Hypoxia-Driven Adenosine Accumulation: A Crucial Microenvironmental Factor Promoting Tumor Progression

  • Peter VaupelEmail author
  • Arnulf MayerEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 876)


Systematic studies on the oxygenation status of solid tumors have shown that the development of hypoxic/anoxic tissue subvolumes is a pathophysiological trait in a wide range of human malignancies. As a result of this characteristic property, adenosine (ADO) accumulation (range: 50–100 μM) occurs caused by intra- and extracellular generation of ADO. Extracellular nucleotide catabolism by hypoxia-/HIF-1α-sensitive, membrane-associated ecto- 5′- nucleotidases most probably is the major source of ADO in the halo of cancer cells upon specific genetic alterations taking place during tumor growth. Extracellular ADO can act through autocrine and paracrine pathways following receptor-binding and involving different intracellular signalling cascades. Hypoxia-driven receptor activation can lead to a broad spectrum of strong immune-suppressive properties facilitating tumor escape from immune control (e.g., inhibition of CD4+, CD8+, NK and dendritic cells, stimulation of Treg cells). In addition, tumor growth and progression is promoted by ADO-driven direct stimulation of tumor cell proliferation, migration, invasion, metastatic dissemination, and an increase in the production of molecules stimulating tumor angiogenesis. Hypoxia- driven ADO accumulation in the tumor microenvironment thus plays a critical role in tumor growth and progression at multiple pathophysiological levels.


Adenosine accumulation Tumor hypoxia Tumor growth Tumor progression Tumor immune escape 


  1. 1.
    Vaupel P, Höckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9(8):1221–1235CrossRefPubMedGoogle Scholar
  2. 2.
    Vaupel P, Mayer A, Höckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354CrossRefPubMedGoogle Scholar
  3. 3.
    Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26(2):225–239CrossRefPubMedGoogle Scholar
  4. 4.
    Höckel M et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56(19):4509–4515PubMedGoogle Scholar
  5. 5.
    Mayer A, Vaupel P (2013) Hypoxia, lactate accumulation, and acidosis: siblings or accomplices driving tumor progression and resistance to therapy? Adv Exp Med Biol 789:203–209CrossRefPubMedGoogle Scholar
  6. 6.
    Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33(4):207–214CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hauber W (2002) Adenosin: ein Purinnukleosid mit neuromodulatorischen Wirkungen. Neuroforum 8:228–234Google Scholar
  8. 8.
    Schulte G (2004) Adenosin, Adenosinrezeptoren und Adenosinrezeptor-aktivierte Signalwege. Biospektrum 2(40):159–161Google Scholar
  9. 9.
    Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57(13):2602–2605PubMedGoogle Scholar
  10. 10.
    Lasley RD et al (1998) Comparison of interstitial fluid and coronary venous adenosine levels in in vivo porcine myocardium. J Mol Cell Cardiol 30(6):1137–1147CrossRefPubMedGoogle Scholar
  11. 11.
    MacLean DA, Sinoway LI, Leuenberger U (1998) Systemic hypoxia elevates skeletal muscle interstitial adenosine levels in humans. Circulation 98(19):1990–1992CrossRefPubMedGoogle Scholar
  12. 12.
    Spychala J (2000) Tumor-promoting functions of adenosine. Pharmacol Ther 87(2–3):161–173CrossRefPubMedGoogle Scholar
  13. 13.
    Ghiringhelli F et al (2012) Production of adenosine by ectonucleotidases: a key factor in tumor immunoescape. J Biomed Biotechnol. doi: 10.1155/2012/473712PubMedPubMedCentralGoogle Scholar
  14. 14.
    Di Virgilio F (2012) Purines, purinergic receptors, and cancer. Cancer Res 72(21):5441–5447CrossRefPubMedGoogle Scholar
  15. 15.
    Busse M, Vaupel P (1996) Accumulation of purine catabolites in solid tumors exposed to therapeutic hyperthermia. Experientia 52(5):469–473CrossRefPubMedGoogle Scholar
  16. 16.
    Vaupel P (1994) Blood flow, oxygenation, tissue pH distribution and bioenergetic status of tumors, vol 23, Lecture. Ernst Schering Research Foundation, BerlinGoogle Scholar
  17. 17.
    Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15(9):813–827CrossRefPubMedGoogle Scholar
  18. 18.
    Gessi S et al (2011) Adenosine receptors and cancer. Biochim Biophys Acta 1808(5):1400–1412CrossRefPubMedGoogle Scholar
  19. 19.
    Muller-Haegele S, Muller L, Whiteside TL (2014) Immunoregulatory activity of adenosine and its role in human cancer progression. Expert Rev Clin Immunol 10(7):897–914CrossRefPubMedGoogle Scholar
  20. 20.
    Antonioli L et al (2013) Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 13(12):842–857CrossRefPubMedGoogle Scholar
  21. 21.
    Allard B, Turcotte M, Stagg J (2012) CD73-generated adenosine: orchestrating the tumor-stroma interplay to promote cancer growth. J Biomed Biotechnol. doi: 10.1155/2012/485156PubMedPubMedCentralGoogle Scholar
  22. 22.
    Lee C-T, Mace T, Repasky EA (2010) Hypoxia-driven immunosuppression: a new reason to use thermal therapy in the treatment of cancer? Int J Hyperthermia 26(3):232–246CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sitkovsky MV et al (2008) Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res 14(19):5947–5952CrossRefPubMedGoogle Scholar
  24. 24.
    Kumar V (2013) Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? Purinergic Signal 9(2):145–165CrossRefPubMedGoogle Scholar
  25. 25.
    Young A et al (2014) Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov 4(8):879–888CrossRefPubMedGoogle Scholar
  26. 26.
    Sikovsky MV et al (2014) Hostile, hypoxia-A2-adenosinergic tumor biology as the next barrier to overcome for tumor immunologists. Cancer Immunol Res 2(7):598–605CrossRefGoogle Scholar
  27. 27.
    Ohta A, Sitkovsky M (2014) Extracellular adenosine-mediated modulation of regulatory T cells. Front Immunol. doi: 10.3389/fimmu.2014.00304PubMedPubMedCentralGoogle Scholar
  28. 28.
    Antonioli L et al (2014) Adenosine pathway and cancer: where to go from here? Expert Opin Ther Targets 18(9):973–977CrossRefPubMedGoogle Scholar
  29. 29.
    Iannone R et al (2013) Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia 15(12):1400–1409CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sitkovsky M et al (2008) Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. Br J Pharmacol 153(S1):S457–S464CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Merighi S et al (2003) A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol Ther 100(1):31–48CrossRefPubMedGoogle Scholar
  32. 32.
    Häusler SF et al (2014) Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion. Am J Transl Res 6(2):129–139PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2016

Authors and Affiliations

  1. 1.Department of Radiooncology and RadiotherapyUniversity Medical CenterMainzGermany

Personalised recommendations