Advertisement

Neurovascular Interactions in the Neurologically Compromised Neonatal Brain

  • H. Singh
  • R. Cooper
  • C. W. Lee
  • L. Dempsey
  • S. Brigadoi
  • A. Edwards
  • D. Airantzis
  • N. Everdell
  • A. Michell
  • D. Holder
  • T. Austin
  • J. Hebden
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 876)

Abstract

Neurological brain injuries such as hypoxic ischaemic encephalopathy (HIE) and associated conditions such as seizures have been associated with poor developmental outcome in neonates. Our limited knowledge of the neurological and cerebrovascular processes underlying seizures limits their diagnosis and timely treatment. Diffuse optical tomography (DOT) provides haemodynamic information in the form of changes in concentration of de/oxygenated haemoglobin, which can improve our understanding of seizures and the relationship between neural and vascular processes. Using simultaneous EEG-DOT, we observed distinct haemodynamic changes which are temporally correlated with electrographic seizures. Here, we present DOT-EEG data from two neonates clinically diagnosed as HIE. Our results highlight the wealth of mutually-informative data that can be obtained using DOT-EEG techniques to understand neurovascular coupling in HIE neonates.

Keywords

Neurovascular coupling Diffuse optical tomography Neonatal seizures Burst suppression Hypoxic–ischaemic encephalopathy 

Notes

Acknowledgments

The authors are thankful to the parents and staff on the Neonatal Intensive Care Unit at the Rosie Hospital, Cambridge, UK; funders Action Medical Research (AMR-1945) and EPSRC (EP/J021318/1).

References

  1. 1.
    Back S (2014) Cerebral white and gray matter injury in newborns: new insights into pathophysiology and management. Clin Perinatol 41:1–24. doi: 10.1016/j.clp.2013.11.001 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Glass HC, Kan J, Bonifacio SL, Ferriero DM (2012) Neonatal seizures: treatment practices among term and preterm infants. Pediatr Neurol 46:111–115. doi: 10.1016/j.pediatrneurol.2011.11.006 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cilio MR (2009) EEG and the newborn. J Pediatr Neurol 7:25–43. doi: 10.3233/JPN-2009-0272 Google Scholar
  4. 4.
    Shellhaas R, Barks A (2012) Impact of amplitude-integrated electroencephalograms on clinical care for neonates with seizures. Pediatr Neurol 46:32–35. doi: 10.1016/j.pediatrneurol.2011.11.004 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Van Rooij LGM, Hellström-Westas L, de Vries LS (2013) Treatment of neonatal seizures. Semin Fetal Neonatal Med 18:209–215. doi: 10.1016/j.siny.2013.01.001 CrossRefPubMedGoogle Scholar
  6. 6.
    Shah DK, Boylan GB, Rennie JM (2012) Monitoring of seizures in the newborn. Arch Dis Child Fetal Neonatal Ed 97:F65–F69. doi: 10.1136/adc.2009.169508 CrossRefPubMedGoogle Scholar
  7. 7.
    Cooper RJ, Hebden JC, O’Reilly H et al (2011) Transient haemodynamic events in neurologically compromised infants: a simultaneous EEG and diffuse optical imaging study. Neuroimage 55:1610–1616. doi: 10.1016/j.neuroimage.2011.01.022 CrossRefPubMedGoogle Scholar
  8. 8.
    Ching S, Purdon PL, Vijayan S et al (2012) A neurophysiological-metabolic model for burst suppression. Proc Natl Acad Sci U S A 109:3095–3100. doi: 10.1073/pnas.1121461109 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Leithner C, Royl G (2014) The oxygen paradox of neurovascular coupling. J Cereb Blood Flow Metab 34:19–29. doi: 10.1038/jcbfm.2013.181 CrossRefPubMedGoogle Scholar
  10. 10.
    Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:156869. doi: 10.1155/2011/156869 CrossRefPubMedGoogle Scholar
  11. 11.
    Huppert TJ, Diamond SG, Franceschini MA, Boas DA (2009) HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt 48:D280–D298CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cooper RJ, Selb J, Gagnon L et al (2012) A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Front Neurosci 6:147. doi: 10.3389/fnins.2012.00147 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Scholkmann F, Spichtig S, Muehlemann T, Wolf M (2010) How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiol Meas 31:649–662. doi: 10.1088/0967-3334/31/5/004 CrossRefPubMedGoogle Scholar
  14. 14.
    Scholkmann F, Wolf M (2013) General equation for the differential pathlength factor of the frontal human head depending on wavelength and age. J Biomed Opt 18:105004. doi: 10.1117/1.JBO.18.10.105004 CrossRefPubMedGoogle Scholar
  15. 15.
    Brigadoi S, Aljabar P, Kuklisova-Murgasova M et al (2014) A 4D neonatal head model for diffuse optical imaging of pre-term to term infants. Neuroimage. doi: 10.1016/j.neuroimage.2014.06.028 PubMedCentralGoogle Scholar
  16. 16.
    Fang Q, Boas D (2009) Tetrahedral mesh generation from volumetric binary and gray-scale images. In: Proceedings of IEEE International Symposium Biomedical Imaging ISBI’09, Boston, pp 1142–1145Google Scholar
  17. 17.
    Schweiger M, Arridge S (2014) The Toast++ software suite for forward and inverse modeling in optical tomography. J Biomed Opt 19:40801CrossRefGoogle Scholar
  18. 18.
    Roche-Labarbe N, Fenoglio A, Radhakrishnan H et al (2014) Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates. Neuroimage 85(Part 1):279–286. doi: 10.1016/j.neuroimage.2013.01.035 CrossRefPubMedGoogle Scholar
  19. 19.
    Gibson AP, Austin T, Everdell NL et al (2006) Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate. Neuroimage 30:521–528CrossRefPubMedGoogle Scholar
  20. 20.
    Liao SM, Gregg NM, White BR et al (2010) Neonatal hemodynamic response to visual cortex activity: high-density near-infrared spectroscopy study. J Biomed Opt 15:026010–026019CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Obrig H, Wenzel R, Kohl M et al (2000) Near-infrared spectroscopy: does it function in functional activation studies of the adult brain? Int J Psychophysiol 35:125–142. doi: 10.1016/S0167-8760(99)00048-3 CrossRefPubMedGoogle Scholar
  22. 22.
    Lloyd-Fox S, Blasi A, Elwell CE (2010) Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci Biobehav Rev 34:269–284. doi: 10.1016/j.neubiorev.2009.07.008 CrossRefPubMedGoogle Scholar
  23. 23.
    Liu X, Zhu X-H, Zhang Y, Chen W (2011) Neural origin of spontaneous hemodynamic fluctuations in rats under burst-suppression anesthesia condition. Cereb Cortex 21:374–384. doi: 10.1093/cercor/bhq105 CrossRefPubMedGoogle Scholar
  24. 24.
    Friston K (2008) Neurophysiology: the brain at work. Curr Biol 18:R418–R420. doi: 10.1016/j.cub.2008.03.042 CrossRefPubMedGoogle Scholar
  25. 25.
    Rosa MJ, Kilner JM, Penny WD (2011) Bayesian comparison of neurovascular coupling models using EEG-fMRI. PLoS Comput Biol 7:e1002070. doi: 10.1371/journal.pcbi.1002070 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Goense JBM, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18:631–640. doi: 10.1016/j.cub.2008.03.054 CrossRefPubMedGoogle Scholar
  27. 27.
    Wallois F, Mahmoudzadeh M, Patil A, Grebe R (2012) Usefulness of simultaneous EEG-NIRS recording in language studies. Brain Lang 121:110–123. doi: 10.1016/j.bandl.2011.03.010 CrossRefPubMedGoogle Scholar
  28. 28.
    Strangman G, Culver JP, Thompson JH, Boas DA (2002) A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 17:719–731. doi: 10.1006/nimg.2002.1227 CrossRefPubMedGoogle Scholar
  29. 29.
    Huppert TJ, Hoge RD, Diamond SG et al (2006) A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. Neuroimage 29:368–382. doi: 10.1016/j.neuroimage.2005.08.065 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2016

Authors and Affiliations

  • H. Singh
    • 1
    • 2
  • R. Cooper
    • 1
    • 2
  • C. W. Lee
    • 1
    • 3
  • L. Dempsey
    • 1
    • 2
  • S. Brigadoi
    • 1
    • 2
  • A. Edwards
    • 1
    • 3
  • D. Airantzis
    • 1
    • 3
  • N. Everdell
    • 1
    • 2
  • A. Michell
    • 1
    • 3
  • D. Holder
    • 1
    • 3
  • T. Austin
    • 1
    • 3
  • J. Hebden
    • 1
    • 2
  1. 1.neoLAB, The Evelyn Perinatal Imaging Centre, Rosie HospitalCambridgeUK
  2. 2.BORL, Department of Medical Physics and BioengineeringUCLLondonUK
  3. 3.Neonatal Unit, Rosie Hospital, Cambridge University HospitalsCambridgeUK

Personalised recommendations