Skip to main content

Emulsions and Foams Stabilised by Milk Proteins

  • Chapter
Advanced Dairy Chemistry

Abstract

Milk proteins are known to possess a wide range of functional properties, such as emulsification, thickening, gelling and foaming. Milk proteins facilitate the formation and stabilisation of oil droplets in emulsions or of air bubbles in foams in formulated foods. These functional properties of milk proteins are exploited in the manufacture of dairy and other products, such as recombined milk, cream, butter, yoghurt, ice cream, cream liqueurs, dressings, mayonnaise, sauces and desserts. This chapter provides an overview of the emulsifying and foaming properties of milk proteins, focusing on the adsorption of milk proteins at oil–water and air–water interfaces with emphasis on the preferential adsorption among milk proteins and the stability of milk-protein-based emulsions and foams. Highlights on the behaviour of milk-protein-stabilised emulsions after consumption that have recently attracted a great deal of research interest are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnboola SO, Dalgleish DG (1996) Enzymatic hydrolysis of milk proteins used for emulsion formation. 1 Kinetics of protein breakdown and storage stability of the emulsions. J Agric Food Chem 44:3631–3636

    Google Scholar 

  • Agboola SO, Singh H, Munro PA, Dalgleish DG, Singh AM (1998) Destabilization of oil-in-water emulsions formed using highly hydrolyzed whey proteins. J Agric Food Chem 46:84–90

    Google Scholar 

  • Anderson M, Brooker BE (1988) Dairy foams. In: Stainsby G, Dickinson E (eds) Advances in food emulsions and foams. Elsevier Applied Science, London, pp 221–255

    Google Scholar 

  • Baker EN, Baker HM (2005) Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol Life Sci 62:2531–2539

    Article  CAS  Google Scholar 

  • Bansil R, Turner BS (2006) Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci 11:164–170

    Article  CAS  Google Scholar 

  • Bauer E, Jakob S, Mosenthin R (2005) Principles of physiology of lipid digestion. Asian Aust J Anim Sci 18:282–295

    Article  CAS  Google Scholar 

  • Bikerman JJ (1973) Foams. Springer, Berlin

    Book  Google Scholar 

  • Brooksbank DV, Leaver J, Horne DS (1993) Adsorption of milk-proteins to phosphatidyl-glycerol and phosphatidyl choline liposomes. J Colloid Interface Sci 161:38–42

    Article  CAS  Google Scholar 

  • Considine T, Patel HA, Anema SG, Singh H, Creamer LK (2007) Interactions of milk proteins during heat and high hydrostatic pressure treatments—a review. Innovat Food Sci Emerg Technol 8:1–23

    Article  CAS  Google Scholar 

  • Croguennec T, Renault A, Bouhallab S, Pezennec S (2006) Interfacial and foaming properties of sulfydryl-modified bovine β-lactoglobulin. J Colloid Interface Sci 302:32–39

    Article  CAS  Google Scholar 

  • Dalgleish DG (1990) The conformations of proteins on solid/water interfaces—caseins and phosvitin on polystyrene latices. Colloids Surf 46:141–155

    Article  CAS  Google Scholar 

  • Dalgleish DG (1993) The sizes and conformations of the proteins in adsorbed layers of individual caseins on latices and in oil-in-water interfaces. Colloids Surf B 1:1–8

    Article  CAS  Google Scholar 

  • Dalgleish DG (1995) Structures and properties of adsorbed layers in emulsions containing milk proteins. In: Lorient D, Dickinson E (eds) Food macromolecules and colloids. Royal Society of Chemistry, Cambridge, pp 23–34

    Chapter  Google Scholar 

  • Dalgleish DG (1996a) Conformations and structures of milk proteins adsorbed to oil–water interfaces. Food Res Int 29:541–547

    Article  CAS  Google Scholar 

  • Dalgleish DG (1996b) Food emulsions. In: Sjöblom J (ed) Emulsions and emulsion stability. Marcel Dekker, New York, pp 287–325

    Google Scholar 

  • Dalgleish DG (1997) Adsorption of protein and the stability of emulsions. Trends Food Sci Technol 8:1–6

    Article  CAS  Google Scholar 

  • Dalgleish DG (2004) Food emulsions: their structures and properties. In: Friberg SE, Larsson K, Sjöblom J (eds) Food emulsions. Marcel Dekker, New York, pp 1–44

    Google Scholar 

  • Dalgleish DG (2006) Food emulsions—their structures and structure-forming properties. Food Hydrocoll 20:415–422

    Article  CAS  Google Scholar 

  • Dalgleish DG, Senaratne V, Francois S (1997) Interactions between α-lactalbumin and β-lactoglobulin in the early stages of heat denaturation. J Agric Food Chem 45:3459–3464

    Article  CAS  Google Scholar 

  • Damodaran S (1997) Protein-stabilized foams and emulsions. In: Paraf A, Damodaran S (eds) Food proteins and their application. Marcel Dekker, New York, pp 57–110

    Google Scholar 

  • Damodaran S (2005) Protein stabilization of emulsions and foams. J Food Sci 70:R54–R66

    Article  CAS  Google Scholar 

  • Damodaran S, Anand K (1997) Sulfhydryl–disulfide interchange-induced interparticle protein polymerization in whey protein-stabilized emulsions and its relation to emulsion stability. J Agric Food Chem 45:3813–3820

    Article  CAS  Google Scholar 

  • Davis JP, Foegeding EA (2004) Foaming and interfacial properties of polymerized whey protein isolate. J Food Sci 69:C404–C410

    Article  CAS  Google Scholar 

  • Davis JP, Foegeding EA, Hansen FK (2004) Electrostatic effects on the yield stress of whey protein isolate foams. Colloids Surf B 34:13–23

    Article  CAS  Google Scholar 

  • Davis JP, Doucet D, Foegeding EA (2005) Foaming and interfacial properties of hydrolyzed β-lactoglobulin. J Colloid Interface Sci 288:412–422

    Article  CAS  Google Scholar 

  • de Wijk RA, Prinz JF (2005) The role of friction in perceived oral texture. Food Qual Prefer 16:121–129

    Article  Google Scholar 

  • de Wijk RA, Prinz JF, Engelen L, Weenen H (2004) The role of a-amylase in the perception of oral texture and flavour in custards. Physiol Behav 83:81–91

    Article  CAS  Google Scholar 

  • Denkov ND (2004) Mechanisms of foam destruction by oil-based antifoams. Langmuir 20:9463–9505

    Article  CAS  Google Scholar 

  • Denkov ND, Marinova KG (2006) Antifoam effects of solid particles, oil drops and oil-solid compounds in aqueous foams. In: Binks BP, Horozov TS (eds) Colloidal particles at liquid interfaces. Cambridge University Press, Cambridge, pp 383–444

    Chapter  Google Scholar 

  • Dickinson E (1989) Surface and emulsifying properties of caseins. J Dairy Res 56:471–477

    Article  Google Scholar 

  • Dickinson E (1994) Protein-stabilized emulsions. J Food Eng 22:59–74

    Article  Google Scholar 

  • Dickinson E (1998) Proteins at interfaces and in emulsions: stability, rheology and interactions. J Chem Soc Faraday Trans 94:1657–1669

    Article  CAS  Google Scholar 

  • Dickinson E (1999a) Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology. Colloids Surf B 15:161–176

    Article  CAS  Google Scholar 

  • Dickinson E (1999b) Caseins in emulsions: interfacial properties and interactions. Int Dairy J 9:305–312

    Article  CAS  Google Scholar 

  • Dickinson E (2001) Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids Surf B 20:197–210

    Article  CAS  Google Scholar 

  • Dickinson E (2003) Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll 17:25–39

    Article  CAS  Google Scholar 

  • Dickinson E (2006) Structure formation in casein-based gels, foams, and emulsions. Colloids Surf A 288:3–11

    Article  CAS  Google Scholar 

  • Dickinson E, Golding M (1997) Depletion flocculation of emulsions containing unadsorbed sodium caseinate. Food Hydrocoll 11:13–18

    Article  CAS  Google Scholar 

  • Dickinson E, Matsumura Y (1991) Time-dependent polymerization of β-lactoglobulin through disulfide bonds at the oil–water interface in emulsions. Int J Biol Macromol 13:26–30

    Article  CAS  Google Scholar 

  • Dickinson E, McClements DJ (1995) Advances in food colloids. Blackie Academic and Professional, London

    Google Scholar 

  • Dickinson E, Patino JMR (1999) Food emulsions and foams—interfaces, interactions and stability. Royal Society of Chemistry, London

    Google Scholar 

  • Dickinson E, Stainsby G (1988) Emulsion stability. In: Stainsby G, Dickinson E (eds) Advances in food emulsions and foams. Elsevier Applied Science, London, pp 1–44

    Google Scholar 

  • Dickinson E, Rolfe SE, Dalgleish DG (1988) Competitive adsorption of α s1 -casein and β-casein in oil-in-water emulsions. Food Hydrocoll 2:397–405

