Advertisement

Effects of Anodal High-Definition Transcranial Direct Current Stimulation on Bilateral Sensorimotor Cortex Activation During Sequential Finger Movements: An fNIRS Study

  • Makii Muthalib
  • Pierre Besson
  • John Rothwell
  • Tomas Ward
  • Stephane Perrey
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 876)

Abstract

Transcranial direct current stimulation (tDCS) is a non-invasive electrical brain stimulation technique that can modulate cortical neuronal excitability and activity. This study utilized functional near infrared spectroscopy (fNIRS) neuroimaging to determine the effects of anodal high-definition (HD)-tDCS on bilateral sensorimotor cortex (SMC) activation. Before (Pre), during (Online), and after (Offline) anodal HD-tDCS (2 mA, 20 min) targeting the left SMC, eight healthy subjects performed a simple finger sequence (SFS) task with their right or left hand in an alternating blocked design (30-s rest and 30-s SFS task, repeated five times). In order to determine the level of bilateral SMC activation during the SFS task, an Oxymon MkIII fNIRS system was used to measure from the left and right SMC, changes in oxygenated (O2Hb) and deoxygenated (HHb) haemoglobin concentration values. The fNIRS data suggests a finding that compared to the Pre condition both the “Online” and “Offline” anodal HD-tDCS conditions induced a significant reduction in bilateral SMC activation (i.e., smaller decrease in HHb) for a similar motor output (i.e., SFS tap rate). These findings could be related to anodal HD-tDCS inducing a greater efficiency of neuronal transmission in the bilateral SMC to perform the same SFS task.

Keywords

Functional near-infrared spectroscopy tDCS Neuroplasticity Neuromodulation Sensorimotor cortex 

References

  1. 1.
    Stagg CJ, Nitsche MA (2011) Physiological basis of transcranial direct current stimulation. Neuroscientist 17(1):37–53CrossRefPubMedGoogle Scholar
  2. 2.
    Muthalib M, Kan B, Nosaka K, Perrey S (2013) Effects of transcranial direct current stimulation of the motor cortex on prefrontal cortex activation during a neuromuscular fatigue task: a fNIRS study. Adv Exp Med Biol 789:73–79CrossRefPubMedGoogle Scholar
  3. 3.
    Kuo HI, Bikson M, Datta A, Minhas P, Paulus W, Kuo MF, Nitsche MA (2012) Comparing cortical plasticity induced by conventional and high-definition 4 x 1 ring tDCS: a neurophysiological study. Brain Stimul 6(4):644–648CrossRefPubMedGoogle Scholar
  4. 4.
    Muthalib M, Anwar AR, Perrey S, Dat M, Galka A, Wolff S, Heute U, Deuschl G, Raethjen J, Muthuraman M (2013) Multimodal integration of fNIRS, fMRI and EEG neuroimaging. Clin Neurophysiol 124(10):2060–2062Google Scholar
  5. 5.
    Basso Moro S, Bisconti S, Muthalib M, Spezialetti M, Cutini S, Ferrari M, Placidi G, Quaresima V (2014) A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study. Neuroimage 85(Pt 1):451–460CrossRefPubMedGoogle Scholar
  6. 6.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMedGoogle Scholar
  7. 7.
    Duncan A, Meek JH, Clemence M, Elwell CE, Tyszczuk L, Cope M, Delpy DT (1995) Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy. Phys Med Biol 40(2):295–304CrossRefPubMedGoogle Scholar
  8. 8.
    Kirilina E, Jelzow A, Heine A, Niessing M, Wabnitz H, Bruhl R, Ittermann B, Jacobs AM, Tachtsidis I (2012) The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy. Neuroimage 61(1):70–81CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Holland R, Leff AP, Josephs O, Galea JM, Desikan M, Price CJ, Rothwell JC, Crinion J (2011) Speech facilitation by left inferior frontal cortex stimulation. Curr Biol 21(16):1403–1407CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, Rothwell JC, Lemon RN, Frackowiak RS (2005) How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci 22(2):495–504CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hendy AM, Kidgell DJ (2014) Anodal-tDCS applied during unilateral strength training increases strength and corticospinal excitability in the untrained homologous muscle. Exp Brain Res. doi: 10.1007/s00221-014-4016-8PubMedGoogle Scholar
  12. 12.
    Roy A, Baxter B, He B (2014) High-definition transcranial direct current stimulation induces both acute and persistent changes in broadband cortical synchronization: a simultaneous tDCS-EEG study. IEEE Trans Biomed Eng 61(7):1967–1978CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2016

Authors and Affiliations

  • Makii Muthalib
    • 1
  • Pierre Besson
    • 1
  • John Rothwell
    • 2
  • Tomas Ward
    • 3
  • Stephane Perrey
    • 1
  1. 1.Movement to Health (M2H) Laboratory, EuroMov, University of MontpellierMontpellierFrance
  2. 2.Institute of Neurology, University College LondonLondonUK
  3. 3.Department of Electronic EngineeringNational University of IrelandMaynoothIreland

Personalised recommendations