966)CrossRefGoogle Scholar
  146. 146.
    Hansson, B.: Fundamental axioms for preference relations. Synthese 18, 423–442 (1966)CrossRefGoogle Scholar
  147. 147.
    Hayek, F.A.: The Constitution of Liberty. University of Chicago Press, Chicago (1960)Google Scholar
  148. 148.
    Hodson, F.R., Kendall, D.G., Tautu, P.: Mathematics in the Archaeological and Historical Sciences. Edinburgh University Press, Edinburgh (1971)Google Scholar
  149. 149.
    Houthakker, H.S.: The logic of preference and choice. In: Tymieniecka, A. (ed.) Contributions to Logic and Methodology in Honour of J.M. Bochenski, pp. 193–207. North Holland, Amsterdam (1965)Google Scholar
  150. 150.
    Huber, O.: An axiomatic system for multidimensional preferences. Theor. Decis. 5, 161–184 (1974)CrossRefGoogle Scholar
  151. 151.
    Huber, O.: Non transitive multidimensional preferences. Theor. Decis. 10, 147–165 (1979)CrossRefGoogle Scholar
  152. 152.
    Hudry, O., Woirgard, F.: Ordres médians et ordres de Slater des tournois. Math. Inf. Sci. Humaines 133, 23–56 (1996)Google Scholar
  153. 153.
    Jaffray, J.-Y., Wakker, P.P.: Decision making with belief functions: compatibility and incompatibility with the sure-thing principle. J. Risk Uncertain. 7, 255–271 (1993)CrossRefGoogle Scholar
  154. 154.
    Janowitz, M., LaPointe, F.-J., McMorris, F.R., Mirkin, B., Roberts, F.S. (eds.): Bioconsensus. DIMACS Series, vol. 61. American Mathematical Society, Providence (2003)Google Scholar
  155. 155.
    Jeffrey, R.C.: The Logic of Decision. McGraw Hill, New York (1965)Google Scholar
  156. 156.
    Jones, P., Sugden, R.: Evaluating choice. Int. Rev. Law Econ. 2, 47–65 (1982)CrossRefGoogle Scholar
  157. 157.
    Kacprzyk, J., Roubens, M.: Non Conventional Preference Relations in Decision Making. LNMES, vol. 301. Springer, Berlin (1988)Google Scholar
  158. 158.
    Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979)CrossRefGoogle Scholar
  159. 159.
    Kahneman, D., Slovic, P., Tversky, A.: Judgement Under Uncertainty: Heuristics and Biases. Cambridge University Press, Cambridge (1981)Google Scholar
  160. 160.
    Kaluzhny, Y., Muravitsky, A.Y.: A knowledge representation based on the Belnap’s four valued logic. J. Appl. Non-Classical Log. 3, 189–203 (1993)CrossRefGoogle Scholar
  161. 161.
    Kannai, Y., Peleg, B.: A note on the extension of an order on a set to the power set. J. Econ. Theory 32, 172–175 (1984)CrossRefGoogle Scholar
  162. 162.
    Karp, R.M.: Mapping the genome: some combinatorial problems arising in molecular biology. In: Proceeding 25th STOC, pp. 278–285. ACM Press, New York (1993)Google Scholar
  163. 163.
    Kaufmann, A.: Theory of Fuzzy Sets. Academic, New York (1975)Google Scholar
  164. 164.
    Kaufmann, A., Gupta, M.M.: Introduction to Fuzzy Arithmetic-Theory and Application. Van Nostrand Reinhold, New York (1985)Google Scholar
  165. 165.
    Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. Wiley, New York (1976)Google Scholar
  166. 166.
    Kilgour, D.M., Brams, S.J., Sanver, M.R.: How to elect a representative committee using approval balloting. In: Simeone, B., Pukelsheim, F. (eds.) Mathematics and Democracy, pp. 83–95. Springer, Berlin (2006)CrossRefGoogle Scholar
  167. 167.