    Article  CAS  Google Scholar 

  • Dickinson E, Rolfe SE, Dalgleish DG (1989) Competitive adsorption in oil in water emulsions containing alpha lactalbumin and beta lactoglobulin. Food Hydrocoll 3:193–203

    Article  CAS  Google Scholar 

  • Dickinson E, Horne DS, Phipps JS, Richardson RM (1993) A neutron reflectivity study of the adsorption of beta-casein at fluid interfaces. Langmuir 9:242–248

    Article  CAS  Google Scholar 

  • Dickinson E, Semenova MG, Belyakova LE, Antipova AS, Il’in MM, Tsapkina EN, Ritzoulis C (2001) Analysis of light scattering data on the calcium ion sensitivity of caseinate solution thermodynamics: relationship to emulsion flocculation. J Colloid Interface Sci 239:87–97

    Article  CAS  Google Scholar 

  • Ennis MP, Mulvihill DM (2000) Milk proteins. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. Woodhead, Cambridge, pp 189–217

    Google Scholar 

  • Enomoto H, Li CP, Morizane K, Ibrahim HR, Sugimoto Y, Ohki S, Ohtomo H, Aoki T (2007) Glycation and phosphorylation of β-lactoglobulin by dry-heating: effect on protein structure and some properties. J Agric Food Chem 55:2392–2398

    Article  CAS  Google Scholar 

  • Erlanson-Albertsson C (1992) Pancreatic colipase. Structural and physiological aspects. Biochim Biophys Acta 1125:1–7

    Article  CAS  Google Scholar 

  • Euston SR, Hirst RL (1999) Comparison of the concentration-dependent emulsifying properties of protein products containing aggregated and non-aggregated milk protein. Int Dairy J 9:693–701

    Article  CAS  Google Scholar 

  • Euston SE, Singh H, Munro PA, Dalgleish DG (1996) Oil-in-water emulsions stabilized by sodium caseinate or whey protein isolate as influenced by glycerol monostearate. J Food Sci 61:916–920

    Article  CAS  Google Scholar 

  • Exerowa D, Kruglyakov PM (1998) Foams and foam films: theory, experiment, application. Elsevier, Amsterdam

    Google Scholar 

  • Fang Y, Dalgleish DG (1997) Conformation of β-lactoglobulin studied by FTIR: effect of pH, temperature, and adsorption to the oil–water interface. J Colloid Interface Sci 196:292–298

    Article  CAS  Google Scholar 

  • Fang Y, Dalgleish DG (1998) The conformation of α-lactalbumin as a function of pH, heat treatment and adsorption at hydrophobic surfaces studied by FTIR. Food Hydrocoll 12:121–126

    Article  CAS  Google Scholar 

  • Fave G, Coste TC, Armand M (2004) Physicochemical properties of lipids: new strategies to manage fatty acid bioavailability. Cell Mol Biol 50:815–831

    CAS  Google Scholar 

  • Fox PF (2009) Milk: an overview. In: Thompson A, Boland M, Singh H (eds) Milk proteins: from expression to food. Academic, New York, pp 1–44

    Google Scholar 

  • Freer EM, Yim KS, Fuller GG, Radke CJ (2004) Interfacial rheology of globular and flexible proteins at the hexadecane/water interface: comparison of shear and dilatation deformation. J Phys Chem B 108:3835–3844

    Article  CAS  Google Scholar 

  • Gargouri Y, Julien R, Bois AG, Verger R, Sarda L (1983) Studies on the detergent inhibition of pancreatic lipase activity. J Lipid Res 24:1336–1342

    CAS  Google Scholar 

  • Golding M, Wooster TJ (2010) The influence of emulsion structure and stability on lipid digestion. Curr Opin Colloid Interface Sci 15:90–101

    Article  CAS  Google Scholar 

  • Guo MR, Fox PF, Flynn A, Kindstedt PS (1995) Susceptibility of β-lactoglobulin and sodium caseinate to proteolysis by pepsin and trypsin. J Dairy Sci 78:2336–2344

    Article  CAS  Google Scholar 

  • Gurkov TD, Russev SC, Danov KD, Ivanov IB, Campbell B (2003) Monolayers of globular proteins on air/water interface: applicability of the Volmer equation of state. Langmuir 19:7362–7369

    Article  CAS  Google Scholar 

  • Holt C, Sawyer L (1988) Primary and predicted secondary structures of the caseins in relation to their biological functions. Protein Eng 24:251–259

    Article  Google Scholar 

  • Hunt JA, Dalgleish DG (1994a) Adsorption behaviour of whey protein isolate and caseinate in soya oil-in-water emulsions. Food Hydrocoll 8:175–187

    Article  CAS  Google Scholar 

  • Hunt JA, Dalgleish DG (1994b) Effect of pH on the stability and surface composition of emulsions made with whey protein isolate. J Agric Food Chem 42:2131–2135

    Article  CAS  Google Scholar 

  • Hunt JA, Dalgleish DG (1995) Heat stability of oil-in-water emulsions containing milk proteins: effect of ionic strength and pH. J Food Sci 60:1120–1123

    Article  CAS  Google Scholar 

  • Hunter RJ (1989) Foundations of colloid science, vol 2. Oxford University Press, Oxford

    Google Scholar 

  • Hur SJ, Decker EA, McClements DJ (2009) Influence of initial emulsifier type on microstructural changes occurring in emulsified lipids during in vitro digestion. Food Chem 114:253–262

    Article  CAS  Google Scholar 

  • Ivanov IB (1988) Thin liquid films: fundamentals and applications. Marcel Dekker, New York

    Google Scholar 

  • Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman J, Reppas C (2006) Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res 23:165–176

    Article  CAS  Google Scholar 

  • Kaminogawa S, Shimizu M, Ametai A, Lee S, Yamauchi K (1987) Proteolysis in structural analysis of αs1-casein adsorbed onto oil surfaces of emulsions and improvement of the emulsifying properties of protein. J Am Oil Chem Soc 64:1688–1691

    Google Scholar 

  • Kenmogne-Domguia HB, Meynier A, Viau M, Llamas G, Genot C (2013) Gastric conditions control both the evolution of the organization of protein-stabilized emulsions and the kinetic of lipolysis during in vitro digestion. Food Funct 3:1302–1309

    Article  CAS  Google Scholar 

  • Kim DA, Cornec M, Narsimhan G (2005) Effect of thermal treatment on interfacial properties of β-lactoglobulin. J Colloid Interface Sci 285:100–109

    Article  CAS  Google Scholar 

  • Kinsella JE (1984) Milk proteins: physical and functional properties. Crit Rev Food Sci Nutr 21:197–262

    Article  CAS  Google Scholar 

  • Kinsella JE, Whitehead DM (1989) Proteins in whey: chemical and physical and functional properties. Adv Food Nutr Res 33:343–438

    Article  CAS  Google Scholar 

  • Le Révérend BJD, Norton IT, Cox PW, Spyropoulos F (2010) Colloidal aspects of eating. Curr Opin Colloid Interface Sci 15:84–89

    Article  CAS  Google Scholar 

  • Leaver J, Dalgleish DG (1990) The topography of bovine beta-casein at an oil/water interface as determined from the kinetics of trypsin-catalysed hydrolysis. Biochim Biophys Acta 1041:217–222

    Article  CAS  Google Scholar 

  • Lefèvre T, Subirade M (2003) Formation of intermolecular β-sheet structures: a phenomenon relevant to protein film structure at oil–water interfaces of emulsions. J Colloid Interface Sci 263:59–67

    Article  CAS  Google Scholar 

  • Li J, Ye A, Lee SJ, Singh H (2012) Influence of gastric digestive reaction on subsequent in vitro intestinal digestion of sodium caseinate-stabilized emulsions. Food Funct 3:320–326

    Article  CAS  Google Scholar 

  • Li J, Ye A, Lee SJ, Singh H (2013) Physicochemical behaviour of WPI-stabilized emulsions in in vitro gastric and intestinal conditions. Colloids Surf B 1:80–87

    Article  CAS  Google Scholar 

  • Lorient D, Closs B, Courthaudon JL (1989) Surface properties of the bovine casein components: relationships between structure and foaming properties. J Dairy Res 56:495–502

    Article  Google Scholar 

  • Lowe ME (2002) The triglyceride lipases of the pancreas. J Lipid Res 43:2007–2016

    Article  CAS  Google Scholar 

  • Lucey JA, Srinivasan M, Singh H, Munro PA (2000) Characterization of commercial and experimental sodium caseinates by multiangle laser light scattering and size-exclusion chromatography. J Agric Food Chem 48:1610–1616

    Article  CAS  Google Scholar 

  • Macierzanka A, Sancho AI, Mills ENC, Rigby NM, Mackie AR (2009) Emulsification alters simulated gastrointestinal proteolysis of β-casein and β-lactoglobulin. Soft Matter 5:538–550

    Article  CAS  Google Scholar 

  • Mackie AR, