Advertisement

The Geometry and Moduli of K3 Surfaces

  • Andrew Harder
  • Alan ThompsonEmail author
Part of the Fields Institute Monographs book series (FIM, volume 34)

Abstract

These notes will give an introduction to the theory of K3 surfaces. We begin with some general results on K3 surfaces, including the construction of their moduli space and some of its properties. We then move on to focus on the theory of polarized K3 surfaces, studying their moduli, degenerations and the compactification problem. This theory is then further enhanced to a discussion of lattice polarized K3 surfaces, which provide a rich source of explicit examples, including a large class of lattice polarizations coming from elliptic fibrations. Finally, we conclude by discussing the ample and Kähler cones of K3 surfaces, and give some of their applications.

Notes

Acknowledgements

A part of these notes were written while A. Thompson was in residence at the Fields Institute Thematic Program on Calabi-Yau Varieties: Arithmetic, Geometry and Physics; he would like to thank the Fields Institute for their support and hospitality. A. Harder was supported by an NSERC PGS D scholarship and a University of Alberta Doctoral Recruitment Scholarship. A. Thompson was supported by a Fields-Ontario-PIMS postdoctoral fellowship with funding provided by NSERC, the Ontario Ministry of Training, Colleges and Universities, and an Alberta Advanced Education and Technology Grant.

References

  1. 1.
    Alexeev, V.: Log canonical singularities and complete moduli of stable pairs. Preprint, August 1996. arXiv:alg-geom/9608013 Google Scholar
  2. 2.
    Alexeev, V.: Moduli spaces M g, n(W) for surfaces. In: Higher-Dimensional Complex Varieties (Trento, 1994), pp. 1–22. de Gruyter, Berlin (1996)Google Scholar
  3. 3.
    Alexeev, V.: Higher-dimensional analogues of stable curves. In: International Congress of Mathematicians, vol. II, pp. 515–536. European Mathematical Society, Zürich (2006)Google Scholar
  4. 4.
    Artebani, M., Sarti, A., Taki, S.: K3 surfaces with non-symplectic automorphisms of prime order. Math. Z. 268(1–2), 507–533 (2011). With an appendix by Shigeyuki KondōGoogle Scholar
  5. 5.
    Ash, A., Mumford, D., Rapoport, M., Tai, Y.-S.: Smooth Compactification of Locally Symmetric Varieties. Lie Groups: History, Frontiers and Applications, vol. IV. Mathematical Science Press, Brookline (1975)zbMATHGoogle Scholar
  6. 6.
    Baily, W.L., Jr. Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math. (2) 84:442–528 (1966)Google Scholar
  7. 7.
    Barth, W.P., Hulek, K., Peters, C.A.M., van de Ven, A.: Compact Complex Surfaces. Volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Fogle, A Series of Modern Surveys in Mathematics, 2nd edn. Springer, Berlin/New York (2004)Google Scholar
  8. 8.
    Beauville, A.: Fano threefolds and K3 surfaces. In: The Fano Conference, pp. 175–184. Univ. Torino, Turin (2004)Google Scholar
  9. 9.
    Belcastro, S.-M.: Picard lattices of families of K3 surfaces. Commun. Algebra 30(1), 61–82 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Clingher, A., Doran, C.F.: Modular invariants for lattice polarized K3 surfaces. Michigan Math. J. 55(2), 355–393 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Clingher, A., Doran, C.F., Lewis, J., Whitcher, U.: Normal forms, K3 surface moduli and modular parametrizations. In: Groups and Symmetries. Volume 47 of CRM Proceedings and Lecture Notes, pp. 81–98. American Mathematical Society, Providence (2009)Google Scholar
  12. 12.
    Cossec, F.R., Dolgachev, I.V.: Enriques Surfaces. I. Volume 76 of Progress in Mathematics. Birkhäuser, Boston (1989)Google Scholar
  13. 13.
    Dolgachev, I.V.: Integral quadratic forms: applications to algebraic geometry (after V. Nikulin). In: Bourbaki Seminar, Vol. 1982/83. Volume 105 of Astérisque, pp. 251–278. Société mathématique de France, Paris (1983)Google Scholar
  14. 14.
    Dolgachev, I.V.: Mirror symmetry for lattice polarised K3 surfaces. J. Math. Sci. 81(3), 2599–2630 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Elkies, N.: Shimura curve computations via K3 surfaces of Néron-Severi rank at least 19. In: Algorithmic Number Theory. Volume 5011 of Lecture Notes in Computer Science, pp. 196–211. Springer, Berlin (2008)Google Scholar
  16. 16.
    Elkies, N., Kumar, A.: K3 surfaces and equations for Hilbert modular surfaces. Algebra Number Theory 8(10), 2297–2411 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Friedman, R.: A new proof of the global Torelli theorem for K3 surfaces. Ann. Math. (2) 120(2), 237–269 (1984)Google Scholar
  18. 18.
    Friedman, R.: The period map at the boundary of moduli. In: Griffiths, P. (ed.) Topics in Transcendental Algebraic Geometry (Princeton, N.J., 1981/1982). Volume 106 of Annals of Mathematics Studies, pp. 183–208. Princeton University Press, Princeton (1984)Google Scholar
  19. 19.
    Friedman, R., Morgan, J.W.: Smooth Four-Manifolds and Complex Surfaces. Volume 27 of Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Fogle, A Series of Modern Surveys in Mathematics. Springer, Berlin/New York (1994)Google Scholar
  20. 20.
    Friedman, R., Morrison, D.: The birational geometry of degenerations: an overview. In: Friedman, R., Morrison, D. (eds.) The Birational Geometry of Degenerations. Number 29 in Progress in Mathematics, pp. 1–32. Birkhäuser, Boston (1983)Google Scholar
  21. 21.
    Galluzzi, F., Lombardo, G.: Correspondences between K3 surfaces. Michigan Math. J. 52(2), 267–277 (2004). With an appendix by I. V. DolgachevGoogle Scholar
  22. 22.
    Galluzzi, F., Lombardo, G., Peters, C.: Automorphs of indefinite binary quadratic forms and K3-surfaces with Picard number 2. Rend. Semin. Mat. Univ. Politec. Torino 68(1), 57–77 (2010)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Gritsenko, V., Hulek, K., Sankaran, G.K.: Moduli of K3 surfaces and irreducible symplectic manifolds. In: Farkas, G., Morrison, I. (eds.) Handbook of Moduli, Vol. I. Number 24 in Advanced Lectures in Mathematics, pp. 459–526. International Press, Somerville (2013)Google Scholar
  24. 24.
    Hartshorne, R.: Algebraic Geometry. Volume 52 of Graduate Texts in Mathematics. Springer, New York (1977)Google Scholar
  25. 25.
    Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Volume 80 of Pure and Applied Mathematics. Academic, New York (1978)Google Scholar
  26. 26.
    Huybrechts, D.: Lectures on K3 surfaces. Lecture Notes (January 2014). http://www.math.uni-bonn.de/people/huybrech/K3Global.pdf
  27. 27.
    Iano-Fletcher, A.R.: Working with weighted complete intersections. In: Explicit Birational Geometry of 3-Folds. Volume 281 of London Mathematical Society Lecture Note Series, pp. 101–173. Cambridge University Press, Cambridge/New York (2000)Google Scholar
  28. 28.
    Inose, H.: Defining equations of singular K3 surfaces and a notion of isogeny. In: Proceedings of the International Symposium on Algebraic Geometry (Kyoto University, Kyoto, 1977), pp. 495–502 (1978). Kinokuniya Book Store, TokyoGoogle Scholar
  29. 29.
    Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.: Toroidal Embeddings I. Volume 339 of Lecture Notes in Mathematics Springer, Berlin/Heidelberg (1973)Google Scholar
  30. 30.
    Kodaira, K.: On compact complex analytic surfaces, I. Ann. Math. (2) 71, 111–152 (1960)Google Scholar
  31. 31.
    Kodaira, K.: On compact analytic surfaces: II. Ann. Math. (2) 77, 563–626 (1963)Google Scholar
  32. 32.
    Kodaira, K.: On compact analytic surfaces, III. Ann. Math. (2) 78, 1–40 (1963)Google Scholar
  33. 33.
    Kollár, J., Shepherd-Barron, N.: Threefolds and deformations of surface singularities. Invent. Math. 91(2), 299–338 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Kondō, S.: Algebraic K3 surfaces with finite automorphism groups. Nagoya Math. J. 116, 1–15 (1989)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Kuga, M., Satake, I.: Abelian varieties attached to polarized K 3-surfaces. Math. Ann. 169, 239–242 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Kulikov, V.: Degenerations of K3 surfaces and Enriques surfaces. Math. USSR Izv. 11(5), 957–989 (1977)CrossRefzbMATHGoogle Scholar
  37. 37.
    Kulikov, V.: On modifications of degenerations of surfaces with \(\kappa = 0\). Math. USSR Izv. 17(2), 339–342 (1981)CrossRefzbMATHGoogle Scholar
  38. 38.
    Laufer, H.B.: On minimally elliptic singularities. Am. J. Math. 99(6), 1257–1295 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Laza, R.: The KSBA compactification for the moduli space of degree two K3 pairs (2012, preprint). arXiv:1205.3144 Google Scholar
  40. 40.
    Ma, X., Marinescu, G.: Characterization of Moishezon manifolds. In: Holomorphic Morse Inequalities and Bergman Kernels. Number 254 in Progress in Mathematics, pp. 69–126. Birkhäuser, Basel (2007)Google Scholar
  41. 41.
    Mayer, A.L.: Families of K − 3 surfaces. Nagoya Math. J. 48, 1–17 (1972)MathSciNetGoogle Scholar
  42. 42.
    Miranda, R.: The Basic Theory of Elliptic Surfaces. Dottorato di Ricerca in Matematica [Doctorate in Mathematical Research]. ETS Editrice, Pisa (1989)Google Scholar
  43. 43.
    Morrison, D.: Some remarks on the moduli of K3 surfaces. In: Classification of Algebraic and Analytic Manifolds (Katata, 1982). Volume 39 of Progress in Mathematics, pp. 303–332. Birkhäuser, Basel (1983)Google Scholar
  44. 44.
    Morrison, D.: On K3 surfaces with large Picard number. Invent. Math. 75(1), 105–121 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Morrow, J., Kodaira, K.: Complex Manifolds. Holt, Rinehart and Winston, New York/Montreal/London (1971)zbMATHGoogle Scholar
  46. 46.
    Mukai, S.: Finite groups of automorphisms of K3 surfaces and the Mathieu group. Invent. Math. 94(1), 183–221 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Namikawa, Y.: Toroidal Compactification of Siegel Spaces. Volume 812 of Lecture Notes in Mathematics Springer, Berlin/New York (1980)Google Scholar
  48. 48.
    Nikulin, V.V.: Finite automorphism groups of Kähler K3 surfaces. Trans. Moscow Math. Soc. 38(2), 71–135 (1980)Google Scholar
  49. 49.
    Nikulin, V.V.: Integral symmetric bilinear forms and some of their applications. Math. USSR Izv. 14(1), 103–167 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Nikulin, V.V.: Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections. Algebrogeometric applications. J. Soviet Math. 22(4), 1401–1475 (1983)CrossRefzbMATHGoogle Scholar
  51. 51.
    Nikulin, V.V.: Surfaces of type K3 with finite group of automorphisms and Picard group of rank three. Proc. Steklov Inst. Math. 165, 131–155 (1985)Google Scholar
  52. 52.
    Persson, U.: On degenerations of algebraic surfaces. Mem. Am. Math. Soc. 11(189) (1977)Google Scholar
  53. 53.
    Persson, U., Pinkham, H.: Degenerations of surfaces with trivial canonical bundle. Ann. Math. (2) 113(1), 45–66 (1981)Google Scholar
  54. 54.
    Pjateckiĭ-Šapiro, I.I., Šafarevič, I.R.: A Torelli theorem for algebraic surfaces of type K3. Math. USSR Izv. 5(3), 547–588 (1971)CrossRefGoogle Scholar
  55. 55.
    Reid, M.: Canonical 3-folds. In: Beauville, A. (ed.) Journées de Géométrie Algébrique d’Angers, Juillet 1979, pp. 273–310. Sijthoff & Noordhoff, Alphen aan den Rijn (1980)Google Scholar
  56. 56.
    Reid, M.: Chapters on algebraic surfaces. In: Complex Algebraic Geometry (Park City, UT, 1993). Volume 3 of IAS/Park City Mathematics Series, pp. 3–159. American Mathematical Society, Providence (1997)Google Scholar
  57. 57.
    Rohsiepe, F.: Lattice polarized toric K3 surfaces (2004, preprint). arXiv:hep-th/0409290 Google Scholar
  58. 58.
    Rohsiepe, F.: Calabi-Yau-Hyperflächen in Torischen Varietäten, Faserungen und Dualitäten. PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2005)Google Scholar
  59. 59.
    Scattone, F.: On the compactification of moduli spaces for algebraic K3 surfaces. Mem. Am. Math. Soc. 70(374) (1987)Google Scholar
  60. 60.
    Schütt, M., Shioda, T.: Elliptic surfaces. In: Algebraic Geometry in East Asia – Seoul 2008. Volume 60 of Advanced Studies in Pure Mathematics, pp. 51–160. Mathematical Society of Japan, Tokyo (2010)Google Scholar
  61. 61.
    Serre, J.-P.: A Course in Arithmetic. Volume 7 of Graduate Texts in Mathematics. Springer, New York (1973)Google Scholar
  62. 62.
    Shah, J.: A complete moduli space for K3 surfaces of degree 2. Ann. Math. (2) 112(3), 485–510 (1980)Google Scholar
  63. 63.
    Shah, J.: Degenerations of K3 surfaces of degree 4. Trans. Am. Math. Soc. 263(2), 271–308 (1981)zbMATHGoogle Scholar
  64. 64.
    Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves. Volume 151 of Graduate Texts in Mathematics. Springer, New York (1994)Google Scholar
  65. 65.
    Siu, Y.T.: Every K3 surface is Kähler. Invent. Math. 73(1), 139–150 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Sterk, H.: Finiteness results for algebraic K3 surfaces. Math. Z. 189(4), 507–513 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Modular Functions of One Variable IV. Volume 476 of Lecture Notes in Mathematics, pp. 33–52. Springer, Berlin/Heidelberg (1975)Google Scholar
  68. 68.
    van Geemen, B.: Kuga-Satake varieties and the Hodge conjecture. In: The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998). Volume 548 of Nato Science Series C: Mathematical and Physical Sciences, pp. 51–82. Kluwer, Dordrecht (2000)Google Scholar
  69. 69.
    Xiao, G.: Galois covers between K3 surfaces. Ann. Inst. Fourier (Grenoble) 46(1), 73–88 (1996)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mathematical and Statistical Sciences, 632 CABUniversity of AlbertaEdmontonCanada
  2. 2.Department of Pure MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations