Regulation of Glucose Homeostasis by Glucocorticoids

  • Taiyi Kuo
  • Allison McQueen
  • Tzu-Chieh Chen
  • Jen-Chywan WangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 872)


Glucocorticoids are steroid hormones that regulate multiple aspects of glucose homeostasis. Glucocorticoids promote gluconeogenesis in liver, whereas in skeletal muscle and white adipose tissue they decrease glucose uptake and utilization by antagonizing insulin response. Therefore, excess glucocorticoid exposure causes hyperglycemia and insulin resistance. Glucocorticoids also regulate glycogen metabolism. In liver, glucocorticoids increase glycogen storage, whereas in skeletal muscle they play a permissive role for catecholamine-induced glycogenolysis and/or inhibit insulin-stimulated glycogen synthesis. Moreover, glucocorticoids modulate the function of pancreatic α and β cells to regulate the secretion of glucagon and insulin, two hormones that play a pivotal role in the regulation of blood glucose levels. Overall, the major glucocorticoid effect on glucose homeostasis is to preserve plasma glucose for brain during stress, as transiently raising blood glucose is important to promote maximal brain function. In this chapter we will discuss the current understanding of the mechanisms underlying different aspects of glucocorticoid-regulated mammalian glucose homeostasis.


Glucocorticoids Glucocorticoid receptor Gluconeogenesis Insulin Glucose utilization Glycogen Pancreas Glucose metabolism 



We thank Drs. Daryl Granner and Richard O’Brien for their insightful comments and suggestions for this chapter. The Wang laboratory is supported by NIH DK83591.


  1. 1.
    Exton JH. Regulation of gluconeogenesis by glucocorticoids. Monogr Endocrinol. 1979;12:535–46.PubMedGoogle Scholar
  2. 2.
    Kraus-Friedmann N. Hormonal regulation of hepatic gluconeogenesis. Physiol Rev. 1984;64:170–259.PubMedGoogle Scholar
  3. 3.
    Di Dalmazi G, Pagotto U, Pasquali R, Vicennati V. Glucocorticoids and type 2 diabetes: from physiology to pathology. J Nutr Metab. 2012;2012:525093. doi: 10.1155/2012/525093.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Kuo T, Harris CA, Wang JC. Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol Cell Endocrinol. 2013;380:79–88. doi: 10.1016/j.mce.2013.03.003.PubMedGoogle Scholar
  5. 5.
    Charmandari E, Tsigos C, Chrousos G. Endocrinology of the stress response. Annu Rev Physiol. 2005;67:259–84. doi: 10.1146/annurev.physiol.67.040403.120816.PubMedGoogle Scholar
  6. 6.
    Andrews RC, Walker BR. Glucocorticoids and insulin resistance: old hormones, new targets. Clin Sci (Lond). 1999;96:513–23.Google Scholar
  7. 7.
    Stalmans W, Laloux M. Glucocorticoids and hepatic glycogen metabolism. Monogr Endocrinol. 1979;12:517–33.PubMedGoogle Scholar
  8. 8.
    Exton JH, Friedmann N, Wong EH, Brineaux JP, Corbin JD, Park CR. Interaction of glucocorticoids with glucagon and epinephrine in the control of gluconeogenesis and glycogenolysis in liver and of lipolysis in adipose tissue. J Biol Chem. 1972;247:3579–88.PubMedGoogle Scholar
  9. 9.
    Ruzzin J, Wagman AS, Jensen J. Glucocorticoid-induced insulin resistance in skeletal muscles: defects in insulin signalling and the effects of a selective glycogen synthase kinase-3 inhibitor. Diabetologia. 2005;48:2119–30. doi: 10.1007/s00125-005-1886-0.PubMedGoogle Scholar
  10. 10.
    Wise JK, Hendler R, Felig P. Influence of glucocorticoids on glucagon secretion and plasma amino acid concentrations in man. J Clin Invest. 1973;52:2774–82. doi: 10.1172/JCI107473.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Rafacho A, Goncalves-Neto LM, Santos-Silva JC, Alonso-Magdalena P, Merino B, Taboga SR, Carneiro EM, Boschero AC, Nadal A, Quesada I. Pancreatic alpha-cell dysfunction contributes to the disruption of glucose homeostasis and compensatory insulin hypersecretion in glucocorticoid-treated rats. PLoS One. 2014;9:e93531. doi: 10.1371/journal.pone.0093531.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Beaudry JL, Riddell MC. Effects of glucocorticoids and exercise on pancreatic beta-cell function and diabetes development. Diabetes Metab Res Rev. 2012;28:560–73. doi: 10.1002/dmrr.2310.PubMedGoogle Scholar
  13. 13.
    Longano CA, Fletcher HP. Insulin release after acute hydrocortisone treatment in mice. Metabolism. 1983;32:603–8.PubMedGoogle Scholar
  14. 14.
    Delaunay F, Khan A, Cintra A, Davani B, Ling ZC, Andersson A, Ostenson CG, Gustafsson J, Efendic S, Okret S. Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. J Clin Invest. 1997;100:2094–8. doi: 10.1172/JCI119743.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Ogawa A, Johnson JH, Ohneda M, McAllister CT, Inman L, Alam T, Unger RH. Roles of insulin resistance and beta-cell dysfunction in dexamethasone-induced diabetes. J Clin Invest. 1992;90:497–504. doi: 10.1172/JCI115886.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Dinneen S, Alzaid A, Miles J, Rizza R. Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans. J Clin Invest. 1993;92:2283–90.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Rafacho A, Cestari TM, Taboga SR, Boschero AC, Bosqueiro JR. High doses of dexamethasone induce increased beta-cell proliferation in pancreatic rat islets. Am J Physiol Endocrinol Metab. 2009;296:E681–9. doi: 10.1152/ajpendo.90931.2008.PubMedGoogle Scholar
  18. 18.
    Morisset J, Jolicoeur L. Effect of hydrocortisone on pancreatic growth in rats. Am J Physiol. 1980;239:G95–8.PubMedGoogle Scholar
  19. 19.
    Like AA, Chick WL. Pancreatic beta cell replication induced by glucocorticoids in subhuman primates. Am J Pathol. 1974;75:329–48.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Ranta F, Avram D, Berchtold S, Dufer M, Drews G, Lang F, Ullrich S. Dexamethasone induces cell death in insulin-secreting cells, an effect reversed by exendin-4. Diabetes. 2006;55:1380–90.PubMedGoogle Scholar
  21. 21.
    Weinhaus AJ, Bhagroo NV, Brelje TC, Sorenson RL. Dexamethasone counteracts the effect of prolactin on islet function: implications for islet regulation in late pregnancy. Endocrinology. 2000;141:1384–93. doi: 10.1210/endo.141.4.7409.PubMedGoogle Scholar
  22. 22.
    Pilkis SJ, el-Maghrabi MR, Claus TH. Hormonal regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Biochem. 1988;57:755–83. doi: 10.1146/ Scholar
  23. 23.
    Pilkis SJ, Granner DK. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol. 1992;54:885–909. doi: 10.1146/ Scholar
  24. 24.
    Jitrapakdee S, Wallace JC. Structure, function and regulation of pyruvate carboxylase. Biochem J. 1999;340(Pt 1):1–16.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Menefee AL, Zeczycki TN. Nearly 50 years in the making: defining the catalytic mechanism of the multifunctional enzyme, pyruvate carboxylase. FEBS J. 2014;281:1333–54. doi: 10.1111/febs.12713.PubMedGoogle Scholar
  26. 26.
    Hanson RW, Garber AJ. Phosphoenolpyruvate carboxykinase. I. Its role in gluconeogenesis. Am J Clin Nutr. 1972;25:1010–21.PubMedGoogle Scholar
  27. 27.
    Hanson RW, Patel YM. Phosphoenolpyruvate carboxykinase (GTP): the gene and the enzyme. Adv Enzymol Relat Areas Mol Biol. 1994;69:203–81.PubMedGoogle Scholar
  28. 28.
    Mendez-Lucas A, Duarte JA, Sunny NE, Satapati S, He T, Fu X, Bermudez J, Burgess SC, Perales JC. PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis. J Hepatol. 2013;59:105–13. doi: 10.1016/j.jhep.2013.02.020.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Stark R, Guebre-Egziabher F, Zhao X, Feriod C, Dong J, Alves TC, Ioja S, Pongratz RL, Bhanot S, Roden M, Cline GW, Shulman GI, Kibbey RG. A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) in the regulation of hepatic gluconeogenesis. J Biol Chem. 2014;289:7257–63. doi: 10.1074/jbc.C113.544759.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Arinze IJ, Garber AJ, Hanson RW. The regulation of gluconeogenesis in mammalian liver. The role of mitochondrial phosphoenolpyruvate carboxykinase. J Biol Chem. 1973;248:2266–74.PubMedGoogle Scholar
  31. 31.
    Cheng SC, Cheng RH. A mitochondrial phosphoenolpyruvate carboxykinase from rat brain. Arch Biochem Biophys. 1972;151:501–11.PubMedGoogle Scholar
  32. 32.
    Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J. 2004;381:561–79. doi: 10.1042/BJ20040752.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Rousseau GG, Hue L. Mammalian 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a bifunctional enzyme that controls glycolysis. Prog Nucleic Acid Res Mol Biol. 1993;45:99–127.PubMedGoogle Scholar
  34. 34.
    Marcus F, Rittenhouse J, Gontero B, Harrsch PB. Function, structure and evolution of fructose-1,6-bisphosphatase. Arch Biol Med Exp. 1987;20:371–8.PubMedGoogle Scholar
  35. 35.
    Burchell A, Waddell ID. The molecular basis of the hepatic microsomal glucose-6-phosphatase system. Biochim Biophys Acta. 1991;1092:129–37.PubMedGoogle Scholar
  36. 36.
    Hutton JC, O’Brien RM. Glucose-6-phosphatase catalytic subunit gene family. J Biol Chem. 2009;284:29241–5. doi: 10.1074/jbc.R109.025544.PubMedCentralPubMedGoogle Scholar
  37. 37.
    van Schaftingen E, Gerin I. The glucose-6-phosphatase system. Biochem J. 2002;362:513–32.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Schneiter P, Tappy L. Kinetics of dexamethasone-induced alterations of glucose metabolism in healthy humans. Am J Physiol. 1998;275:E806–13.PubMedGoogle Scholar
  39. 39.
    Tounian P, Schneiter P, Henry S, Delarue J, Tappy L. Effects of dexamethasone on hepatic glucose production and fructose metabolism in healthy humans. Am J Physiol. 1997;273:E315–20.PubMedGoogle Scholar
  40. 40.
    Exton JH, Miller TB, Harper SC, Park CR. Carbohydrate metabolism in perfused livers of adrenalectomized and steroid-replaced rats. Am J Physiol. 1976;230:163–70.PubMedGoogle Scholar
  41. 41.
    Exton JH, Park CR. Control of gluconeogenesis in the perfused liver of normal and adrenalectomized rats. J Biol Chem. 1965;240:955–7.PubMedGoogle Scholar
  42. 42.
    Sistare FD, Haynes Jr RC. Acute stimulation by glucocorticoids of gluconeogenesis from lactate/pyruvate in isolated hepatocytes from normal and adrenalectomized rats. J Biol Chem. 1985;260:12754–60.PubMedGoogle Scholar
  43. 43.
    Exton JH, Mallette LE, Jefferson LS, Wong EH, Friedmann N, Miller Jr TB, Park CR. The hormonal control of hepatic gluconeogenesis. Recent Prog Horm Res. 1970;26:411–61.PubMedGoogle Scholar
  44. 44.
    Menon RK, Sperling MA. Carbohydrate metabolism. Semin Perinatol. 1988;12:157–62.PubMedGoogle Scholar
  45. 45.
    Imai E, Stromstedt PE, Quinn PG, Carlstedt-Duke J, Gustafsson JA, Granner DK. Characterization of a complex glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol. 1990;10:4712–9.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Scott DK, Stromstedt PE, Wang JC, Granner DK. Further characterization of the glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene. The role of the glucocorticoid receptor-binding sites. Mol Endocrinol. 1998;12:482–91.PubMedGoogle Scholar
  47. 47.
    Scott DK, Mitchell JA, Granner DK. The orphan receptor COUP-TF binds to a third glucocorticoid accessory factor element within the phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem. 1996;271:31909–14.PubMedGoogle Scholar
  48. 48.
    Imai E, Miner JN, Mitchell JA, Yamamoto KR, Granner DK. Glucocorticoid receptor-cAMP response element-binding protein interaction and the response of the phosphoenolpyruvate carboxykinase gene to glucocorticoids. J Biol Chem. 1993;268:5353–6.PubMedGoogle Scholar
  49. 49.
    Hall RK, Sladek FM, Granner DK. The orphan receptors COUP-TF and HNF-4 serve as accessory factors required for induction of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. Proc Natl Acad Sci U S A. 1995;92:412–6.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Hall RK, Scott DK, Noisin EL, Lucas PC, Granner DK. Activation of the phosphoenolpyruvate carboxykinase gene retinoic acid response element is dependent on a retinoic acid receptor/coregulator complex. Mol Cell Biol. 1992;12:5527–35.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Wang XL, Herzog B, Waltner-Law M, Hall RK, Shiota M, Granner DK. The synergistic effect of dexamethasone and all-trans-retinoic acid on hepatic phosphoenolpyruvate carboxykinase gene expression involves the coactivator p300. J Biol Chem. 2004;279:34191–200. doi: 10.1074/jbc.M403455200.PubMedGoogle Scholar
  52. 52.
    Wang JC, Stromstedt PE, O’Brien RM, Granner DK. Hepatic nuclear factor 3 is an accessory factor required for the stimulation of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. Mol Endocrinol. 1996;10:794–800.PubMedGoogle Scholar
  53. 53.
    Zhang K, Li L, Qi Y, Zhu X, Gan B, DePinho RA, Averitt T, Guo S. Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice. Endocrinology. 2012;153:631–46.PubMedGoogle Scholar
  54. 54.
    O’Brien RM, Lucas PC, Forest CD, Magnuson MA, Granner DK. Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription. Science. 1990;249:533–7.PubMedGoogle Scholar
  55. 55.
    Forest CD, O’Brien RM, Lucas PC, Magnuson MA, Granner DK. Regulation of phosphoenolpyruvate carboxykinase gene expression by insulin. Use of the stable transfection approach to locate an insulin responsive sequence. Mol Endocrinol. 1990;4:1302–10. doi: 10.1210/mend-4-9-1302.PubMedGoogle Scholar
  56. 56.
    Nakae J, Kitamura T, Silver DL, Accili D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest. 2001;108:1359–67.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Wolfrum C, Asilmaz E, Luca E, Friedman JM, Stoffel M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature. 2004;432:1027–32. doi: 10.1038/nature03047.PubMedGoogle Scholar
  58. 58.
    Lechner PS, Croniger CM, Hakimi P, Millward C, Fekter C, Yun JS, Hanson RW. The use of transgenic mice to analyze the role of accessory factor two in the regulation of phosphoenolpyruvate carboxykinase (GTP) gene transcription during diabetes. J Biol Chem. 2001;276:22675–9. doi: 10.1074/jbc.M102422200.PubMedGoogle Scholar
  59. 59.
    Scott DK, Mitchell JA, Granner DK. Identification and characterization of the second retinoic acid response element in the phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem. 1996;271:6260–4.PubMedGoogle Scholar
  60. 60.
    Yamada K, Duong DT, Scott DK, Wang JC, Granner DK. CCAAT/enhancer-binding protein beta is an accessory factor for the glucocorticoid response from the cAMP response element in the rat phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem. 1999;274:5880–7.PubMedGoogle Scholar
  61. 61.
    Hall RK, Wang XL, George L, Koch SR, Granner DK. Insulin represses phosphoenolpyruvate carboxykinase gene transcription by causing the rapid disruption of an active transcription complex: a potential epigenetic effect. Mol Endocrinol. 2007;21:550–63. doi: 10.1210/me.2006-0307.PubMedGoogle Scholar
  62. 62.
    Schurter BT, Koh SS, Chen D, Bunick GJ, Harp JM, Hanson BL, Henschen-Edman A, Mackay DR, Stallcup MR, Aswad DW. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry. 2001;40:5747–56.PubMedGoogle Scholar
  63. 63.
    Lee DY, Teyssier C, Strahl BD, Stallcup MR. Role of protein methylation in regulation of transcription. Endocr Rev. 2005;26:147–70.PubMedGoogle Scholar
  64. 64.
    Feng Q, He B, Jung SY, Song Y, Qin J, Tsai SY, Tsai MJ, O’Malley BW. Biochemical control of CARM1 enzymatic activity by phosphorylation. J Biol Chem. 2009;284:36167–74. doi: 10.1074/jbc.M109.065524.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Cassuto H, Kochan K, Chakravarty K, Cohen H, Blum B, Olswang Y, Hakimi P, Xu C, Massillon D, Hanson RW, Reshef L. Glucocorticoids regulate transcription of the gene for phosphoenolpyruvate carboxykinase in the liver via an extended glucocorticoid regulatory unit. J Biol Chem. 2005;280:33873–84. doi: 10.1074/jbc.M504119200.PubMedGoogle Scholar
  66. 66.
    Bernal-Mizrachi C, Weng S, Feng C, Finck BN, Knutsen RH, Leone TC, Coleman T, Mecham RP, Kelly DP, Semenkovich CF. Dexamethasone induction of hypertension and diabetes is PPAR-alpha dependent in LDL receptor-null mice. Nat Med. 2003;9:1069–75.PubMedGoogle Scholar
  67. 67.
    Beale EG, Forest C, Hammer RE. Regulation of cytosolic phosphoenolpyruvate carboxykinase gene expression in adipocytes. Biochimie. 2003;85:1207–11.PubMedGoogle Scholar
  68. 68.
    Olswang Y, Blum B, Cassuto H, Cohen H, Biberman Y, Hanson RW, Reshef L. Glucocorticoids repress transcription of phosphoenolpyruvate carboxykinase (GTP) gene in adipocytes by inhibiting its C/EBP-mediated activation. J Biol Chem. 2003;278:12929–36. doi: 10.1074/jbc.M300263200.PubMedGoogle Scholar
  69. 69.
    Hanson RW, Reshef L. Glyceroneogenesis revisited. Biochimie. 2003;85:1199–205.PubMedGoogle Scholar
  70. 70.
    Cadoudal T, Leroyer S, Reis AF, Tordjman J, Durant S, Fouque F, Collinet M, Quette J, Chauvet G, Beale E, Velho G, Antoine B, Benelli C, Forest C. Proposed involvement of adipocyte glyceroneogenesis and phosphoenolpyruvate carboxykinase in the metabolic syndrome. Biochimie. 2005;87:27–32. doi: 10.1016/j.biochi.2004.12.005.PubMedGoogle Scholar
  71. 71.
    Wang JC, Stromstedt PE, Sugiyama T, Granner DK. The phosphoenolpyruvate carboxykinase gene glucocorticoid response unit: identification of the functional domains of accessory factors HNF3 beta (hepatic nuclear factor-3 beta) and HNF4 and the necessity of proper alignment of their cognate binding sites. Mol Endocrinol. 1999;13:604–18.PubMedGoogle Scholar
  72. 72.
    Stafford JM, Waltner-Law M, Granner DK. Role of accessory factors and steroid receptor coactivator 1 in the regulation of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. J Biol Chem. 2001;276:3811–9. doi: 10.1074/jbc.M009389200.PubMedGoogle Scholar
  73. 73.
    Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003;423:550–5. doi: 10.1038/nature01667.PubMedGoogle Scholar
  74. 74.
    Stafford JM, Wilkinson JC, Beechem JM, Granner DK. Accessory factors facilitate the binding of glucocorticoid receptor to the phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem. 2001;276:39885–91.PubMedGoogle Scholar
  75. 75.
    Vander Kooi BT, Onuma H, Oeser JK, Svitek CA, Allen SR, Vander Kooi CW, Chazin WJ, O’Brien RM. The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and negative glucocorticoid response elements. Mol Endocrinol. 2005;19:3001–22.PubMedGoogle Scholar
  76. 76.
    Onuma H, Vander Kooi BT, Boustead JN, Oeser JK, O’Brien RM. Correlation between FOXO1a (FKHR) and FOXO3a (FKHRL1) binding and the inhibition of basal glucose-6-phosphatase catalytic subunit gene transcription by insulin. Mol Endocrinol. 2006;20:2831–47. doi: 10.1210/me.2006-0085.PubMedGoogle Scholar
  77. 77.
    Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001;413:131–8.PubMedGoogle Scholar
  78. 78.
    Boustead JN, Stadelmaier BT, Eeds AM, Wiebe PO, Svitek CA, Oeser JK, O’Brien RM. Hepatocyte nuclear factor-4 alpha mediates the stimulatory effect of peroxisome proliferator-activated receptor gamma co-activator-1 alpha (PGC-1 alpha) on glucose-6-phosphatase catalytic subunit gene transcription in H4IIE cells. Biochem J. 2003;369:17–22. doi: 10.1042/BJ20021382.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 2007;6:208–16.PubMedGoogle Scholar
  80. 80.
    Hiraiwa H, Chou JY. Glucocorticoids activate transcription of the gene for the glucose-6-phosphate transporter, deficient in glycogen storage disease type 1b. DNA Cell Biol. 2001;20:447–53. doi: 10.1089/104454901316976073.PubMedGoogle Scholar
  81. 81.
    Kallwellis-Opara A, Zaho X, Zimmermann U, Unterman TG, Walther R, Schmoll D. Characterization of cis-elements mediating the stimulation of glucose-6-phosphate transporter promoter activity by glucocorticoids. Gene. 2003;320:59–66.PubMedGoogle Scholar
  82. 82.
    Pierreux CE, Urso B, De Meyts P, Rousseau GG, Lemaigre FP. Inhibition by insulin of glucocorticoid-induced gene transcription: involvement of the ligand-binding domain of the glucocorticoid receptor and independence from the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. Mol Endocrinol. 1998;12:1343–54. doi: 10.1210/mend.12.9.0172.PubMedGoogle Scholar
  83. 83.
    Lemaigre FP, Lause P, Rousseau GG. Insulin inhibits glucocorticoid-induced stimulation of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene transcription. FEBS Lett. 1994;340:221–5.PubMedGoogle Scholar
  84. 84.
    Sutherland C, O’Brien RM, Granner DK. Phosphatidylinositol 3-kinase, but not p70/p85 ribosomal S6 protein kinase, is required for the regulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by insulin. Dissociation of signaling pathways for insulin and phorbol ester regulation of PEPCK gene expression. J Biol Chem. 1995;270:15501–6.PubMedGoogle Scholar
  85. 85.
    Liao J, Barthel A, Nakatani K, Roth RA. Activation of protein kinase B/Akt is sufficient to repress the glucocorticoid and cAMP induction of phosphoenolpyruvate carboxykinase gene. J Biol Chem. 1998;273:27320–4.PubMedGoogle Scholar
  86. 86.
    De Los Pinos E, Fernandez De Mattos S, Joaquin M, Tauler A. Insulin inhibits glucocorticoid-stimulated L-type 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression by activation of the c-Jun N-terminal kinase pathway. Biochem J. 2001;353:267–73.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Patel R, Patel M, Tsai R, Lin V, Bookout AL, Zhang Y, Magomedova L, Li T, Chan JF, Budd C, Mangelsdorf DJ, Cummins CL. LXRbeta is required for glucocorticoid-induced hyperglycemia and hepatosteatosis in mice. J Clin Invest. 2010;121:431–41.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Nader N, Ng SS, Wang Y, Abel BS, Chrousos GP, Kino T. Liver X receptors regulate the transcriptional activity of the glucocorticoid receptor: implications for the carbohydrate metabolism. PLoS One. 2012;7:e26751.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Lu Y, Xiong X, Wang X, Zhang Z, Li J, Shi G, Yang J, Zhang H, Ning G, Li X. Yin Yang 1 promotes hepatic gluconeogenesis through upregulation of glucocorticoid receptor. Diabetes. 2013;62:1064–73. doi: 10.2337/db12-0744.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Renga B, Mencarelli A, D’Amore C, Cipriani S, Baldelli F, Zampella A, Distrutti E, Fiorucci S. Glucocorticoid receptor mediates the gluconeogenic activity of the farnesoid X receptor in the fasting condition. FASEB J. 2012;26:3021–31. doi: 10.1096/fj.11-195701.PubMedGoogle Scholar
  91. 91.
    Molusky MM, Li S, Ma D, Yu L, Lin JD. Ubiquitin-specific protease 2 regulates hepatic gluconeogenesis and diurnal glucose metabolism through 11beta-hydroxysteroid dehydrogenase 1. Diabetes. 2012;61:1025–35. doi: 10.2337/db11-0970.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Ichijo T, Voutetakis A, Cotrim AP, Bhattachryya N, Fujii M, Chrousos GP, Kino T. The Smad6-histone deacetylase 3 complex silences the transcriptional activity of the glucocorticoid receptor: potential clinical implications. J Biol Chem. 2005;280:42067–77. doi: 10.1074/jbc.M509338200.PubMedGoogle Scholar
  93. 93.
    Winkler R, Benz V, Clemenz M, Bloch M, Foryst-Ludwig A, Wardat S, Witte N, Trappiel M, Namsolleck P, Mai K, Spranger J, Matthias G, Roloff T, Truee O, Kappert K, Schupp M, Matthias P, Kintscher U. Histone deacetylase 6 (HDAC6) is an essential modifier of glucocorticoid-induced hepatic gluconeogenesis. Diabetes. 2012;61:513–23. doi: 10.2337/db11-0313.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Ferrannini E, Simonson DC, Katz LD, Reichard Jr G, Bevilacqua S, Barrett EJ, Olsson M, DeFronzo RA. The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism. 1988;37:79–85.PubMedGoogle Scholar
  95. 95.
    DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32 Suppl 2:S157–63.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Morgan SA, Sherlock M, Gathercole LL, Lavery GG, Lenaghan C, Bujalska IJ, Laber D, Yu A, Convey G, Mayers R, Hegyi K, Sethi JK, Stewart PM, Smith DM, Tomlinson JW. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle. Diabetes. 2009;58:2506–15.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Dimitriadis G, Leighton B, Parry-Billings M, Sasson S, Young M, Krause U, Bevan S, Piva T, Wegener G, Newsholme EA. Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle. Biochem J. 1997;321(Pt 3):707–12.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Weinstein SP, Wilson CM, Pritsker A, Cushman SW. Dexamethasone inhibits insulin-stimulated recruitment of GLUT4 to the cell surface in rat skeletal muscle. Metabolism. 1998;47:3–6.PubMedGoogle Scholar
  99. 99.
    Moitra J, Mason MM, Olive M, Krylov D, Gavrilova O, Marcus-Samuels B, Feigenbaum L, Lee E, Aoyama T, Eckhaus M, Reitman ML, Vinson C. Life without white fat: a transgenic mouse. Genes Dev. 1998;12:3168–81.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Ohshima K, Shargill NS, Chan TM, Bray GA. Effects of dexamethasone on glucose transport by skeletal muscles of obese (ob/ob) mice. Int J Obes. 1989;13:155–63.PubMedGoogle Scholar
  101. 101.
    Haluzik M, Dietz KR, Kim JK, Marcus-Samuels B, Shulman GI, Gavrilova O, Reitman ML. Adrenalectomy improves diabetes in A-ZIP/F-1 lipoatrophic mice by increasing both liver and muscle insulin sensitivity. Diabetes. 2002;51:2113–8.PubMedGoogle Scholar
  102. 102.
    Gathercole LL, Bujalska IJ, Stewart PM, Tomlinson JW. Glucocorticoid modulation of insulin signaling in human subcutaneous adipose tissue. J Clin Endocrinol Metab. 2007;92:4332–9.PubMedGoogle Scholar
  103. 103.
    Pivonello R, De Leo M, Vitale P, Cozzolino A, Simeoli C, De Martino MC, Lombardi G, Colao A. Pathophysiology of diabetes mellitus in Cushing’s syndrome. Neuroendocrinology. 2010;92 Suppl 1:77–81.PubMedGoogle Scholar
  104. 104.
    Schakman O, Gilson H, Thissen JP. Mechanisms of glucocorticoid-induced myopathy. J Endocrinol. 2008;197:1–10.PubMedGoogle Scholar
  105. 105.
    Lee YH, White MF. Insulin receptor substrate proteins and diabetes. Arch Pharm Res. 2004;27:361–70.PubMedGoogle Scholar
  106. 106.
    Saad MJ, Folli F, Kahn JA, Kahn CR. Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats. J Clin Invest. 1993;92:2065–72.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Giorgino F, Almahfouz A, Goodyear LJ, Smith RJ. Glucocorticoid regulation of insulin receptor and substrate IRS-1 tyrosine phosphorylation in rat skeletal muscle in vivo. J Clin Invest. 1993;91:2020–30.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Kuo T, Lew MJ, Mayba O, Harris CA, Speed TP, Wang JC. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proc Natl Acad Sci U S A. 2012;109:11160–5. doi: 10.1073/pnas.1111334109.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Backer JM. The regulation of class IA PI 3-kinases by inter-subunit interactions. Curr Top Microbiol Immunol. 2010;346:87–114. doi: 10.1007/82_2010_52.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7. doi: 10.1126/science.296.5573.1655.PubMedGoogle Scholar
  111. 111.
    Barbour LA, Shao J, Qiao L, Leitner W, Anderson M, Friedman JE, Draznin B. Human placental growth hormone increases expression of the p85 regulatory unit of phosphatidylinositol 3-kinase and triggers severe insulin resistance in skeletal muscle. Endocrinology. 2004;145:1144–50.PubMedGoogle Scholar
  112. 112.
    Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes. 2006;55:2392–7.PubMedGoogle Scholar
  113. 113.
    Chagpar RB, Links PH, Pastor MC, Furber LA, Hawrysh AD, Chamberlain MD, Anderson DH. Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A. 2010;107:5471–6. doi: 10.1073/pnas.0908899107.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Terauchi Y, Tsuji Y, Satoh S, Minoura H, Murakami K, Okuno A, Inukai K, Asano T, Kaburagi Y, Ueki K, Nakajima H, Hanafusa T, Matsuzawa Y, Sekihara H, Yin Y, Barrett JC, Oda H, Ishikawa T, Akanuma Y, Komuro I, Suzuki M, Yamamura K, Kodama T, Suzuki H, Yamamura K, Kodama T, Suzuki H, Koyasu S, Aizawa S, Tobe K, Fukui Y, Yazaki Y, Kadowaki T. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 alpha subunit of phosphoinositide 3-kinase. Nat Genet. 1999;21:230–5. doi: 10.1038/6023.PubMedGoogle Scholar
  115. 115.
    Mauvais-Jarvis F, Ueki K, Fruman DA, Hirshman MF, Sakamoto K, Goodyear LJ, Iannacone M, Accili D, Cantley LC, Kahn CR. Reduced expression of the murine p85alpha subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. J Clin Invest. 2002;109:141–9.PubMedCentralPubMedGoogle Scholar
  116. 116.
    Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM. Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes. 2005;54:2351–9.PubMedGoogle Scholar
  117. 117.
    Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, Nelson DH, Karathanasis SK, Fontenot GK, Birnbaum MJ, Summers SA. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 2007;5:167–79.PubMedGoogle Scholar
  118. 118.
    Chavez JA, Summers SA. A ceramide-centric view of insulin resistance. Cell Metab. 2012;15:585–94. doi: 10.1016/j.cmet.2012.04.002.PubMedGoogle Scholar
  119. 119.
    Tappy L, Randin D, Vollenweider P, Vollenweider L, Paquot N, Scherrer U, Schneiter P, Nicod P, Jequier E. Mechanisms of dexamethasone-induced insulin resistance in healthy humans. J Clin Endocrinol Metab. 1994;79:1063–9.PubMedGoogle Scholar
  120. 120.
    Sugden MC, Holness MJ. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab. 2003;284:E855–62. doi: 10.1152/ajpendo.00526.2002.PubMedGoogle Scholar
  121. 121.
    Connaughton S, Chowdhury F, Attia RR, Song S, Zhang Y, Elam MB, Cook GA, Park EA. Regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) gene expression by glucocorticoids and insulin. Mol Cell Endocrinol. 2010;315:159–67. doi: 10.1016/j.mce.2009.08.011.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Kwon HS, Huang B, Unterman TG, Harris RA. Protein kinase B-alpha inhibits human pyruvate dehydrogenase kinase-4 gene induction by dexamethasone through inactivation of FOXO transcription factors. Diabetes. 2004;53:899–910.PubMedGoogle Scholar
  123. 123.
    Bazuine M, Carlotti F, Tafrechi RS, Hoeben RC, Maassen JA. Mitogen-activated protein kinase (MAPK) phosphatase-1 and -4 attenuate p38 MAPK during dexamethasone-induced insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol. 2004;18:1697–707.PubMedGoogle Scholar
  124. 124.
    Sakoda H, Ogihara T, Anai M, Funaki M, Inukai K, Katagiri H, Fukushima Y, Onishi Y, Ono H, Fujishiro M, Kikuchi M, Oka Y, Asano T. Dexamethasone-induced insulin resistance in 3T3-L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction. Diabetes. 2000;49:1700–8.PubMedGoogle Scholar
  125. 125.
    Yu CY, Mayba O, Lee JV, Tran J, Harris C, Speed TP, Wang JC. Genome-wide analysis of glucocorticoid receptor binding regions in adipocytes reveal gene network involved in triglyceride homeostasis. PLoS One. 2010;5:e15188.PubMedCentralPubMedGoogle Scholar
  126. 126.
    Hazlehurst JM, Gathercole LL, Nasiri M, Armstrong MJ, Borrows S, Yu J, Wagenmakers AJ, Stewart PM, Tomlinson JW. Glucocorticoids fail to cause insulin resistance in human subcutaneous adipose tissue in vivo. J Clin Endocrinol Metab. 2013;98:1631–40. doi: 10.1210/jc.2012-3523.PubMedGoogle Scholar
  127. 127.
    Gathercole LL, Morgan SA, Bujalska IJ, Stewart PM, Tomlinson JW. Short- and long-term glucocorticoid treatment enhances insulin signalling in human subcutaneous adipose tissue. Nutr Diabetes. 2011;1:e3. doi: 10.1038/nutd.2010.3.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Buentke E, Nordstrom A, Lin H, Bjorklund AC, Laane E, Harada M, Lu L, Tegnebratt T, Stone-Elander S, Heyman M, Soderhall S, Porwit A, Ostenson CG, Shoshan M, Tamm KP, Grander D. Glucocorticoid-induced cell death is mediated through reduced glucose metabolism in lymphoid leukemia cells. Blood Cancer J. 2011;1:e31. doi: 10.1038/bcj.2011.27.PubMedCentralPubMedGoogle Scholar
  129. 129.
    de Leon MJ, McRae T, Rusinek H, Convit A, De Santi S, Tarshish C, Golomb J, Volkow N, Daisley K, Orentreich N, McEwen B. Cortisol reduces hippocampal glucose metabolism in normal elderly, but not in Alzheimer’s disease. J Clin Endocrinol Metab. 1997;82:3251–9. doi: 10.1210/jcem.82.10.4305.PubMedGoogle Scholar
  130. 130.
    Horner HC, Packan DR, Sapolsky RM. Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia. Neuroendocrinology. 1990;52:57–64.PubMedGoogle Scholar
  131. 131.
    Cherian AK, Briski KP. Effects of adrenalectomy on neuronal substrate fuel transporter and energy transducer gene expression in hypothalamic and hindbrain metabolic monitoring sites. Neuroendocrinology. 2010;91:56–63. doi: 10.1159/000264919.PubMedGoogle Scholar
  132. 132.
    Mersmann HJ, Segal HL. Glucocorticoid control of the liver glycogen synthetase-activating system. J Biol Chem. 1969;244:1701–4.PubMedGoogle Scholar
  133. 133.
    Ray PD, Foster DO, Lardy HA. Mode of action of glucocorticoids. I. Stimulation of gluconeogenesis independent of synthesis de novo of enzymes. J Biol Chem. 1964;239:3396–400.PubMedGoogle Scholar
  134. 134.
    De Wulf H, Hers HG. The stimulation of glycogen synthesis and of glycogen synthetase in the liver by glucocorticoids. Eur J Biochem. 1967;2:57–60.PubMedGoogle Scholar
  135. 135.
    Huang TS, Krebs EG. Amino acid sequence of a phosphorylation site in skeletal muscle glycogen synthetase. Biochem Biophys Res Commun. 1977;75:643–50.PubMedGoogle Scholar
  136. 136.
    Rylatt DB, Aitken A, Bilham T, Condon GD, Embi N, Cohen P. Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3, and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase kinase. Eur J Biochem. 1980;107:529–37.PubMedGoogle Scholar
  137. 137.
    Pugazhenthi S, Khandelwal RL. Regulation of glycogen synthase activation in isolated hepatocytes. Mol Cell Biochem. 1995;149–150:95–101.PubMedGoogle Scholar
  138. 138.
    Brady MJ, Nairn AC, Saltiel AR. The regulation of glycogen synthase by protein phosphatase 1 in 3T3-L1 adipocytes. Evidence for a potential role for DARPP-32 in insulin action. J Biol Chem. 1997;272:29698–703.PubMedGoogle Scholar
  139. 139.
    Printen JA, Brady MJ, Saltiel AR. PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science. 1997;275:1475–8.PubMedGoogle Scholar
  140. 140.
    Laloux M, Stalmans W, Hers HG. On the mechanism by which glucocorticoids cause the activation of glycogen synthase in mouse and rat livers. Eur J Biochem. 1983;136:175–81.PubMedGoogle Scholar
  141. 141.
    Vanstapel F, Dopere F, Stalmans W. The role of glycogen synthase phosphatase in the glucocorticoid-induced deposition of glycogen in foetal rat liver. Biochem J. 1980;192:607–12.PubMedCentralPubMedGoogle Scholar
  142. 142.
    Green GA, Chenoweth M, Dunn A. Adrenal glucocorticoid permissive regulation of muscle glycogenolysis: action on protein phosphatase(s) and its inhibitor(s). Proc Natl Acad Sci U S A. 1980;77:5711–5.PubMedCentralPubMedGoogle Scholar
  143. 143.
    Salehzadeh F, Al-Khalili L, Kulkarni SS, Wang M, Lonnqvist F, Krook A. Glucocorticoid-mediated effects on metabolism are reversed by targeting 11 beta hydroxysteroid dehydrogenase type 1 in human skeletal muscle. Diabetes Metab Res Rev. 2009;25:250–8. doi: 10.1002/dmrr.944.PubMedGoogle Scholar
  144. 144.
    Miller TB, Exton JH, Park CR. A block in epinephrine-induced glycogenolysis in hearts from adrenalectomized rats. J Biol Chem. 1971;246:3672–8.PubMedGoogle Scholar
  145. 145.
    Puthanveetil P, Rodrigues B. Glucocorticoid excess induces accumulation of cardiac glycogen and triglyceride: suggested role for AMPK. Curr Pharm Des. 2013;19:4818–30.PubMedGoogle Scholar
  146. 146.
    Baltrons MA, Agullo L, Garcia A. Dexamethasone up-regulates a constitutive nitric oxide synthase in cerebellar astrocytes but not in granule cells in culture. J Neurochem. 1995;64:447–50.PubMedGoogle Scholar
  147. 147.
    Binnert C, Ruchat S, Nicod N, Tappy L. Dexamethasone-induced insulin resistance shows no gender difference in healthy humans. Diabetes Metab. 2004;30:321–6.PubMedGoogle Scholar
  148. 148.
    Rafacho A, Marroqui L, Taboga SR, Abrantes JL, Silveira LR, Boschero AC, Carneiro EM, Bosqueiro JR, Nadal A, Quesada I. Glucocorticoids in vivo induce both insulin hypersecretion and enhanced glucose sensitivity of stimulus-secretion coupling in isolated rat islets. Endocrinology. 2010;151:85–95. doi: 10.1210/en.2009-0704.PubMedGoogle Scholar
  149. 149.
    Besse C, Nicod N, Tappy L. Changes in insulin secretion and glucose metabolism induced by dexamethasone in lean and obese females. Obes Res. 2005;13:306–11. doi: 10.1038/oby.2005.41.PubMedGoogle Scholar
  150. 150.
    Fransson L, Franzen S, Rosengren V, Wolbert P, Sjoholm A, Ortsater H. beta-Cell adaptation in a mouse model of glucocorticoid-induced metabolic syndrome. J Endocrinol. 2013;219:231–41. doi: 10.1530/JOE-13-0189.PubMedGoogle Scholar
  151. 151.
    Jeong IK, Oh SH, Kim BJ, Chung JH, Min YK, Lee MS, Lee MK, Kim KW. The effects of dexamethasone on insulin release and biosynthesis are dependent on the dose and duration of treatment. Diabetes Res Clin Pract. 2001;51:163–71.PubMedGoogle Scholar
  152. 152.
    van Raalte DH, Nofrate V, Bunck MC, van Iersel T, Elassaiss Schaap J, Nassander UK, Heine RJ, Mari A, Dokter WH, Diamant M. Acute and 2-week exposure to prednisolone impair different aspects of beta-cell function in healthy men. Eur J Endocrinol. 2010;162:729–35. doi: 10.1530/EJE-09-1034.PubMedGoogle Scholar
  153. 153.
    Gremlich S, Roduit R, Thorens B. Dexamethasone induces posttranslational degradation of GLUT2 and inhibition of insulin secretion in isolated pancreatic beta cells. Comparison with the effects of fatty acids. J Biol Chem. 1997;272:3216–22.PubMedGoogle Scholar
  154. 154.
    Borboni P, Porzio O, Magnaterra R, Fusco A, Sesti G, Lauro R, Marlier LN. Quantitative analysis of pancreatic glucokinase gene expression in cultured beta cells by competitive polymerase chain reaction. Mol Cell Endocrinol. 1996;117:175–81.PubMedGoogle Scholar
  155. 155.
    Goodman PA, Medina-Martinez O, Fernandez-Mejia C. Identification of the human insulin negative regulatory element as a negative glucocorticoid response element. Mol Cell Endocrinol. 1996;120:139–46.PubMedGoogle Scholar
  156. 156.
    Sharma S, Jhala US, Johnson T, Ferreri K, Leonard J, Montminy M. Hormonal regulation of an islet-specific enhancer in the pancreatic homeobox gene STF-1. Mol Cell Biol. 1997;17:2598–604.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Khan A, Ostenson CG, Berggren PO, Efendic S. Glucocorticoid increases glucose cycling and inhibits insulin release in pancreatic islets of ob/ob mice. Am J Physiol. 1992;263:E663–6.PubMedGoogle Scholar
  158. 158.
    Ullrich S, Berchtold S, Ranta F, Seebohm G, Henke G, Lupescu A, Mack AF, Chao CM, Su J, Nitschke R, Alexander D, Friedrich B, Wulff P, Kuhl D, Lang F. Serum- and glucocorticoid-inducible kinase 1 (SGK1) mediates glucocorticoid-induced inhibition of insulin secretion. Diabetes. 2005;54:1090–9.PubMedGoogle Scholar
  159. 159.
    Negrato CA, Jovanovic L, Rafacho A, Tambascia MA, Geloneze B, Dias A, Rudge MV. Association between different levels of dysglycemia and metabolic syndrome in pregnancy. Diabetol Metab Syndr. 2009;1:3. doi: 10.1186/1758-5996-1-3.PubMedCentralPubMedGoogle Scholar
  160. 160.
    Rafacho A, Quallio S, Ribeiro DL, Taboga SR, Paula FM, Boschero AC, Bosqueiro JR. The adaptive compensations in endocrine pancreas from glucocorticoid-treated rats are reversible after the interruption of treatment. Acta Physiol. 2010;200:223–35. doi: 10.1111/j.1748-1716.2010.02146.x.Google Scholar
  161. 161.
    Rafacho A, Abrantes JL, Ribeiro DL, Paula FM, Pinto ME, Boschero AC, Bosqueiro JR. Morphofunctional alterations in endocrine pancreas of short- and long-term dexamethasone-treated rats. Horm Metab Res. 2011;43:275–81. doi: 10.1055/s-0030-1269896.PubMedGoogle Scholar
  162. 162.
    Rafacho A, Giozzet VA, Boschero AC, Bosqueiro JR. Functional alterations in endocrine pancreas of rats with different degrees of dexamethasone-induced insulin resistance. Pancreas. 2008;36:284–93. doi: 10.1097/MPA.0b013e31815ba826.PubMedGoogle Scholar
  163. 163.
    Huising MO, Pilbrow AP, Matsumoto M, van der Meulen T, Park H, Vaughan JM, Lee S, Vale WW. Glucocorticoids differentially regulate the expression of CRFR1 and CRFR2alpha in MIN6 insulinoma cells and rodent islets. Endocrinology. 2011;152:138–50. doi: 10.1210/en.2010-0791.PubMedCentralPubMedGoogle Scholar
  164. 164.
    Huising MO, van der Meulen T, Vaughan JM, Matsumoto M, Donaldson CJ, Park H, Billestrup N, Vale WW. CRFR1 is expressed on pancreatic beta cells, promotes beta cell proliferation, and potentiates insulin secretion in a glucose-dependent manner. Proc Natl Acad Sci U S A. 2010;107:912–7. doi: 10.1073/pnas.0913610107.PubMedCentralPubMedGoogle Scholar
  165. 165.
    Reich E, Tamary A, Sionov RV, Melloul D. Involvement of thioredoxin-interacting protein (TXNIP) in glucocorticoid-mediated beta cell death. Diabetologia. 2012;55:1048–57. doi: 10.1007/s00125-011-2422-z.PubMedGoogle Scholar
  166. 166.
    Avram D, Ranta F, Hennige AM, Berchtold S, Hopp S, Haring HU, Lang F, Ullrich S. IGF-1 protects against dexamethasone-induced cell death in insulin secreting INS-1 cells independent of AKT/PKB phosphorylation. Cell Physiol Biochem. 2008;21:455–62. doi: 10.1159/000129638.PubMedGoogle Scholar
  167. 167.
    Fransson L, Rosengren V, Saha TK, Grankvist N, Islam T, Honkanen RE, Sjoholm A, Ortsater H. Mitogen-activated protein kinases and protein phosphatase 5 mediate glucocorticoid-induced cytotoxicity in pancreatic islets and beta-cells. Mol Cell Endocrinol. 2014;383:126–36. doi: 10.1016/j.mce.2013.12.010.PubMedGoogle Scholar
  168. 168.
    Bodwell JE, Webster JC, Jewell CM, Cidlowski JA, Hu JM, Munck A. Glucocorticoid receptor phosphorylation: overview, function and cell cycle-dependence. J Steroid Biochem Mol Biol. 1998;65:91–9.PubMedGoogle Scholar
  169. 169.
    Ismaili N, Garabedian MJ. Modulation of glucocorticoid receptor function via phosphorylation. Ann N Y Acad Sci. 2004;1024:86–101. doi: 10.1196/annals.1321.007.PubMedGoogle Scholar
  170. 170.
    Rogatsky I, Logan SK, Garabedian MJ. Antagonism of glucocorticoid receptor transcriptional activation by the c-Jun N-terminal kinase. Proc Natl Acad Sci U S A. 1998;95:2050–5.PubMedCentralPubMedGoogle Scholar
  171. 171.
    Roma LP, Oliveira CA, Carneiro EM, Albuquerque GG, Boschero AC, Souza KL. N-acetylcysteine protects pancreatic islet against glucocorticoid toxicity. Redox Rep. 2011;16:173–80. doi: 10.1179/1351000211Y.0000000006.PubMedGoogle Scholar
  172. 172.
    Yamamoto M, Yamato E, Toyoda S, Tashiro F, Ikegami H, Yodoi J, Miyazaki J. Transgenic expression of antioxidant protein thioredoxin in pancreatic beta cells prevents progression of type 2 diabetes mellitus. Antioxid Redox Signal. 2008;10:43–9. doi: 10.1089/ars.2007.1586.PubMedGoogle Scholar
  173. 173.
    Wang Z, Rong YP, Malone MH, Davis MC, Zhong F, Distelhorst CW. Thioredoxin-interacting protein (txnip) is a glucocorticoid-regulated primary response gene involved in mediating glucocorticoid-induced apoptosis. Oncogene. 2006;25:1903–13. doi: 10.1038/sj.onc.1209218.PubMedGoogle Scholar
  174. 174.
    Quesada I, Tuduri E, Ripoll C, Nadal A. Physiology of the pancreatic alpha-cell and glucagon secretion: role in glucose homeostasis and diabetes. J Endocrinol. 2008;199:5–19. doi: 10.1677/JOE-08-0290.PubMedGoogle Scholar
  175. 175.
    Everett LJ, Lazar MA. Cell-specific integration of nuclear receptor function at the genome. Wiley Interdiscip Rev Syst Biol Med. 2013;5:615–29. doi: 10.1002/wsbm.1231.PubMedCentralPubMedGoogle Scholar
  176. 176.
    Hah N, Danko CG, Core L, Waterfall JJ, Siepel A, Lis JT, Kraus WL. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell. 2011;145:622–34. doi: 10.1016/j.cell.2011.03.042.PubMedCentralPubMedGoogle Scholar
  177. 177.
    Hah N, Kraus WL. Hormone-regulated transcriptomes: lessons learned from estrogen signaling pathways in breast cancer cells. Mol Cell Endocrinol. 2014;382:652–64. doi: 10.1016/j.mce.2013.06.021.PubMedGoogle Scholar
  178. 178.
    Madsen JG, Schmidt SF, Larsen BD, Loft A, Nielsen R, Mandrup S. iRNA-seq: computational method for genome-wide assessment of acute transcriptional regulation from total RNA-seq data. Nucleic Acids Res. 2015;43(6):e40. doi: 10.1093/nar/gku1365.PubMedCentralPubMedGoogle Scholar
  179. 179.
    Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. eLife. 2013;2:e00471. doi: 10.7554/eLife.00471.PubMedCentralPubMedGoogle Scholar
  180. 180.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6. doi: 10.1126/science.1232033.PubMedCentralPubMedGoogle Scholar
  181. 181.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23. doi: 10.1126/science.1231143.PubMedCentralPubMedGoogle Scholar
  182. 182.
    Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31:230–2. doi: 10.1038/nbt.2507.PubMedGoogle Scholar
  183. 183.
    Yang H, Wang H, Jaenisch R. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc. 2014;9:1956–68. doi: 10.1038/nprot.2014.134.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Taiyi Kuo
    • 1
  • Allison McQueen
    • 1
  • Tzu-Chieh Chen
    • 1
  • Jen-Chywan Wang
    • 2
    Email author
  1. 1.Department of Nutritional Sciences and ToxicologyUniversity of California BerkeleyBerkeleyUSA
  2. 2.Department of Nutritional Sciences and ToxicologyUniversity of California BerkeleyBerkeleyUSA

Personalised recommendations