Advertisement

IST Versus PDE: A Comparative Study

  • Christian Klein
  • Jean-Claude SautEmail author
Part of the Fields Institute Communications book series (FIC, volume 75)

Abstract

We survey and compare, mainly in the two-dimensional case, various results obtained by IST and PDE techniques for integrable equations. We also comment on what can be predicted from integrable equations on non integrable ones.

Notes

Acknowledgements

The authors thank Anne de Bouard, Anna Kazeykina, Thanasis Fokas, Oleg Kiselev and Peter Perry for fruitful conversations. They also thank an anonymous referee for his/her constructive remarks and suggestions. J.-C. S. was partially supported by the project GEODISP of the Agence Nationale de la Recherche.

References

  1. 1.
    Abdelouhab, L., Bona, J., Felland, M., Saut, J.-C.: Non local models for nonlinear dispersive waves. Physica D 40, 360–392 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Notes Series, vol. 149, Cambridge University Press, Cambridge (1991)Google Scholar
  3. 3.
    Ablowitz, M.J., Fokas, A.S.: The inverse scattering transform for the Benjamin-Ono equation: a pivot to multidimensional problems. Stud. Appl. Math. 68, 1–10 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Ablowitz, M.J., Segur, H.: On the evolution of packets of water waves. J. Fluid Mech. 92, 691–715 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Ablowitz, M.J., Villarroel, J.: The Cauchy problem for the Kadomtsev-Petviashvili II equation with with nondecaying data along a line. Stud. Appl. Math. 109, 151–162 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Ablowitz, M.J., Villarroel, J.: The Cauchy problem for the Kadomtsev-Petviashvili II equation with data that do not decay along a line. Nonlinearity 17, 1843–1866 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Albert, J.P., Bona, J.L.: Total positivity and the stability of internal waves in stratified fluids of finite depth. IMA J. Appl. Math. 46(1–2), 1–19 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Albert, J.P., Toland, J.F.: On the exact solutions of the intermediate long-wave equation. Differ. Integral Equ. 7(3–4), 601–612 (1994)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Albert, J.P., Bona, J.L., Henry, D.: Sufficient conditions for stability of solitary-wave solutions of model equations for long waves. Physica D 24, 343–366 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Albert, J.P., Bona, J.L., Nguyen, N.V.: On the stability of KdV multi-solitons. Differ. Integral Equ. 20(8), 841–878 (2007)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Amick, C.J., Toland, J.: Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear Neumann problem in the plane. Acta Math. 167, 107–126 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Anderson, R.L., Taflin, E.: The Benjamin-Ono equation-Recursivity of linearization maps-Lax pairs. Lett. Math. Phys. 9, 299–311 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Angelopoulos, Y.: Well-posedness and ill-posedness results for the Novikov-Veselov equation. (2013). arXiv 1307.4110Google Scholar
  14. 14.
    Arkadiev, V.A., Pogrebkov, A.K., Polivanov, M.C.: Inverse scattering transform and soliton solution for Davey-Stewartson II equation. Physica D 36, 188–197 (1989)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Beals, R., Coifman, R.R.: Scattering, transformations spectrales et équations d’évolution non linéaires I,II. Séminaire Goulaouic-Meyer-Schwartz 1980/81, exposé XXII, and 1981/1982, exposé XXI, Ecole Polytechnique, PalaiseauGoogle Scholar
  16. 16.
    Beals, R., Coifman, R.R.: Scattering and inverse scattering for first-orde systems. Commun. Pure Appl. Math. 37, 39–90 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Bejenearu, A.D., Ionescu, A.D., Kenig, C.E.: On the stability of certain spin models in 2 + 1 dimensions. J. Geom. Anal. 21, 1–39 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ben-Artzi, M., Saut, J.-C.: Uniform decay estimates for a class of oscillatory integrals and applications. Differ. Integral Equ. 12(2), 137–145 (1999)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Ben-Artzi, M., Koch, H., Saut, J.-C.: Dispersion estimates for third order dispersive equations in 2 dimensions. Commun. Partial Differ. Equ. 28(11–12) 1943–1974 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Benjamin, T.B.: The stability of solitary waves. Proc. R. Soc. (Lond.) Ser. A 328, 153–183 (1972)MathSciNetGoogle Scholar
  21. 21.
    Benney, D.J., Roskes, G.J.: Waves instabilities. Stud. Appl. Math. 48, 377–385 (1969)zbMATHCrossRefGoogle Scholar
  22. 22.
    Besov, O., Ilin, V., Nikolski, S.: Integral Representation of Functions and Embedding Theorems. Wiley, New York (1978)Google Scholar
  23. 23.
    Besse, C., Bruneau, C.H.: Numerical study of elliptic-hyperbolic Davey-Stewartson system: dromions simulation and blow-up. Math. Models Methods Appl. Sci. 8(8), 1363–1386 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Béthuel, F., Danchin, R., Smets, D.: On the linear regime of the Gross-Pitaevskii equation. J. d’Analyse Mathématique. 110(1), 297–338 (2010)zbMATHCrossRefGoogle Scholar
  25. 25.
    Béthuel, F., Gravejat, P., Saut, J.-C., Smets, D.: On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation I. Int. Math. Res. Not. 14, 2700–2748 (2009)Google Scholar
  26. 26.
    Béthuel, F., Gravejat, P., Saut, J.-C., Smets, D.: On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II. Commun. Partial Differ. Equ. 35(1), 113–164 (2010)zbMATHCrossRefGoogle Scholar
  27. 27.
    Béthuel, F., Gravejat, P., Saut, J.-C.: Existence and properties of traveling waves for the Gross-Pitaevskii equation. In: Farina, A., Saut, J.C. (eds.) Stationary and Time Dependent Gross-Pitaevskii Equations. Contemporary Mathematics, vol. 473, pp. 55–103. American Mathematical Society, Providence, RI (2008)CrossRefGoogle Scholar
  28. 28.
    Béthuel, F., Gravejat, P., Saut, J.-C.: On the KP-I transonic limit of two-dimensional Gross-Pitaevskii travelling waves. Dyn. Partial Differ. Equ. 5(3), 241–280 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Béthuel, F., Gravejat, P., Saut, J.-C., Smets, D.: Orbital stability of the black soliton to the Gross-Pitaevskii equation. Indiana J. Math. 57, 2611–2642 (2008)zbMATHCrossRefGoogle Scholar
  30. 30.
    Boiti, M., Leon, J.J., Martina, L., Pempinelli, F.: Scattering of localized solitons in the plane. Phys. Lett. A32, 432–439 (1988)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Bona, J.L.: On the stability theory of solitary waves. Proc. R. Soc. Lond. Ser. A 349, 363–374 (1975)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I : derivation and the linear theory. J. Nonlinear Sci. 12, 283–318 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Bona, J.L., Lannes, D., Saut, J.-C.: Asymptotic models for internal waves. J. Math. Pures Appl. 89, 538–566 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Bona, J.L., Soyeur, A.: On the stability of solitary-wave solutions of model equations for long-waves. J. Nonlinear Sci. 4, 449–470 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Bona, J.L., Souganidis, P.E., Strauss, W.A.: Stability and instability of solitary waves of KdV type. Proc. R. Soc. Lond. A 411, 395–412 (1987)Google Scholar
  36. 36.
    de Bouard, A., Saut, J.-C.: Solitary waves of the generalized KP equations. Ann. IHP Analyse Non Linéaire 14(2), 211–236 (1997)zbMATHCrossRefGoogle Scholar
  37. 37.
    de Bouard, A., Saut, J.-C.: Symmetry and decay of the generalized Kadomtsev-Petviashvili solitary waves. SIAM J. Math. Anal. 28(5), 104–1085 (1997)CrossRefGoogle Scholar
  38. 38.
    de Bouard, A., Saut, J.-C.: Remarks on the stability of the generalized Kadomtsev-Petviashvili solitary waves. In: Dias, F., Ghidaglia, J.-M., Saut, J.-C. (eds.) Mathematical Problems in the Theory of Water Waves. Contemporary Mathematics, vol. 200, 75–84. American Mathematical Society, Providence, RI (1996)Google Scholar
  39. 39.
    Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV equation. Geom. Funct. Anal. 3(3), 209–262 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Bourgain, J.: On the Cauchy problem for the Kadomtsev-Petviashvili equation. Geom. Funct. Anal. GAFA 3, 315–341 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Calogero, F., Degasperis, A.: Spectral Transforms and Solitons. North-Holland, Amsterdam, New-York (1982)Google Scholar
  42. 42.
    Case, K.M.: Properties of the Benjamin-Ono equation. J. Math. Phys. 20, 972–977 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Case, K.M.: The N-soliton solution of the Benjamin-Ono equation. Proc. Natl. Acad. Sci. 75, 3562–3563 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Cazenave, T., Lions, P.-L.: Orbital stabiliy of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Chiron, D., Rousset, F.: The KdV/KP limit of the nonlinear Schrödinger equation. SIAM J. Math. Anal. 42 (1), 64–96 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Cipolatti, R.: On the existence of standing waves for a Davey-Stewartson system. Commun. Partial Differ. Equ. 17(5–6), 967–988 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    Cipolatti, R.: On the instability of ground states for a Davey-Stewartson system. Ann. Inst. H. Poincaré, Phys.Théor. 58, 85–104 (1993)Google Scholar
  48. 48.
    Coifman, R.R., Wickerhauser, M.V.: The scattering transform for the Benjamin-Ono equation. Inverse Prob. 6 (5), 825–862 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    Colin, T.: Rigorous derivation of the nonlinear Schrödinger equation and Davey-Stewartson systems from quadratic hyperbolic systems. Asymptot. Anal. 31, 69–91 (2002)zbMATHMathSciNetGoogle Scholar
  50. 50.
    Colin, T., Lannes, D.: Justification of and long-wave correction to Davey-Stewartson systems from quadratic hyperbolic systems. Discrete Contin. Dyn. Syst. 11(1), 83–100 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Craig, W.L.: An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Commun. Partial Differ. Equ. 10(8), 787–1003 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    Croke, R., Mueller, J.L., Music, M., Perry, P., Siltanen, S., Stahel, A.: The Novikov-Veselov equation: theory and computation. (2013). arXiv:1312.5427v1 [math.AP]Google Scholar
  53. 53.
    Darrigol, O.: Worlds of Flow. A History of Hydrodynamics from the Bernoullis to Prandtl. Oxford University Press, Oxford (2005)zbMATHGoogle Scholar
  54. 54.
    Davey, A., Stewartson, K.: One three-dimensional packets of water waves. Proc. R. Soc. Lond. A 338, 101–110 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  55. 55.
    Deift, P.A., Its, A.R., Zhou, X.: Long-time asymptotics for integrable nonliner wave equations. In: Fokas, A.S., Zakharov, V.E., (eds.) Important Developments in Soliton Theory. Springer series in Nonlinear Dynamics, pp. 181–204. Springer, Berlin (1993)CrossRefGoogle Scholar
  56. 56.
    Deift, P.A., Venakides, S., Zhou, X.: New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems. Int. Math. Res. Not. 6, 286–299 (1997)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Deift, P.A., Venakides, S., Zhou, X.: An extension of the steepest descent method for Riemann-Hilbert problems: the small dispersion limit of the Korteweg-de Vries equation. Proc. Natl. Acad. Sci. USA 95(2), 450–454 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  58. 58.
    Deift, P.A., Zhou, X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137(2), 295–398 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    Deift, P.A., Zhou, X.: Long-time asymptotics for integrable systems. Higher order theory. Commun. Math. Phys. 165 (1), 175–191 (1994)zbMATHMathSciNetGoogle Scholar
  60. 60.
    Deift, P.A., Zhou, X.: Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space. Commun. Pure Appl. Math. 58(8), 1029–1077 (2003)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Di Menza, L., Gallo, C.: The black solitons of one-dimensional NLS equations. Nonlinearity 20, 461–496 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  62. 62.
    Djordjevic, V.D., Redekopp, L.G.: On two-dimensional packets of capillary-gravity waves. J. Fluid Mech. 79, 703–714 (1977)zbMATHMathSciNetCrossRefGoogle Scholar
  63. 63.
    Fokas, A.S.: On the inverse scattering for the time dependent Schrödinger equation and the associated Kadomtsev-Petviashvilii equation. Stud. Appl. Math. 69 (8), 211–222 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  64. 64.
    Fokas, A.S., Pogorobkov, A.K.: Inverse scattering transform for the KP-I equation on the background of a one- line soliton. Nonlinearity 16, 771–783 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  65. 65.
    Fokas, A.S., Pelinovsky, D., Sulem, C.: Interaction of lumps with a line soliton for the Davey-Stewartson II equation. Physica D, 152–153, 189–198 (2001)MathSciNetCrossRefGoogle Scholar
  66. 66.
    Fokas, A.S., Santini, P.M.: Dromions and a boundary-value problem for the Davey-Stewartson I equation. Physica D 44(1–2), 99–130 (1990)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Fokas, A.S., Sung, L.Y.: The inverse spectral method for the KP I equation without the zero mass constraint. Math. Proc. Camb. Phil. Soc. 125, 113–138 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  68. 68.
    Fokas, A.S., Sung, L.Y.: On the solvability of the N-wave, Davey-Stewartson and Kadomtsev-Petviashvili equations. Inverse prob. 8, 673–708 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  69. 69.
    Fonseca, G., Linares, F., Ponce, G.: The well-posedness results for the dispersion generalized Benjamin-Ono equation via the contraction principle. (2012). arXiv:1205.540v1Google Scholar
  70. 70.
    Fonseca, G., Linares, F., Ponce, G.: The IVP for the dispersion generalized Benjamin-Ono equation in weighted spaces. Annales IHP Non Linear Anal. 30(5), 763–790 (2013)zbMATHMathSciNetGoogle Scholar
  71. 71.
    Gadyl’shin, R.R., Kiselev, O.M.: On lump instability of Davey-Stewartson II equation. Teor. Mat. Fiz. 118(3), 354–361 (1999)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Gallo, C.: The Cauchy problem for defocusing nonlinear Schrödinger equations with non vanishing initial data at infinity. Commun. Partial Differ. Equ. 33(4–6), 729–771 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  73. 73.
    Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)CrossRefGoogle Scholar
  74. 74.
    Gérard, P.: The Cauchy Problem for the Gross-Pitaevskii equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(5), 765–779 (2006)zbMATHCrossRefGoogle Scholar
  75. 75.
    Gérard, P., Zhang, Z.: Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii Equation. J. Math. Pures Appl. 91 (2), 178–210 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  76. 76.
    Ghidaglia, J.-M., Saut, J.-C.: On the initial value problem for the Davey-Stewartson systems. Nonlinearity 3, 475–506 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  77. 77.
    Ghidaglia, J.-M., Saut, J.-C.: Non existence of traveling wave solutions to nonelliptic nonlinear Schrödinger equations. J. Nonlinear Sci. 6, 139–145 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  78. 78.
    Ghidaglia, J.-M., Saut, J.-C.: On the Zakharov-Schulman equations. In: Debnath, L. (ed.) Non-linear Dispersive Waves, pp. 83–97. World Scientific, Singapore (1992)Google Scholar
  79. 79.
    Ghidaglia, J.-M., Saut, J.-C.: Nonelliptic Schrödinger evolution equations. J. Nonlinear Sci. 3, 169–195 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  80. 80.
    Ginibre, J.: Le problème de Cauchy pour des EDP semi linéaires périodiques en variables d’espace. Sém. N. Bourbaki 37706, 163–187 (1994–1995)Google Scholar
  81. 81.
    Gravejat, P.: Asymptotics of the solitary waves for the generalized Kadomtsev-Petviashvili equations. Discrete Contin. Dyn. Syst. 21(3), 835–882 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  82. 82.
    Grinevich, P.G.: Non singularity of the direct scattering transform for the KP II equation with a real exponentially decaying-at-infinity potential. Lett. Math. Phys. 40, 59–73 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  83. 83.
    Grinevich, P.G.: The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy. Russ. Math. Surv. 55(6), 1015–1083 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  84. 84.
    Grinevich, P.G.: Rational solutions of the Veselov-Novikov equation are reflectionless potentials at fixed energy. Theor. Math. Phys. 69, 1170–1172 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  85. 85.
    Grinevich, P.G., Manakov, S.V.: Inverse problem of scattering theory for the two-dimensional Schrödinger operator, the \(\bar{\partial }\)- method and nonlinear equations. Funct. Anal. Appl. 20(2), 94–103 (1986)Google Scholar
  86. 86.
    Grinevich, P.G., Novikov, S.P.: A two-dimensional inverse scattering problem for negative energies, and generalized analytic functions. I. Energies lower than the ground state. Funct. Anal. Appl. 22(1), 19–27 (1988)zbMATHMathSciNetGoogle Scholar
  87. 87.
    Hadac, M.: Well-posedness for the Kadomtsev-Petviashvili II equation and generalisations. Trans. Am. Math. Soc. 360(12), 6555–6572 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  88. 88.
    Hadac, M., Herr, S., Koch, H.: Well-posedness and scattering for the KP II equation in a critical space. Ann. IHP Anal. Non Linéaire 26(3), 917–941 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  89. 89.
    Hayashi, N.: Local existence in time of solutions to the elliptic-hyperbolic Davey-Stewartson system without smallness condition on the data. J. Anal. Math. 73, 133–164 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  90. 90.
    Hayashi, N., Hirota, H.: Local existence in time of small solutions to the elliptic-hyperbolic Davey-Stewartson system in the usual Sobolev space. Proc. Edinb. Math. Soc. 40, 563–581 (1997)zbMATHCrossRefGoogle Scholar
  91. 91.
    Hayashi, N., Hirota, H.: Global existence and asymptotic behavior in time of small solutions to the elliptic-hyperbolic Davey-Stewartson system. Nonlinearity 9, 1387–1409 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  92. 92.
    Hayashi, N., Naumkin, P., Saut, J.-C.: Asymptotics for large time of global solutions to the generalized Kadomtsev-Petviashvili equation. Commun. Math. Phys. 201, 577–590 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  93. 93.
    Isaza, P., Mejia, J.: Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices. Commun. Partial Differ. Equ. 26, 1027–1057 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  94. 94.
    Ionescu, A.D., Kenig, C.E.: Global well-posedness of the Benjamin-Ono equation in low-regularity spaces. J. Am. Math. Soc., 20, 753–798 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  95. 95.
    Ionescu, A.D., Kenig, C.E., Tataru, D.: Global well-posedness of the initial value problem for the KP I equation in the energy space. Invent. Math. 173(2), 265–304 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  96. 96.
    Iório Jr., R.J.: On the Cauchy problem for the Benjamin-Ono equation. Commun. Partial Differ. Equ. 11 (10), 1031–1081 (1986)zbMATHCrossRefGoogle Scholar
  97. 97.
    Iório Jr., R.J., Nunes, W.V.L.: On equations of KP-type. Proc. R. Soc. Edinb. 128, 725–743 (1998)zbMATHCrossRefGoogle Scholar
  98. 98.
    Ishimori, Y.: Multivortex solutions of a two dimensional nonlinear wave equation. Prog. Theor. Phys. 72 (1), 33–37 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  99. 99.
    Joseph, R.I.: Solitary waves in a finite depth fluid. J. Phys. A: Math. Gen. 10(12), L225–L228 (1977)zbMATHCrossRefGoogle Scholar
  100. 100.
    Joseph, R.I., Egri, R.: Multi-soliton solutions in a finite depth fluid. J. Phys. A: Math. Gen. 11(5), L97–L102 (1978)zbMATHCrossRefGoogle Scholar
  101. 101.
    Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539–541 (1970)zbMATHGoogle Scholar
  102. 102.
    Kalyakin, L.A.: Long -wave asymptotics. Integrable equations as the asymptotic limit of nonlinear systems. Russ. Math. Surv. 44(1), 3–42 (1989)zbMATHMathSciNetGoogle Scholar
  103. 103.
    Kazeykina, A.V.: Solitons and large time asymptotics of solutions for the Novikov-Veselov equation. PhD Thesis at Ecole Polytechnique (2012)Google Scholar
  104. 104.
    Kazeykina, A.V.: A large time asymptotics for the solution of the Cauchy problem for the Novikov-Veselov equation at negative energy with non-singular scattering data. Inverse Prob. 28(5), 055017 (2012)MathSciNetCrossRefGoogle Scholar
  105. 105.
    Kazeykina, A.V.: Absence of solitons with sufficient algebraic localization for the Novikov-Veselov equation at nonzero energy. Funct. Anal. Appl. (2012). arXiv :1201.2758. (to appear)Google Scholar
  106. 106.
    Kazeykina, A.V.: Absence of traveling wave solutions of conductivity type for the Novikov-Veselov equation at zero energy. Funct. Anal. Appl. (2012). arXiv :1106.5639. (to appear)Google Scholar
  107. 107.
    Kazeykina, A.V., Munoz, C.: Dispersive estimates for rational symbols and local well-posedness of the nonzero energy NV equation. (2015). arXiv:1502.00968v1. (Submitted)Google Scholar
  108. 108.
    Kazeykina, A.V., Novikov, R.G.: Large time asymptotics for the Grinevich-Zakharov potentials. Bull. des Sci. Math. 135, 374–382 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  109. 109.
    Kazeykina, A.V., Novikov, R.G.: Absence of exponentially localized solitons for the Novikov- Veselov equation at negative energy. Nonlinearity 24, 1821–1830 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  110. 110.
    Kazeykina, A.V., Novikov, R.G.: A large time asymptotics for the solution of the Cauchy problem for the Novikov-Veselov equation at negative energy with nonsingular scattering data. Inverse Prob. 28(5), 055017 (2012)CrossRefGoogle Scholar
  111. 111.
    Kenig, C.E.: On the local and global well-posedness for the KP-I equation. Annales IHP Analyse Non Linéaire 21, 827–838 (2004)zbMATHMathSciNetGoogle Scholar
  112. 112.
    Kenig, C.E., Martel, Y.: Asymptotic stability of solitons for the Benjamin-Ono equation. Revista Matematica Iberoamericana 25, 909–970 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  113. 113.
    Kenig, C.E., Martel, Y.: Global well-posedness in the energy space for a modified KP II equation via the Miura transform. TAMS 358, 2447–2488 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  114. 114.
    Kenig, C.E., Nahmod, A.: The Cauchy problem for the hyperbolic-elliptic Ishimori system and Schrödinger maps. Nonlinearity 18, 1987–2005 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  115. 115.
    Kenig, C.E., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg- de Vries equation. J. Am. Math. Soc. 4, 323–346 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  116. 116.
    Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg- de Vries equation via the contraction principle. Comm. Pure Appl. Math., 46, 527–620 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  117. 117.
    Kevrekidis, P., Nahmod, A.R., Zeng, C.: Radial standing and self-similar waves for the hyperbolic cubic NLS in 2D. Nonlinearity 24, 1523–1538 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  118. 118.
    Kiselev, O.M.: Asymptotics of solution of the Cauchy problem for the Davey-Stewartson I equation. Teor. Mat. Fiz. 114 (1), 104–114 (1998)CrossRefGoogle Scholar
  119. 119.
    Kiselev, O.M.: Dromion perturbation for the Davey-Stewartson I equation. J. Nonlinear Math. Phys. 7(4), 411–422 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  120. 120.
    Kiselev, O.M.: Asymptotics of a solution of the Kadomstev-Petviashvili II equation. Proc. Steklov Math. Inst. Suppl. 7(1), S107–S139 (2001)Google Scholar
  121. 121.
    Kiselev, O.M.: Asymptotics of solutions of higher-dimensional integrable equations and their perturbations. J. Math. Sci. 138(6), 6067–6230 (2006)MathSciNetCrossRefGoogle Scholar
  122. 122.
    Klein, C., Peter, R.: Numerical study of blow-up in solutions to generalized Kadomtsev-Petviashvili equations. Discrete Contin. Dyn. Syst. B 19(6), (2014). doi:10.3934/dcdsb.2014. 19.1689Google Scholar
  123. 123.
    Klein, C., Roidot, K.: Numerical study of shock formation in the dispersionless Kadomtsev-Petviashvili equation and dispersive regularizations. Physica D 265, 1–25 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  124. 124.
    Klein, C., Roidot, K.: Numerical Study of the semiclassical limit of the Davey-Stewartson II equations. Nonlinearity 27, 2177–2214 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  125. 125.
    Klein, C., Roidot, K.: Fourth order time-stepping for Kadomtsev-Petviashvili and Davey-Stewartson equations. SIAM J. Sci. Comput. 33(6), (2011) doi: 10.1137/100816663Google Scholar
  126. 126.
    Klein, C., Saut, J.-C.: Numerical study of blow-up and stability of solutions to generalized Kadomtsev-Petviashvili equations. J. Nonlinear Sci. 22(5), 763–811 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  127. 127.
    Klein, C., Saut, J.-C.: A numerical approach to blow-up issues for dispersive perturbations of Burgers equation. Physica D 295–296 (2015), 46–65MathSciNetCrossRefGoogle Scholar
  128. 128.
    Klein, C., Saut, J.-C.: A numerical approach to Blow-up issues for Davey-Stewartson II systems. Commun. Pure Appl. Anal. 14(4) (2015), 1449–1467MathSciNetCrossRefGoogle Scholar
  129. 129.
    Klein, C., Sparber, C.: Numerical simulation of generalized KP type equations with small dispersion. In: Liu, W.-B., Ng, M., Shi, Z.-C. (eds.) Recent Progress in Scientific Computing. Science Press, Beijing (2007)Google Scholar
  130. 130.
    Klein, C., Sparber, C., Markowich, P.: Numerical study of oscillatory regimes in the Kadomtsev-Petviashvili equation. J. Nonlinear Sci. 17(5), 429–470 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  131. 131.
    Klein, C., Muite, B., Roidot, K.: Numerical Study of Blowup in the Davey-Stewartson System. Discrete Contin. Dyn. Syst. B 18(5), 1361–1387 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  132. 132.
    Koch, H., Saut, J.-C.: Local smoothing and local solvability for third order dispersive equations. SIAM J. Math. Anal. 38, 5, 1528–1541 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  133. 133.
    Koch, H., Tzvetkov, N.: Nonlinear wave interactions for the Benjamin-Ono equation. Int. Math. Res. Not. 30, 1833–1847 (2005)MathSciNetCrossRefGoogle Scholar
  134. 134.
    Koch, H., Tzvetkov, N.: On finite energy solutions of the KP-I equation. Math. Z. 258(1), 55–68 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  135. 135.
    Kodama, Y., Satsuma, J., Ablowitz, M.J.: Nonlinear intermediate long-wave equation: analysis and method of solution. Phys. Rev. Lett. 46, 687–690 (1981)MathSciNetCrossRefGoogle Scholar
  136. 136.
    Kodama, Y., Ablowitz, M.J., Satsuma, J.: Direct and inverse scattering problems of the nonlinear intermediate long wave equation. J. Math. Phys. 23, 564–576 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  137. 137.
    Konopelchenko, B.G., Matkarimov, B.T.: On the inverse scattering transform for the Ishimori equations. Phys. Lett. A 135(3), 183–189 (1989)Google Scholar
  138. 138.
    Konopelchenko, B.G., Matkarimov, B.T.: Inverse spectral transform for the nonlinear evolution equation generated by the Davey-Stewartson and Ishimori equations. Stud. Appl. Math. 82, 319–359 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  139. 139.
    Konopelchenko, B.G., Moro, A.: Integrable equations in nonlinear geometrical optics. Stud. Appl. Math. 113 (4), 325–352 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  140. 140.
    Krichever, I.M.: Rational solutions of the Kadomtsev-Petviashvili equation and the integrable systems of N particles on a line. (Russian) Funkcional. Anal. i Prilozhen 12, 76–78 (1978)Google Scholar
  141. 141.
    Kwong, M.K.: Uniqueness of positive solutions of \(\varDelta u - u + u^{p} = 0\) in \(\mathbb{R}^{n}\). Arch. Ration. Mech. Anal. 65, 243–266 (1989)MathSciNetGoogle Scholar
  142. 142.
    Lannes, D.: Water Waves: Mathematical Theory and Asymptotics. Mathematical Surveys and Monographs, vol. 188. American Mathematical Society (AMS), Providence, RI (2013)Google Scholar
  143. 143.
    Lannes, D.: Consistency of the KP approximation. In: Proceedings of the 4th International Conference on Dynamical Systems and Differential Equations, pp. 517–525. Wilmington, NC, USA, May 24–27 2002Google Scholar
  144. 144.
    Lannes, D., Saut, J.-C.: Weakly transverse Boussinesq systems and the KP approximation. Nonlinearity 19, 2853–2875 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  145. 145.
    Lax, P.D.: Integral of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)zbMATHMathSciNetCrossRefGoogle Scholar
  146. 146.
    Lebedev, D.R., Radul, A.O.: Generalized internal long waves equations, construction, Hamiltonian structure, and conservation laws. Commun. Math. Phys. 91, 543–555 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  147. 147.
    Leblond, H.: Electromagnetic waves in ferromagnets. J. Phys. A 32(45), 7907–7932 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  148. 148.
    Lin, Z.: Stability and instability of traveling solitonic bubbles. Adv. Differ. Equ. 7(8), 897–918 (2002)zbMATHGoogle Scholar
  149. 149.
    Linares, F., Ponce, G.: On the Davey-Stewartson systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 10, 523–548 (1993)zbMATHMathSciNetGoogle Scholar
  150. 150.
    Linares, F., Pilod, D., Saut, J.-C.: Dispersive perturbations of Burgers and hyperbolic equations I : local theory. SIAM J. Math. Anal. 46(2), 1505–1537 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  151. 151.
    Liu, Y.: Blow-up and instability of solitary wave solutions to a generalized Kadomtsev-Petviashvilii equation. Trans. AMS 353(1), 191–208 (2000)CrossRefGoogle Scholar
  152. 152.
    Manakov, S.V.: The inverse scattering transform for the time-dependent Schrödinger equation and Kadomtsev-Petviashvilii equation. Physica D 3(1–2), 420–427 (1981)zbMATHMathSciNetCrossRefGoogle Scholar
  153. 153.
    Manakov, S.V.: The inverse scattering method and two-dimensional evolution equations. Uspekhi Mat. Nauk 31(5), 245–246 (1976)zbMATHMathSciNetGoogle Scholar
  154. 154.
    Manakov, S.V., Zakharov, V.E., Bordag, L.A., Its, A.R., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev- Petviashvili equation and their interaction. Phys. Lett. A 63, 205–206 (1977)CrossRefGoogle Scholar
  155. 155.
    Manakov, S.V., Santini, P.M., Takchtadzhyan, L.A.: An asymptotic behavior of the solutions of the Kadomtsev-Petviashvili equations. Phys. Rev. Lett. A 75, 451–454 (1980)CrossRefGoogle Scholar
  156. 156.
    Marchenko, V.A.: Sturm-Liouville operators and applications. Revised edn., vol. 373 American Mathematical Society Chelsea Publishing, Providence, RI (2001)Google Scholar
  157. 157.
    Martel, Y., Merle, F.: Asymptotics stability of solitons of the subcritical generalized KdV equations revisited. Nonlinearity 18, 55–80 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  158. 158.
    Martel, Y., Merle, F.: Asymptotic stability of solitons of the gKdV equations with a general nonlinearity. Math. Ann. 341, 391–427 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  159. 159.
    Martel, Y., Merle, F.: Inelastic interaction of nearly equal solitons for the BBM equation. Discrete Contin. Dyn. Syst. 27 (2), 487–532 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  160. 160.
    Martel, Y., Merle, F., Mizumachi, T.: Description of the inelastic collision of two solitary waves for the BBM equation. Arch. Ration. Mech. Anal. 196(2), 517–574 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  161. 161.
    Matsuno, Y.: Exact multi-solitons of the Benjamin-Ono equation. J. Phys. A Math. Gen. 12(4), 619–662 (1979)zbMATHCrossRefGoogle Scholar
  162. 162.
    Matsuno, Y.: Interaction of the Benjamin-Ono solitons. J. Phys. A Math. Gen. 13(5), 1519–1536 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  163. 163.
    Matsuno, Y.: Bilinear Transformation Method. Academic Press, New York (1984)zbMATHGoogle Scholar
  164. 164.
    McConnell, M., Fokas, A., Pelloni, B.: Localized coherent Solutions of the DSI and DSII equations. Numer. Study. Math. Comput. Simul. 69 (5–6), 424–438 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  165. 165.
    Mizomachi, T., Tzvetkov, N.: Stability of the line soliton of the KP II equation under periodic transverse perturbations. arXiv: 1008.0812v1Google Scholar
  166. 166.
    Molinet, L., Pilod, D.: Global well-posedness and limit behavior for a higher-order Benjamin-Ono equation. Commun. Partial Differ. Equ. 37, 2050–2080 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  167. 167.
    Molinet, L., Saut, J.-C., Tzvetkov, N.: Ill-posedness issues for the Benjamin-Ono and related equations. SIAM J. Math. Anal. 33(4), 982–988 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  168. 168.
    Molinet, L., Saut, J.-C., Tzvetkov, N.: Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-I equation. Duke Math. J. 115(2), 353–384 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  169. 169.
    Molinet, L., Saut, J.-C., Tzvetkov, N.: Global well-posedness for the KP-I equation. Math. Annalen 324, 255–275 (2002). Correction: Math. Ann. 328, 707–710 (2004)Google Scholar
  170. 170.
    Molinet, L., Saut, J.-C., Tzvetkov, N.: Remarks on the mass constraint for KP type equations. SIAM J. Math. Anal. 39(2), 627–641 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  171. 171.
    Molinet, L., Saut, J.-C., Tzvetkov, N.: Global well-posedness for the KP-I equation on the background of a non localized solution. Commun. Math. Phys. 272, 775–810 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  172. 172.
    Molinet, L., Saut, J.-C., Tzvetkov, N.: Global well-posedness for the KP-II equation on the background of a non localized solution. Annales IHP, Analyse Non Linéaire, 28(5), 653–676 (2011)zbMATHMathSciNetGoogle Scholar
  173. 173.
    Music, M., Perry, P.: Global solutions for the zero energy Novikov-Veselov equation by inverse scattering, arXiv:1502.02632v1. 9 Feb (2015)Google Scholar
  174. 174.
    Musher, S.L., Rubenchik, A.M., Zakharov, V.E.: Hamiltonian approach to the description of nonlinear plasma phenomena. Phys. Rep. 129 (5), 285–366 (1985)MathSciNetCrossRefGoogle Scholar
  175. 175.
    Neves, A., Lopes, O.: Orbital stability of double solitons for the Benjamin-Ono equation. Commun. Math. Phys. 262, 757–791 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  176. 176.
    Newell, A., Moloney, J.V.: Nonlinear Optics. Addison-Wesley, New York (1992)Google Scholar
  177. 177.
    Niizaki, T.: Large time behavior for the generalized Kadomtsev-Petviashvilii equations. Differ. Equ. Appl. 3 (2), 299–308 (2011)MathSciNetGoogle Scholar
  178. 178.
    Novikov, R.G.: Absence of exponentially localized solitons for the Novikov-Veselov equation at positive energy. Phys. Lett. A 375, 1233–1235 (2011)Google Scholar
  179. 179.
    Novikov, S.P., Veselov, A.P.: Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formula and evolutions equations. Dokl. Akad. Nauk SSSR 279 20–24 (1984); Translation in Sov. Math. Dokl. 30, 588–591 (1984)Google Scholar
  180. 180.
    Novikov, S.P., Veselov, A.P.: Finite-zone, two-dimensional, potential Schrödinger operators. Potential operators. Dokl. Akad. Nauk SSSR 279, 784–788 (1984); Translation in Sov. Math. Dokl. 30, 705–708 (1984)Google Scholar
  181. 181.
    Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of solitons. The inverse scattering method. Contemporary Soviet Mathematics, Consultant Bureau, New York and London (1984)zbMATHGoogle Scholar
  182. 182.
    Ohta, M.: Stability and instability of standing waves for the generalized Davey-Stewartson system. Differ. Integral Equ. 8, 1775–1788 (1995)zbMATHGoogle Scholar
  183. 183.
    Ohta, M.: Instability of standing waves for the generalized Davey-Stewartson system. Ann. Inst. H. Poincaré, Phys. Théor. 62, 69–80 (1995)Google Scholar
  184. 184.
    Ohta, M.: Blow-up solutions and strong instability of standing waves for the generalized Davey-Stewartson system. Ann. Inst. H. Poincaré, Phys. Théor. 63, 111–117 (1995)Google Scholar
  185. 185.
    Ozawa, T.: Exact blow-up solutions to the Cauchy problem for the Davey-Stewartson systems. Proc. R. Soc. Lond. A 436, 345–349 (1992)zbMATHCrossRefGoogle Scholar
  186. 186.
    Papanicolaou, G., Sulem, C., Sulem, P.-L., Wang, X.P.: The focusing singularity of the Davey-Stewartson equations for gravity-capillary waves. Physica D 72, 61–86 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  187. 187.
    Pelinovsky, D.E.: Rational solutions of the Kadomtsev-Petviashvili hierarchy and the dynamics of their poles. I. New form of a general rational solution. J. Math. Phys. 35, 5820–5830 (1994)zbMATHMathSciNetGoogle Scholar
  188. 188.
    Pelinovsky, D.E., Stepanyants, Yu.A.: New multisolitons of the Kadomtsev-Petviashvili equation. Sov. Phys. JETP Lett. 57, 24–28 (1993)Google Scholar
  189. 189.
    Pelinovsky, D.E., Stepanyants, Yu.A.: Self-focusing instability of plane solitons and chains of two-dimensional solitons in positive-dispersion media. Sov. Phys. JETP 77(4), 602–608 (1993)Google Scholar
  190. 190.
    Pelinovsky, D.E., Sulem, C.: Eigenfunctions and Eigenvalues for a Scalar Riemann-Hilbert Problem Associated to Inverse Scattering. Commun. Math. Phys. 208, 713–760 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  191. 191.
    Pelinovsky, D.E., Sulem, C.: Spectral decomposition for the Dirac system associated to the DS II equation. Inverse Prob. 16, 59–74 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  192. 192.
    Pelinovsky, D.E., Sulem, C.: Embedded solitons of the Davey-Stewartson II equation. CRM In: Sulem, C., Sigal, I.M. (eds.) Proceedings and Lecture Notes, vol. 27, pp. 135–145 (2001)Google Scholar
  193. 193.
    Perry, P.A.: Global well-posedness and long time asymptotics for the defocussing Davey-Stewartson II equation in \(H^{1,1}(\mathbb{R}^{2})\). (2012). arXiv:1110.5589v2Google Scholar
  194. 194.
    Perry, P.A.: Miura maps and inverse scattering for the Novikov-Veselov equation. Analysis Partial Differ. Equ. 7(2), 311–343 (2014)zbMATHMathSciNetGoogle Scholar
  195. 195.
    Redekopp, L.: Similarity solutions of some two-dimensional nonlocal wave evolution equations. Stud. Appl. Math. 63, 185–207 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  196. 196.
    Roidot, K., Mauser, N.: Numerical study of the transverse stability of NLS soliton solutions in several classes of NLS type equations. arXiv:1401.5349v1 [math-ph] 21 Jan 2014Google Scholar
  197. 197.
    Rousset, F., Tzvetkov, N.: Transverse nonlinear instability for some Hamiltonian PDE’s. J. Math. Pures Appl. 90, 550–590 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  198. 198.
    Rousset, F., Tzvetkov, N.: Transverse nonlinear instability for two-dimensional dispersive models. Ann. IHP, Analyse Non Linéaire 26, 477–496 (2009)zbMATHMathSciNetGoogle Scholar
  199. 199.
    Rousset, F., Tzvetkov, N.: A simple criterion of transverse linear instability for solitary waves. Math. Res. Lett. 17, 157–169 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  200. 200.
    Satsuma, J.: N-soliton solution of the two-dimensional Kotreweg-de Vries equation. J. Phys. Soc. Jpn. 40, 286–290 (1976)MathSciNetCrossRefGoogle Scholar
  201. 201.
    Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496–1503 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  202. 202.
    Saut, J.-C.: Remarks on the generalized Kadomtsev-Petviashvili equations. Indiana Univ. Math. J. 42, 1011–1026 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  203. 203.
    Saut, J.-C., Tzvetkov, N.: The Cauchy problem for higher order KP equations. J. Differ. Equ. 153(1), 196–222 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  204. 204.
    Saut, J.-C., Tzvetkov, N.: The Cauchy problem for the fifth order KP equation. J. Math. Pures Appl. 79 (4), 307–338 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  205. 205.
    Saut, J.-C., Tzvetkov, N.: Global well-posedness for the KP-BBM equations. AMRX Appl. Math. Res. Express 1, 1–16 (2004)MathSciNetCrossRefGoogle Scholar
  206. 206.
    Schulman, E.I.: On the integrability of equations of Davey-Stewartson type. Theor. Math. Phys. 56, 131–136 (1983)Google Scholar
  207. 207.
    Schuur, P.C.: Asymptotic Analysis of Soliton problems. An Inverse scattering Approach. Lecture Notes in Mathematics, vol 1232, Springer, Berlin (1986)Google Scholar
  208. 208.
    Scoufis, G., Cosgrove, C.M.: An application of the inverse scattering transform to the modified long wave equation. J. Math. Phys. 46 (10), 103501 (2005)MathSciNetCrossRefGoogle Scholar
  209. 209.
    Segur, H.: Who cares about integrability. Physica D 51, 343–359 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  210. 210.
    Soyeur, A.: The Cauchy problem for the Ishimori equations. J. Funct. Anal. 105, 233–255 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  211. 211.
    Sung, L.Y.: An inverse scattering transform for the Davey-Stewartson equations. I. J. Math. Anal. Appl. 183(1), 121–154 (1994)zbMATHCrossRefGoogle Scholar
  212. 212.
    Sung, L.Y.: An inverse scattering transform for the Davey-Stewartson equations. II. J. Math. Anal. Appl. 183(2), 289–325 (1994)zbMATHCrossRefGoogle Scholar
  213. 213.
    Sung, L.Y.: An inverse scattering transform for the Davey-Stewartson equations. III. J. Math. Anal. Appl. 183(3), 477–494 (1994)zbMATHCrossRefGoogle Scholar
  214. 214.
    Sung, L.Y.: Long-Time Decay of the Solutions of the Davey-Stewartson II Equations. J. Non-linear Sci. 5, 433–452 (1995)CrossRefGoogle Scholar
  215. 215.
    Sung, L.Y.: The Cauchy problem for the Ishimori equation. J. Funct. Anal. 139, 29–67 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  216. 216.
    Sung, L.Y.: Square integrability and uniqueness of the solutions of the Kadomtsev-Petviashvili-I equation. Math. Phys. Anal. Geom. 2, 1–24 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  217. 217.
    Takaoka, H., Tzvetkov, N.: On the local regularity of Kadomtsev-Petviashvili-II equation. IMRN 8, 77–114 (2001)MathSciNetCrossRefGoogle Scholar
  218. 218.
    Tanaka, S.: On the N-tuple wave solutions of the Korteweg-de Vries equation. Publ. R.I.M.S. Kyoto Univ. 8, 419–427 (1972)Google Scholar
  219. 219.
    Tao, T.: Global well-posedness of the Benjamin-Ono equation in H 1. J. Hyperbolic Differ. Equ. 1, 27–49 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  220. 220.
    Tao, T.: Why are solitons stable? Bull. AMS 46 (1), 1–33 (2009)zbMATHCrossRefGoogle Scholar
  221. 221.
    Tom, M.M.: On a generalized Kadomtsev-Petviashvili equation. Contemp. Math. AMS, 200, 193–210 (1996)MathSciNetCrossRefGoogle Scholar
  222. 222.
    Ukaï, S.: Local solutions of the Kadomtsev-Petviashvili equation. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36, 193–209 (1989)zbMATHMathSciNetGoogle Scholar
  223. 223.
    Villarroel, J., Ablowitz, M.J.: On the discrete spectrum of the nonstationary Schrödinger equation and multipole lumps of the Kadomtsev-Petviashvili I equation. Commun. Math. Phys. 207, 1–42 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  224. 224.
    Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)zbMATHGoogle Scholar
  225. 225.
    Wickerhauser, M.V.: Inverse scattering for the heat equation and evolutions in (2 + 1) variables. Commun. Math. Phys. 108, 67–89 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  226. 226.
    Zaitsev, A.A.: Formation of stationary waves by superposition of solitons. Sov. Phys. Dokl. 28 (9), 720–722 (1983)Google Scholar
  227. 227.
    Zakharov, V.E.: Instability and nonlinear oscillations of solitons. JETP Lett. 22, 172–173 (1975)Google Scholar
  228. 228.
    Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 2, 190–194 (1968)Google Scholar
  229. 229.
    Zakharov, V.E., Kuznetsov, A.: Multi-scale expansion in the theory of systems integrable by the inverse scattering transform. Physica D 18(1–3), 455–463 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  230. 230.
    Zakharov, V.E., Rubenchik, A.M.: Nonlinear interaction of high-frequency and low frequency waves. Prikl. Mat. Techn. Phys., 5, 84–98 (1972)Google Scholar
  231. 231.
    Zakharov, V.E., Shabat, A.B.: Interaction between solitons in a stable medium. Sov. Phys. JETP 37, 823–828 (1973)Google Scholar
  232. 232.
    Zakharov, V.E., Schulman, E.I.: Degenerate dispersion laws, motion invariants and kinetic equations. Physica 1D, 192–202 (1980)MathSciNetGoogle Scholar
  233. 233.
    Zakharov, V.E., Schulman, E.I.: Integrability of nonlinear systems and perturbation theory. In: Zakharov, V.E. (ed.) What is Integrability? Springer Series on Nonlinear Dynamics, pp. 185–250. Springer, Berlin (1991)Google Scholar
  234. 234.
    Zhidkov, P.E.: Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory. Lecture Notes in Mathematics, vol. 1756. Springer, Berlin (2001)Google Scholar
  235. 235.
    Zhou, X.: Inverse scattering transform for the time dependent Schrödinger equation with applications to the KP-I equation. Commun. Math. Phys. 128, 551–564 (1990)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institut de Mathématiques de Bourgogne, UMR 5584Université de BourgogneDijon CedexFrance
  2. 2.Laboratoire de Mathématiques, UMR 8628Université Paris-Sud et CNRSOrsayFrance

Personalised recommendations