Effects of Glucocorticoids in the Immune System

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 872)


Glucocorticoids (GCs) are steroid hormones with widespread effects. They control intermediate metabolism by stimulating gluconeogenesis in the liver, mobilize amino acids from extra hepatic tissues, inhibit glucose uptake in muscle and adipose tissue, and stimulate fat breakdown in adipose tissue. They also mediate stress response. They exert potent immune-suppressive and anti-inflammatory effects particularly when administered pharmacologically. Understanding these diverse effects of glucocorticoids requires a detailed knowledge of their mode of action. Research over the years has uncovered several details on the molecular action of this hormone, especially in immune cells. In this chapter, we have summarized the latest findings on the action of glucocorticoids in immune cells with a view of identifying important control points that may be relevant in glucocorticoid therapy.


Glucocorticoid receptor Inflammation Signaling pathways Immune cells 


  1. 1.
    Grasso P, Gangolli S, Gaunt I. Essentials of pathology for toxicologist. Boca Raton: CRC; 2002. ISBN 978-0-415-25795-4.Google Scholar
  2. 2.
    Mayer G. Immunology: Innate (Non-Specific) Immunity (Chapter 1). In: Microbiology and Immunology On-line. University of South Carolina. 2009.Google Scholar
  3. 3.
    Janeway CPT, Walport M, Shlomchik M. Immunobiology. New York and London: Garland Science; 2001.Google Scholar
  4. 4.
    Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–35.PubMedGoogle Scholar
  5. 5.
    Okin D, Medzhitov R. Evolution of inflammatory diseases. Curr Biol. 2012;22(17):R733–40.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140(6):771–6.PubMedGoogle Scholar
  7. 7.
    Baschant U, Tuckermann J. The role of the glucocorticoid receptor in inflammation and immunity. J Steroid Biochem Mol Biol. 2010;120(2–3):69–75.PubMedGoogle Scholar
  8. 8.
    Chinenov Y, Rogatsky I. Glucocorticoids and the innate immune system: crosstalk with the toll-like receptor signaling network. Mol Cell Endocrinol. 2007;275(1–2):30–42.PubMedGoogle Scholar
  9. 9.
    Hench P. Effects of cortisone in the rheumatic diseases. Lancet. 1950;2(6634):483–4.PubMedGoogle Scholar
  10. 10.
    Hench PS, Kendall EC, Slocumb CH, Polley HF. The antirheumatic effects of cortisone and pituitary ACTH. Trans Stud Coll Physicians Phila. 1950;18(3):95–102.PubMedGoogle Scholar
  11. 11.
    Hench PS, Kendall EC, Slocumb CH, Polley HF. Cortisone, its effects on rheumatoid arthritis, rheumatic fever, and certain other conditions. Merck Rep. 1950;59(4):9–14.PubMedGoogle Scholar
  12. 12.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.Google Scholar
  13. 13.
    Gartner LP, Hiatt JL. Color textbook of histology. 3rd ed. Philadelphia: Elsevier; 2007.Google Scholar
  14. 14.
    Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010;33(5):657–70.PubMedGoogle Scholar
  15. 15.
    Nathan C. Points of control in inflammation. Nature. 2002;420(6917):846–52.PubMedGoogle Scholar
  16. 16.
    Kobayashi SD, Voyich JM, Burlak C, DeLeo FR. Neutrophils in the innate immune response. Arch Immunol Ther Exp (Warsz). 2005;53(6):505–17.Google Scholar
  17. 17.
    Hogan SP, Foster PS, Rothenberg ME. Experimental analysis of eosinophil-associated gastrointestinal diseases. Curr Opin Allergy Clin Immunol. 2002;2(3):239–48.PubMedGoogle Scholar
  18. 18.
    Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol. 2006;24:147–74.PubMedGoogle Scholar
  19. 19.
    Turner H, Kinet JP. Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature. 1999;402(6760 Suppl):B24–30.PubMedGoogle Scholar
  20. 20.
    Gilfillan AM, Rivera J. The tyrosine kinase network regulating mast cell activation. Immunol Rev. 2009;228(1):149–69.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Prussin C, Metcalfe DD. 4. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2003;111(2 Suppl):S486–94.PubMedGoogle Scholar
  22. 22.
    Mills CD. M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol. 2012;32(6):463–88.PubMedGoogle Scholar
  23. 23.
    Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.PubMedGoogle Scholar
  24. 24.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.PubMedGoogle Scholar
  25. 25.
    Kumar R, Thompson EB. Gene regulation by the glucocorticoid receptor: structure:function relationship. J Steroid Biochem Mol Biol. 2005;94(5):383–94.PubMedGoogle Scholar
  26. 26.
    Grad I, Picard D. The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol. 2007;275(1–2):2–12.PubMedGoogle Scholar
  27. 27.
    Biddie SC, John S, Sabo PJ, et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell. 2011;43(1):145–55.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Revollo JR, Cidlowski JA. Mechanisms generating diversity in glucocorticoid receptor signaling. Ann N Y Acad Sci. 2009;1179:167–78.PubMedGoogle Scholar
  29. 29.
    Meijsing SH, Pufall MA, So AY, Bates DL, Chen L, Yamamoto KR. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science. 2009;324(5925):407–10.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Lonard DM, Kumar R, O’Malley BW. Minireview: the SRC family of coactivators: an entree to understanding a subset of polygenic diseases? Mol Endocrinol. 2010;24(2):279–85.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Lonard DM, O’Malley BW. Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell. 2007;27(5):691–700.PubMedGoogle Scholar
  32. 32.
    Heck S, Kullmann M, Gast A, et al. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J. 1994;13(17):4087–95.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Surjit M, Ganti KP, Mukherji A, et al. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell. 2011;145(2):224–41.PubMedGoogle Scholar
  34. 34.
    Hudson WH, Youn C, Ortlund EA. The structural basis of direct glucocorticoid-mediated transrepression. Nat Struct Mol Biol. 2013;20(1):53–8.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Kassel O, Herrlich P. Crosstalk between the glucocorticoid receptor and other transcription factors: molecular aspects. Mol Cell Endocrinol. 2007;275(1–2):13–29.PubMedGoogle Scholar
  36. 36.
    Croxtall JD, Choudhury Q, Flower RJ. Glucocorticoids act within minutes to inhibit recruitment of signalling factors to activated EGF receptors through a receptor-dependent, transcription-independent mechanism. Br J Pharmacol. 2000;130(2):289–98.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Oppong E, Flink N, Cato AC. Molecular mechanisms of glucocorticoid action in mast cells. Mol Cell Endocrinol. 2013;380(1–2):119–26.PubMedGoogle Scholar
  38. 38.
    Stahn C, Buttgereit F. Genomic and nongenomic effects of glucocorticoids. Nat Clin Pract Rheumatol. 2008;4(10):525–33.PubMedGoogle Scholar
  39. 39.
    Gametchu B. Glucocorticoid receptor-like antigen in lymphoma cell membranes: correlation to cell lysis. Science. 1987;236(4800):456–61.PubMedGoogle Scholar
  40. 40.
    Gametchu B, Watson CS, Pasko D. Size and steroid-binding characterization of membrane-associated glucocorticoid receptor in S-49 lymphoma cells. Steroids. 1991;56(8):402–10.PubMedGoogle Scholar
  41. 41.
    Gametchu B, Watson CS, Shih CC, Dashew B. Studies on the arrangement of glucocorticoid receptors in the plasma membrane of S-49 lymphoma cells. Steroids. 1991;56(8):411–9.PubMedGoogle Scholar
  42. 42.
    Gametchu B, Watson CS, Wu S. Use of receptor antibodies to demonstrate membrane glucocorticoid receptor in cells from human leukemic patients. FASEB J. 1993;7(13):1283–92.PubMedGoogle Scholar
  43. 43.