    Klemisch-Ahlert, M.: Freedom of choice: a comparison of different rankings of opportunity sets. Soc. Choice Welf. 10, 189–207 (1993)CrossRefGoogle Scholar
  168. 168.
    Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement, Vol. 1: Additive and Polynomial Representations. Academic, New York (1971)Google Scholar
  169. 169.
    Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement, Vol. 2: Geometrical, Threshold and Probabilistic Representations. Academic, New York (1989)Google Scholar
  170. 170.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44, 167–207 (1990)CrossRefGoogle Scholar
  171. 171.
    Kreps, D.M.: A representation theorem for preference for flexibility. Econometrica: Journal of the Econometric Society, pp. 565–577 (1979)Google Scholar
  172. 172.
    Lafage, C., Lang, J.: Logical representation of preferences for group decision making. In: Proceedings of the 7th International Conference on Knowledge Representation and Reasoning, KR’2000, pp. 457–468 (2000)Google Scholar
  173. 173.
    Lafage, C., Lang, J.: Propositional distances and preference representation. In: Proceedings of the ECSQARU’2001, pp. 48–59 (2001)Google Scholar
  174. 174.
    Lang, J.: Logical representation of preferences. In: Bouyssou, D., Dubois, D., Pirlot, M., Prade, H. (eds.) Decision Making Process, pp. 321–355. Wiley, New York (2006)Google Scholar
  175. 175.
    Lang, J., Xia, L.: Sequential composition of voting rules in multi-issue domains. Math. Soc. Sci. 57(3), 304–324 (2009)CrossRefGoogle Scholar
  176. 176.
    Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart & Winston, New York (1976)Google Scholar
  177. 177.
    Lehmann, D.: Nonmonotonic logics and semantics. J. Log. Comput. 11, 229–256 (2001)CrossRefGoogle Scholar
  178. 178.
    Li, E., Lee, R.J.: Comparison of fuzzy numbers based on the probabiliy measure of fuzzy events. Comput. Math. Appl. 15, 887–896 (1988)CrossRefGoogle Scholar
  179. 179.
    Luce, R.D.: Semiorders and a theory of utility discrimination. Econometrica 24, 178–191 (1956)CrossRefGoogle Scholar
  180. 180.
    Markowitz, H.M.: Portfolio Selection: Efficient Diversification of Investments. Yale University Press, New Haven (1968)Google Scholar
  181. 181.
    Massaglia, R., Ostanello, A.: N-tomic: a support system for multicriteria segmentation problems. In: Korhonen, P., Lewandowski, A., Wallenius, J. (eds.) Multiple Criteria Decision Support. LNEMS, vol. 356, pp. 167–174. Springer, Berlin (1991)Google Scholar
  182. 182.
    May, K.O.: Intransitivity, utility and the aggregation of preference patterns. Econometrica 22, 1–13 (1954)CrossRefGoogle Scholar
  183. 183.
    Mendelson, E.: Introduction to Mathematical Logic. Van Nostrand, Princeton (1964)Google Scholar
  184. 184.
    Mitas, J.: Minimal representation of semiorders with intervals of same length. In: Bouchitté, V., Morvan, M. (eds.) Orders, Algorithms and Applications. LNCS, vol. 831, pp. 162–175. Springer, Berlin (1994)CrossRefGoogle Scholar
  185. 185.
    Mizumoto, M., Tanaka, K.: The four operations of arithmetic on fuzzy numbers. Syst. Comput. Controls 7(5), 73–81 (1976)Google Scholar
  186. 186.
    Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type 2. Inf. Control 31, 312–340 (1976)CrossRefGoogle Scholar
  187. 187.
    Monjardet, B.: Axiomatiques et propriétés des quasi ordres. Math. Sci. Humaines 63, 51–82 (1978)Google Scholar
  188. 188.
    Monjardet, B.: Relations à éloignement minimum des relations binaires: note bibliographique. Math. Inf. Sci. Humaines 67, 115–122 (1979)Google Scholar
  189. 189.
    Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)Google Scholar
  190. 190.
    Moreno, J.A.: A transitivity approach to preference relational systems. Eur. J. Oper. Res. 60(1) 68–75 (1992)CrossRefGoogle Scholar
  191. 191.
    Moretti, S., Patrone, F.: Transversality of the shapley value. Top 16(1), 1–41 (2008)CrossRefGoogle Scholar
  192. 192.
    Moretti, S., Tsoukiàs, A.: Ranking sets of possibly interacting objects using Shapley extensions. In: Proceedings of the 13th International Conference on Principles of Knowledge Representation and Reasoning (KR 2012), pp. 199–209. AAAI Publications (2012)Google Scholar
  193. 193.
    Moscarola, J., Roy, B.: Procédure automatique d’examen de dossiers fondée sur une segmentation trichotomique en présence de critères multiples. RAIRO Rech. Opér. 11(2), 145–173 (1977)Google Scholar
  194. 194.
    Mullen, J.D.: Does the logic of preference rest on a mistake? Metaphilosophy 10, 247–255 (1979)CrossRefGoogle Scholar
  195. 195.
    Nagaraja, R.: Current approaches to long-range physical mapping of the human genome. In: Anand, R. (ed.) Techniques for the Analysis of Complex Genomes, pp. 1–18. Academic Publishers, New York (1992)Google Scholar
  196. 196.
    Nahmias, S.: Fuzzy variables. Fuzzy Sets Syst. 1, 97–110 (1976)CrossRefGoogle Scholar
  197. 197.
    Nakamura, Y.: Real interval representations. J. Math. Psychol. 46, 140–177 (2002)CrossRefGoogle Scholar
  198. 198.
    Ngo The, A.: Structures de préférence non conventionnelles en aide à la décision. Ph.D. thesis, Université Paris Dauphine, Paris (2002)Google Scholar
  199. 199.
    Ngo The, A., Tsoukiàs, A.: Numerical representation of PQI interval orders. Discret. Appl. Math. 147, 125–146 (2005)CrossRefGoogle Scholar
  200. 200.
    Ngo The A., Tsoukiàs, A., Vincke, P..: A polynomial time algorithm to detect PQI interval orders. Int. Trans. Oper. Res. 7, 609–623 (2000)CrossRefGoogle Scholar
  201. 201.
    Nguyen, T.H., Kreinovitch, V., Nesterov, V., Nakamura, M.: On hardware support for interval computations and for soft computing: theorems. IEEE Trans. Fuzzy Syst. 5, 108–127 (1978)CrossRefGoogle Scholar
  202. 202.
    Nisan, N.: Bidding and allocation in combinatorial auctions. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, pp. 1–12. ACM, New York (2000)Google Scholar
  203. 203.
    Nitzan, S.I., Pattanaik, P.K.: Median-based extensions of an ordering over a set to the power set: An axiomatic characterization* 1. J. Econ. Theory 34(2), 252–261 (1984)CrossRefGoogle Scholar
  204. 204.
    Nute, D.: Defeasible Deontic Logic. Kluwer Academic, Dordrecht (1997)CrossRefGoogle Scholar
  205. 205.
    Oloriz, E., Candeal, J.C., Induráin, E.: Representability of interval orders. J. Econ. Theory 78, 219–227 (1998)CrossRefGoogle Scholar
  206. 206.
    Orlovsky, S.A.: Decision making with a fuzzy preference relation. Fuzzy Sets Syst. 1, 155–167 (1978)CrossRefGoogle Scholar
  207. 207.
    Ovchinnikov, S.N., Roubens, M.: On strict preference relations. Fuzzy Sets Syst. 43, 319–326 (1991)CrossRefGoogle Scholar
  208. 208.
    Öztürk, M.: Logical and mathematical structures for interval comparisons. Ph.D. thesis, Université Paris Dauphine, Paris (2005)Google Scholar
  209. 209.
    Öztürk, M., Marquis, P.: Representing interval orders by weighted bases: some complexity results. Math. Soc. Sci. 57, 367–388 (2009)CrossRefGoogle Scholar
  210. 210.
    Öztürk, M., Tsoukiàs, A.: Modelling uncertain positive and negative reasons in decision aiding. Decis. Support. Syst. 43(4), 1512–1526 (2007)CrossRefGoogle Scholar
  211. 211.
    Öztürk, M., Tsoukiàs, A.: Bipolar preference modelling and aggregation in decision support. Int. J. Intell. Syst. 23, 970–984 (2008)CrossRefGoogle Scholar
  212. 212.
    Öztürk, M., Pirlot, M., Tsoukiàs, A.: Representing preferences using intervals. Artif. Intell. 175(7–8), 1194–1222 (2011)CrossRefGoogle Scholar
  213. 213.
    Pattanaik, P.K., Peleg, B.: An axiomatic characterization of the lexicographic maximin extension of an ordering over a set to the power set. Soc. Choice Welf. 1(2), 113–122 (1984)CrossRefGoogle Scholar
  214. 214.
    Pattanaik, P.K., Xu, Y.: On ranking opportunity sets in terms of freedom of choice. Rech. Écon. Louvain 56(3–4), 383–390 (1990)Google Scholar
  215. 215.
    Pattanaik, P.K., Xu, Y.: On diversity and freedom of choice. Math. Soc. Sci. 40(2), 123–130 (2000)CrossRefGoogle Scholar
  216. 216.
    Pawlak, Z., Słowiński, R.: Decision analysis using rough sets. Int. Trans. Oper. Res. 1, 107–114 (1994)CrossRefGoogle Scholar
  217. 217.
    Pe’er, I., Shamir, R.: Satisfiability problems on intervals and unit intervals. Theor. Comput. Sci. 175, 349–372 (1997)CrossRefGoogle Scholar
  218. 218.
    Peirce, C.S.: On the algebra of logic. Am. J. Math. 3, 15–57 (1880)CrossRefGoogle Scholar
  219. 219.
    Peirce, C.S.: On the logic of number. Am. J. Math. 4, 85–95 (1881)CrossRefGoogle Scholar
  220. 220.
    Peirce, C.S.: A Theory of Probable Inference, pp. 187–203. John Hopkins University, Baltimore (1883)Google Scholar
  221. 221.
    Perny, P.: Multicriteria filtering methods based on concordance/non-discordance principles. Ann. Oper. Res. 80, 137–167 (1998)CrossRefGoogle Scholar
  222. 222.
    Perny, P., Roubens, M.: Fuzzy preference modelling. In: Słowiński, R. (ed.) Fuzzy Sets in Decision Analysis, Operations Research and Statistics, pp. 3–30. Kluwer Academic, Dordrecht (1998)CrossRefGoogle Scholar
  223. 223.
    Perny, P., Roy, B.: The use of fuzzy outranking relations in preference modelling. Fuzzy Sets Syst. 49, 33–53 (1992)CrossRefGoogle Scholar
  224. 224.
    Perny, P., Spanjaard, O.: Preference-based search in state space graphs. In: Proceedings of the AAAI’2002 Conference, Edmonton, pp. 751–756 (2002)Google Scholar
  225. 225.
    Perny, P., Spanjaard, O.: A preference-based approach to spanning trees and shortest paths problems. Eur. J. Oper. Res. 162(3), 584–601 (2005)CrossRefGoogle Scholar
  226. 226.
    Perny, P., Tsoukiàs, A.: On the continuous extension of a four valued logic for preference modelling. In: Proceedings of the IPMU 1998 Conference, Paris, pp. 302–309 (1998)Google Scholar
  227. 227.
    Pinkas, G.: Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge. Artif. Intell. 77, 203–247 (1995)CrossRefGoogle Scholar
  228. 228.
    Pirlot, M.: Minimal representation of a semiorder. Theor. Decis. 28, 109–141 (1990)CrossRefGoogle Scholar
  229. 229.
    Pirlot, M., Vincke, P.: Semi Orders. Kluwer Academic, Dordrecht (1997)Google Scholar
  230. 230.
    Poincaré, H.: La Valeur de la Science. Flammarion, Paris (1905)Google Scholar
  231. 231.
    Puppe, C.: An axiomatic approach to preference for freedom of choice. J. Econ. Theory 68(1), 174–199 (1996)CrossRefGoogle Scholar
  232. 232.
    Puppe, C.: Individual freedom and social choice. In: Fleurbaey, M., Laslier, J.-F., Gravel, N., Trannoy, A. (eds.) Freedom in Economics: New Perspectives in Normative Analysis, pp. 49–68. Routledge, London (1997)Google Scholar
  233. 233.
    Rescher, N.: Semantic foundations for the logic of preference. In: Rescher, N. (ed.) The Logic of Decision and Action, pp. 37–62. University of Pittsburgh, Pittsburgh (1967)Google Scholar
  234. 234.
    Rescher, N.: Introduction to Value Theory. Prentice Hall, Englewood Cliffs (1969)Google Scholar
  235. 235.
    Roberts, F.S.: Measurement Theory, with Applications to Decision Making, Utility and the Social Sciences. Addison-Wesley, Boston (1979)Google Scholar
  236. 236.
    Rosenbaum, E.F.: On measuring freedom. J. Theor. Polit. 12(2), 205 (2000)CrossRefGoogle Scholar
  237. 237.
    Roth, A.E.: The college admissions problem is not equivalent to the marriage problem. J. Econ. Theory 36(2), 277–288 (1985)CrossRefGoogle Scholar
  238. 238.
    Roubens, M., Vincke, P.: On families of semiorders and interval orders imbedded in a valued structure of preference: a survey. Inf. Sci. 34, 187–198 (1984)CrossRefGoogle Scholar
  239. 239.
    Roubens, M., Vincke, P.: Preference Modelling. LNEMS, vol. 250. Springer, Berlin (1985)Google Scholar
  240. 240.
    Roubens, M., Vincke, P.: Fuzzy possibility graphs and their application to ranking fuzzy numbers. In: Kacprzyk, J., Roubens, M. (eds.) Non-conventional Preference Relations in Decision Making. LNEMS, vol. 301, pp. 119–128. Springer, Berlin (1988)CrossRefGoogle Scholar
  241. 241.
    Roy, B.: Partial preference analysis and decision aid: the fuzzy outranking relation concept. In: Bell, D.E., Keeney, R.L., Raiffa, H. (eds.) Conflicting Objectives in Decisions, pp. 40–75. Wiley, New York (1977)Google Scholar
  242. 242.
    Roy, B.: Multicriteria Methodology for Decision Aiding. Kluwer Academic, Dordrecht (1996). First edition in French. Economica, Paris (1985)Google Scholar
  243. 243.
    Roy, B.: Main sources of inaccurate determination, uncertainty and imprecision in decision models. In: Munier, B., Shakun, M. (eds.) Compromise, Negotiation and Group Decision, pp. 43–67. Reidel, Dordrecht (1988)CrossRefGoogle Scholar
  244. 244.
    Roy, B.: The outranking approach and the foundations of ELECTRE methods. Theor. Decis. 31, 49–73 (1991)CrossRefGoogle Scholar
  245. 245.
    Roy, B., Bouyssou, D.: Aide Multicritère à la Décision: Méthodes et Cas. Economica, Paris (1993)Google Scholar
  246. 246.
    Roy, B., Vincke, P.: Relational systems of preference with one or more pseudo-criteria: some new concepts and results. Manag. Sci. 30, 1323–1335 (1984)CrossRefGoogle Scholar
  247. 247.
    Roy, B., Vincke, P.: Pseudo-orders: definition, properties and numerical representation. Math. Soc. Sci. 14, 263–274 (1987)CrossRefGoogle Scholar
  248. 248.
    Saint-Cyr, D., Dupin, F., Lang, Jérôme, Schiex, Thomas.: Penalty logic and its link with Dempster-Shafer theory. Proceedings of the Tenth international conference on Uncertainty in artificial intelligence, pp. 204–211. Morgan Kaufmann San Francisco (1994)Google Scholar
  249. 249.
    Salo, A., Keisler, J., Morton, A.: Portfolio Management. Springer, Berlin (2011)Google Scholar
  250. 250.
    Samuelson, P.A.: General proof that diversification pays. J. Financ. Quant. Anal. 2(1), 1–13 (1967)CrossRefGoogle Scholar
  251. 251.
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier Science, New York (1983)Google Scholar
  252. 252.
    Scott, D.: Some ordered sets in computer science. In: Rival, I. (ed.) Ordered Sets, pp. 677–718. D. Reidel, Dordrecht (1982)CrossRefGoogle Scholar
  253. 253.
    Scott, D., Suppes, P.: Foundational aspects of theories of measurement. J. Symb. Log. 23, 113–128 (1958)CrossRefGoogle Scholar
  254. 254.
    Sen, A.K.: Social choice theory. In: Arrow, K.J., Intriligator, M.D. (eds.) Handbook of Mathematical Economics, vol. 3, pp. 1073–1181. North-Holland, Amsterdam (1986)Google Scholar
  255. 255.
    Shapley, L.: A value for n-person games. In: Kuhn, H., Tucker, A.W. (eds.) Contributions to the Theory of Games II, pp. 307–317. Princeton University Press, Princeton (1953)Google Scholar
  256. 256.
    Shoham, Y.: Nonmonotonic logic: meaning and utility. In: Proceedings of the 10th International Joint Conference in Artificial Intelligence, IJCAI87, pp. 388–393. Morgan Kaufmann, San Francisco (1987)Google Scholar
  257. 257.
    Slater, P.: Inconsistencies in a schedule of paired comparisons. Biometrika 48, 303–312 (1961)CrossRefGoogle Scholar
  258. 258.
    Słowiński, R.: Fuzzy Sets in Decision Analysis, Operations Research and Statistics. Kluwer Academic, Dordrecht (1998)CrossRefGoogle Scholar
  259. 259.
    Subiza, B.: Numerical representation of acyclic preferences. J. Math. Psychol. 38, 467–476 (1994)CrossRefGoogle Scholar
  260. 260.
    Tanguiane, A.S.: Aggregation and Representation of Preferences. Springer, Berlin (1991)CrossRefGoogle Scholar
  261. 261.
    Tarski, A.: Contributions to the theory of models i, ii. Indag. Math. 16, 572–588 (1954)CrossRefGoogle Scholar
  262. 262.
    Tarski, A.: Contributions to the theory of models iii. Indag. Math. 17, 56–64 (1955)CrossRefGoogle Scholar
  263. 263.
    Tatman, J.A., Shachter, R.D.: Dynamic programming and influence diagrams. IEEE Trans. Syst. Man Cybern. 20(2), 365–379 (1990)CrossRefGoogle Scholar
  264. 264.
    Thomason, R., Horty, J.: Logics for inheritance theory. In: Reinfrank, M., de Kleer, J., Ginsberg, M.L., Sandewall, E. (eds.) Non-monotonic Reasoning. Lecture Notes in Artificial Intelligence, vol. 346, pp. 220–237. Springer, Berlin (1987)CrossRefGoogle Scholar
  265. 265.
    Trotter, W.T.: Combinatorics and Partially Ordered Sets. John Hopkins University Press, Baltimore (1992)Google Scholar
  266. 266.
    Tsoukiàs, A.: Preference modelling as a reasoning process: a new way to face uncertainty in multiple criteria decision support systems. Eur. J. Oper. Res. 55, 309–318 (1991)CrossRefGoogle Scholar
  267. 267.
    Tsoukiàs, A.: Sur la généralisation des concepts de concordance et discordance en aide multicritr̀e à la décision. In: Mémoire présenté pour l’obtention de l’habilitation à diriger des recherches, Université Paris Dauphine, Paris (1997). Appeared also as Document du LAMSADE no. 117Google Scholar
  268. 268.
    Tsoukiàs, A.: A first-order, four valued, weakly paraconsistent logic and its relation to rough sets semantics. Found. Comput. Decis. Sci. 12, 85–108 (2002)Google Scholar
  269. 269.
    Tsoukiàs, A., Vincke, P.: A survey on non conventional preference modelling. Ricerca Operativa 61, 5–49 (1992)Google Scholar
  270. 270.
    Tsoukiàs A., Vincke, P.: A new axiomatic foundation of partial comparability. Theor. Decis. 39, 79–114 (1995)CrossRefGoogle Scholar
  271. 271.
    Tsoukiàs, A., Vincke, P.: Extended preference structures in MCDA. In: Climaco, J. (ed.) Multicriteria Analysis, pp. 37–50. Springer, Berlin (1997)CrossRefGoogle Scholar
  272. 272.
    Tsoukiàs, A., Vincke, P.: Double threshold orders: a new axiomatization. J. Multi-Criteria Decis. Anal. 7, 285–301 (1998)CrossRefGoogle Scholar
  273. 273.
    Tsoukiàs, A., Vincke, P.: A characterization of PQI interval orders. Discret. Appl. Math. 127, 387–397 (2003)CrossRefGoogle Scholar
  274. 274.
    Tsoukiàs, A., Perny, P., Vincke, P.: From concordance/discordance to the modelling of positive and negative reasons in decision aiding. In: Bouyssou, D., Jacquet-Lagrèze, E., Perny, P., Słowiński, R., Vanderpooten, D., Vincke, P. (eds.) Aiding Decisions with Multiple Criteria: Essays in Honour of Bernard Roy, pp. 147–174. Kluwer Academic, Dordrecht (2002)CrossRefGoogle Scholar
  275. 275.
    Turunen, E., Öztürk, M., Tsoukiàs, A.: Paraconsistent semantics for pavelka style fuzzy-sentential logic. Fuzzy Sets Syst. 161, 1926–1940 (2010)CrossRefGoogle Scholar
  276. 276.
    Tversky, A.: Intransitivity of preferences. Psychol. Rev. 76, 31–48 (1969)CrossRefGoogle Scholar
  277. 277.
    Uckelman, J.: More than the sum of its parts: compact preference representation over combinatorial domains. Ph.D. thesis, University of Amsterdam (2009). ILLC Publication DS-2009-12.Google Scholar
  278. 278.
    Valadares Tavares, L.: Generalized transitivity and preferences modelling: the concept of hyper-order. Eur. J. Oper. Res. 36, 14–26 (1988)CrossRefGoogle Scholar
  279. 279.
    van Dalen, D.: Logic and Structure. Springer, Berlin (1983)CrossRefGoogle Scholar
  280. 280.
    Van De Walle, B., De Baets, B., Kerre, E.: Recent advances in fuzzy preference modelling. In: Ruan, D., D’hondt, P., Govaerts, P., Kerre, E.E. (eds.) Intelligent Systems and Soft Computing for Nuclear Science and Industry pp. 98–104. World Scientific, Publishing, Singapore Singapore, (1996)Google Scholar
  281. 281.
    Van De Walle, B., De Baets, B., Kerre, E.: Charaterizable fuzzy preference structures. Ann. Oper. Res. 80, 105–136 (1998)CrossRefGoogle Scholar
  282. 282.
    Van Hees, M.: On the analysis of negative freedom. Theor. Decis. 45(2), 175–197 (1998)CrossRefGoogle Scholar
  283. 283.
    Vincke, P.: P,Q,I preference structures. In: Kacprzyk, J., Roubens, M. (eds.) Non conventional Preference Relations in Decision Making. LNEMS, vol. 301, pp. 72–81. Springer, Berlin (1988)CrossRefGoogle Scholar
  284. 284.
    Vincke, P.: Multicriteria Decision-Aid. Wiley, New York (1992)Google Scholar
  285. 285.
    Vincke, P.: Preferences and numbers. In: Colorni, A., Paruccini, M., Roy, B. (eds.) A-MCD-A - Aide Multi Critère à la Décision: Multiple Criteria Decision Aiding, pp. 343–354. Joint Research Center, The European Commission, Luxembourg (2001)Google Scholar
  286. 286.
    Vind, K.: Independent preferences. J. Math. Econ. 20, 119–135 (1991)CrossRefGoogle Scholar
  287. 287.
    von Winterfeldt, D., Edwards, W.: Decision Analysis and Behavioral Research. Cambridge University Press, Cambridge (1986)Google Scholar
  288. 288.
    von Wright, G.: The Logic of Preference. Edinburgh University Press, Edinburgh (1963)Google Scholar
  289. 289.
    von Wright, G.: The logic of preference reconsidered. Theor. Decis. 3, 140–169 (1972)CrossRefGoogle Scholar
  290. 290.
    Weber, S.: A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms. Fuzzy Sets Syst. 11(2), 115–134 (1983)CrossRefGoogle Scholar
  291. 291.
    Widmeyer, G.R.: Logic modeling with partially ordered preferences. Decis. Support Syst. 4, 87–95 (1988)CrossRefGoogle Scholar
  292. 292.
    Widmeyer, G.R.: Reasoning with preferences and values. Decis. Support Syst. 6, 183–191 (1990)CrossRefGoogle Scholar
  293. 293.
    Wilson, N.: Extending CP-nets with stronger conditional preference statements. In: Proceedings of the 19th National Conference on Artificial Intelligence (AAAI-04), San Jose. AAAI Press, San Jose (2004)Google Scholar
  294. 294.
    Yager, R.R.: On the general class of fuzzy connectives. Fuzzy Sets Syst. 4(3), 235–242 (1980)CrossRefGoogle Scholar
  295. 295.
    Yager, R.R.: A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 24, 143–161 (1981)CrossRefGoogle Scholar
  296. 296.
    Yu, Y.D.: Triangular norms and tnf-sigma-algebras. Fuzzy Sets Syst. 16(3), 251–264 (1985)CrossRefGoogle Scholar
  297. 297.
    Yu, W.: Aide multicritère à la décision dans le cadre de la problématique du tri: méthodes et applications. Ph.D. thesis, LAMSADE, Université Paris Dauphine, Paris (1992)Google Scholar
  298. 298.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  299. 299.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 1, 119–249 (1975)Google Scholar
  300. 300.
    Zhai, C.X., Cohen, W.W., Lafferty, J.: Beyond independent relevance: methods and evaluation metrics for subtopic retrieval. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 10–17. ACM, New York (2003)Google Scholar
  301. 301.
    Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Kluwer Academic, Dordrecht (1985)CrossRefGoogle Scholar
  302. 302.
    Zopounidis, C.: Multicriteria decision aid in financial management. Eur. J. Oper. Res. 119(2), 404–415 (1999)CrossRefGoogle Scholar
  303. 303.
    Zopounidis, C., Doumpos, M.: Multicriteria classification and sorting methods: a literature review. Eur. J. Oper. Res. 138, 229–246 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Stefano Moretti
    • 1
    Email author
  • Meltem Öztürk
    • 1
  • Alexis Tsoukiàs
    • 1
  1. 1.LAMSADE-CNRSUniversité Paris DauphineParis Cedex 16France

Personalised recommendations