    Powell CE, Watson CS, Gametchu B. Immunoaffinity isolation of native membrane glucocorticoid receptor from S-49++ lymphoma cells: biochemical characterization and interaction with Hsp 70 and Hsp 90. Endocrine. 1999;10(3):271–80.PubMedGoogle Scholar
  44. 44.
    Gametchu B, Chen F, Sackey F, Powell C, Watson CS. Plasma membrane-resident glucocorticoid receptors in rodent lymphoma and human leukemia models. Steroids. 1999;64(1–2):107–19.PubMedGoogle Scholar
  45. 45.
    Buttgereit F, Scheffold A. Rapid glucocorticoid effects on immune cells. Steroids. 2002;67(6):529–34.PubMedGoogle Scholar
  46. 46.
    Scheffold A, Assenmacher M, Reiners-Schramm L, Lauster R, Radbruch A. High-sensitivity immunofluorescence for detection of the pro- and anti-inflammatory cytokines gamma interferon and interleukin-10 on the surface of cytokine-secreting cells. Nat Med. 2000;6(1):107–10.PubMedGoogle Scholar
  47. 47.
    Bartholome B, Spies CM, Gaber T, et al. Membrane glucocorticoid receptors (mGCR) are expressed in normal human peripheral blood mononuclear cells and up-regulated after in vitro stimulation and in patients with rheumatoid arthritis. FASEB J. 2004;18(1):70–80.PubMedGoogle Scholar
  48. 48.
    Spies CM, Bartholome B, Berki T, et al. Membrane glucocorticoid receptors (mGCR) on monocytes are up-regulated after vaccination. Rheumatology (Oxford). 2007;46(2):364–5.Google Scholar
  49. 49.
    Tryc AB, Spies CM, Schneider U, et al. Membrane glucocorticoid receptor expression on peripheral blood mononuclear cells in patients with ankylosing spondylitis. J Rheumatol. 2006;33(11):2249–53.PubMedGoogle Scholar
  50. 50.
    Strehl C, Gaber T, Jakstadt M, et al. High-sensitivity immunofluorescence staining: a comparison of the liposome procedure and the FASER technique on mGR detection. J Fluoresc. 2013;23(3):509–18.PubMedGoogle Scholar
  51. 51.
    Sekula-Neuner S, Maier J, Oppong E, Cato AC, Hirtz M, Fuchs H. Allergen arrays for antibody screening and immune cell activation profiling generated by parallel lipid dip-pen nanolithography. Small. 2012;8(4):585–91.PubMedGoogle Scholar
  52. 52.
    Oppong E, Hedde PN, Sekula-Neuner S, et al. Localization and dynamics of glucocorticoid receptor at the plasma membrane of activated mast cells. Small. 2014;10(10):1991–8.PubMedGoogle Scholar
  53. 53.
    Abraham SM, Lawrence T, Kleiman A, et al. Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J Exp Med. 2006;203(8):1883–9.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Abraham SM, Clark AR. Dual-specificity phosphatase 1: a critical regulator of innate immune responses. Biochem Soc Trans. 2006;34(Pt 6):1018–23.PubMedGoogle Scholar
  55. 55.
    Nissen RM, Yamamoto KR. The glucocorticoid receptor inhibits NFkappaB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 2000;14(18):2314–29.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Rogatsky I, Zarember KA, Yamamoto KR. Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones. EMBO J. 2001;20(21):6071–83.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Rogatsky I, Luecke HF, Leitman DC, Yamamoto KR. Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts. Proc Natl Acad Sci U S A. 2002;99(26):16701–6.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Chopra AR, Louet JF, Saha P, et al. Absence of the SRC-2 coactivator results in a glycogenopathy resembling Von Gierke’s disease. Science. 2008;322(5906):1395–9.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Gehin M, Mark M, Dennefeld C, Dierich A, Gronemeyer H, Chambon P. The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol Cell Biol. 2002;22(16):5923–37.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Patchev AV, Fischer D, Wolf SS, et al. Insidious adrenocortical insufficiency underlies neuroendocrine dysregulation in TIF-2 deficient mice. FASEB J. 2007;21(1):231–8.PubMedGoogle Scholar
  61. 61.
    Chinenov Y, Gupte R, Dobrovolna J, et al. Role of transcriptional coregulator GRIP1 in the anti-inflammatory actions of glucocorticoids. Proc Natl Acad Sci U S A. 2012;109(29):11776–81.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Tuckermann JP, Kleiman A, Moriggl R, et al. Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy. J Clin Invest. 2007;117(5):1381–90.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Matasic R, Dietz AB, Vuk-Pavlovic S. Dexamethasone inhibits dendritic cell maturation by redirecting differentiation of a subset of cells. J Leukoc Biol. 1999;66(6):909–14.PubMedGoogle Scholar
  64. 64.
    Woltman AM, de Fijter JW, Kamerling SW, Paul LC, Daha MR, van Kooten C. The effect of calcineurin inhibitors and corticosteroids on the differentiation of human dendritic cells. Eur J Immunol. 2000;30(7):1807–12.PubMedGoogle Scholar
  65. 65.
    Schwarz BA, Bhandoola A. Trafficking from the bone marrow to the thymus: a prerequisite for thymopoiesis. Immunol Rev. 2006;209:47–57.PubMedGoogle Scholar
  66. 66.
    Broere F, Apasov SG, Sitkovsky MV, van Eden W. T cell subsets and T cell-mediated immunity. 3rd ed. New York: Springer; 2011.Google Scholar
  67. 67.
    Stemberger C, Neuenhahn M, Buchholz VR, Busch DH. Origin of CD8+ effector and memory T cell subsets. Cell Mol Immunol. 2007;4(6):399–405.PubMedGoogle Scholar
  68. 68.
    Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993;260(5107):547–9.PubMedGoogle Scholar
  69. 69.
    Rogge L, D’Ambrosio D, Biffi M, et al. The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. J Immunol. 1998;161(12):6567–74.PubMedGoogle Scholar
  70. 70.
    Ahmed R, Gray D. Immunological memory and protective immunity: understanding their relation. Science. 1996;272(5258):54–60.PubMedGoogle Scholar
  71. 71.
    Flammer JR, Rogatsky I. Minireview: glucocorticoids in autoimmunity: unexpected targets and mechanisms. Mol Endocrinol. 2011;25(7):1075–86.PubMedGoogle Scholar
  72. 72.
    Elenkov IJ. Glucocorticoids and the Th1/Th2 balance. Ann N Y Acad Sci. 2004;1024:138–46.PubMedGoogle Scholar
  73. 73.
    Opferman JT, Korsmeyer SJ. Apoptosis in the development and maintenance of the immune system. Nat Immunol. 2003;4(5):410–5.PubMedGoogle Scholar
  74. 74.
    Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13(15):1899–911.PubMedGoogle Scholar
  75. 75.
    Budd RC. Activation-induced cell death. Curr Opin Immunol. 2001;13(3):356–62.PubMedGoogle Scholar
  76. 76.
    Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275(5303):1132–6.PubMedGoogle Scholar
  77. 77.
    Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997;275(5303):1129–32.PubMedGoogle Scholar
  78. 78.
    Ashwell JD, Lu FW, Vacchio MS. Glucocorticoids in T cell development and function*. Annu Rev Immunol. 2000;18:309–45.PubMedGoogle Scholar
  79. 79.
    Herold MJ, McPherson KG, Reichardt HM. Glucocorticoids in T cell apoptosis and function. Cell Mol Life Sci. 2006;63(1):60–72.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Distelhorst CW. Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ. 2002;9(1):6–19.PubMedGoogle Scholar
  81. 81.
    Zamoyska R, Basson A, Filby A, Legname G, Lovatt M, Seddon B. The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunol Rev. 2003;191:107–18.PubMedGoogle Scholar
  82. 82.
    Palacios EH, Weiss A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene. 2004;23(48):7990–8000.PubMedGoogle Scholar
  83. 83.
    Lowenberg M, Tuynman J, Bilderbeek J, et al. Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood. 2005;106(5):1703–10.PubMedGoogle Scholar
  84. 84.
    Lowenberg M, Verhaar AP, Bilderbeek J, et al. Glucocorticoids cause rapid dissociation of a T-cell-receptor-associated protein complex containing LCK and FYN. EMBO Rep. 2006;7(10):1023–9.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Bartis D, Boldizsar F, Szabo M, Palinkas L, Nemeth P, Berki T. Dexamethasone induces rapid tyrosine-phosphorylation of ZAP-70 in Jurkat cells. J Steroid Biochem Mol Biol. 2006;98(2–3):147–54.PubMedGoogle Scholar
  86. 86.
    Boldizsar F, Szabo M, Kvell K, et al. ZAP-70 tyrosines 315 and 492 transmit non-genomic glucocorticoid (GC) effects in T cells. Mol Immunol. 2013;53(1–2):111–7.PubMedGoogle Scholar
  87. 87.
    Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun. 2010;2(3):216–27.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Hallett JM, Leitch AE, Riley NA, Duffin R, Haslett C, Rossi AG. Novel pharmacological strategies for driving inflammatory cell apoptosis and enhancing the resolution of inflammation. Trends Pharmacol Sci. 2008;29(5):250–7.PubMedGoogle Scholar
  89. 89.
    Savill J. Apoptosis in resolution of inflammation. J Leukoc Biol. 1997;61(4):375–80.PubMedGoogle Scholar
  90. 90.
    Filep JG, El Kebir D. Neutrophil apoptosis: a target for enhancing the resolution of inflammation. J Cell Biochem. 2009;108(5):1039–46.PubMedGoogle Scholar
  91. 91.
    Lacy P. Mechanisms of degranulation in neutrophils. Allergy Asthma Clin Immunol. 2006;2(3):98–108.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Cox G. Glucocorticoid treatment inhibits apoptosis in human neutrophils. Separation of survival and activation outcomes. J Immunol. 1995;154(9):4719–25.PubMedGoogle Scholar
  93. 93.
    Aoki K, Ishida Y, Kikuta N, Kawai H, Kuroiwa M, Sato H. Role of CXC chemokines in the enhancement of LPS-induced neutrophil accumulation in the lung of mice by dexamethasone. Biochem Biophys Res Commun. 2002;294(5):1101–8.PubMedGoogle Scholar
  94. 94.
    Saffar AS, Ashdown H, Gounni AS. The molecular mechanisms of glucocorticoids-mediated neutrophil survival. Curr Drug Targets. 2011;12(4):556–62.PubMedCentralGoogle Scholar
  95. 95.
    Heasman SJ, Giles KM, Ward C, Rossi AG, Haslett C, Dransfield I. Glucocorticoid-mediated regulation of granulocyte apoptosis and macrophage phagocytosis of apoptotic cells: implications for the resolution of inflammation. J Endocrinol. 2003;178(1):29–36.PubMedGoogle Scholar
  96. 96.
    Barnes PJ. Inhaled corticosteroids are not beneficial in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;161(2 Pt 1):342–4. discussion 344.PubMedGoogle Scholar
  97. 97.
    Nakagawa M, Terashima T, D’Yachkova Y, Bondy GP, Hogg JC, van Eeden SF. Glucocorticoid-induced granulocytosis: contribution of marrow release and demargination of intravascular granulocytes. Circulation. 1998;98(21):2307–13.PubMedGoogle Scholar
  98. 98.
    Kraft S, Kinet JP. New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol. 2007;7(5):365–78.PubMedGoogle Scholar
  99. 99.
    Rivera J, Gilfillan AM. Molecular regulation of mast cell activation. J Allergy Clin Immunol. 2006;117(6):1214–25. quiz 1226.PubMedGoogle Scholar
  100. 100.
    Scharenberg AM, Lin S, Cuenod B, Yamamura H, Kinet JP. Reconstitution of interactions between tyrosine kinases and the high affinity IgE receptor which are controlled by receptor clustering. EMBO J. 1995;14(14):3385–94.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Scharenberg AM, Kinet JP. Early events in mast cell signal transduction. Chem Immunol. 1995;61:72–87.PubMedGoogle Scholar
  102. 102.
    Metcalfe DD, Peavy RD, Gilfillan AM. Mechanisms of mast cell signaling in anaphylaxis. J Allergy Clin Immunol. 2009;124(4):639–46. quiz 647-638.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Kassel O, Sancono A, Kratzschmar J, Kreft B, Stassen M, Cato AC. Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J. 2001;20(24):7108–16.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Andrade MV, Hiragun T, Beaven MA. Dexamethasone suppresses antigen-induced activation of phosphatidylinositol 3-kinase and downstream responses in mast cells. J Immunol. 2004;172(12):7254–62.PubMedGoogle Scholar
  105. 105.
    Zhou J, Liu D, Liu C, Kang ZM, Shen XH, Chen YZ, Xu T, Jiang CL. Glucocorticoids inhibit degranulation of mast cells in allergic asthma via nongenomic mechanism. Allergy. 2008;63:1177–85.PubMedGoogle Scholar
  106. 106.
    Liu C, Zhou J, Zhang LD, Wang YX, Kang ZM, Chen YZ, Jiang CL. Rapid inhibitory effect of corticosterone on histamine release from rat peritoneal mast cells. Horm Metab Res. 2007;39:273–7.PubMedGoogle Scholar
  107. 107.
    Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond). 1998;94(6):557–72.Google Scholar
  108. 108.
    Kui Wu YB. Kun Sun and Changzheng Wang IL-10-producing type 1 regulatory T cells and allergy. Cell Mol Immunol. 2007;4(4):269–75.PubMedGoogle Scholar
  109. 109.
    Hawrylowicz CM, O’Garra A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol. 2005;5(4):271–83.PubMedGoogle Scholar
  110. 110.
    Yamagata S, Tomita K, Sano H, et al. Non-genomic inhibitory effect of glucocorticoids on activated peripheral blood basophils through suppression of lipid raft formation. Clin Exp Immunol. 2012;170(1):86–93.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Yoshimura C, Miyamasu M, Nagase H, et al. Glucocorticoids induce basophil apoptosis. J Allergy Clin Immunol. 2001;108(2):215–20.PubMedGoogle Scholar
  112. 112.
    Moser M, De Smedt T, Sornasse T, et al. Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. Eur J Immunol. 1995;25(10):2818–24.PubMedGoogle Scholar
  113. 113.
    Piemonti L, Monti P, Allavena P, et al. Glucocorticoids affect human dendritic cell differentiation and maturation. J Immunol. 1999;162(11):6473–81.PubMedGoogle Scholar
  114. 114.
    Piemonti L, Monti P, Allavena P, Leone BE, Caputo A, Di Carlo V. Glucocorticoid increase the endocytic activity of human dendritic cells. Int Immunol. 1999;11(9):1519–26.PubMedGoogle Scholar
  115. 115.
    Vizzardelli C, Pavelka N, Luchini A, et al. Effects of dexamethazone on LPS-induced activation and migration of mouse dendritic cells revealed by a genome-wide transcriptional analysis. Eur J Immunol. 2006;36(6):1504–15.PubMedGoogle Scholar
  116. 116.
    Gruver-Yates AL, Quinn MA, Cidlowski JA. Analysis of glucocorticoid receptors and their apoptotic response to dexamethasone in male murine B cells during development. Endocrinology. 2014;155(2):463–74.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Cupps TR, Edgar LC, Thomas CA, Fauci AS. Multiple mechanisms of B cell immunoregulation in man after administration of in vivo corticosteroids. J Immunol. 1984;132(1):170–5.PubMedGoogle Scholar
  118. 118.
    Cupps TR, Gerrard TL, Falkoff RJ, Whalen G, Fauci AS. Effects of in vitro corticosteroids on B cell activation, proliferation, and differentiation. J Clin Invest. 1985;75(2):754–61.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Toxicology and GeneticsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations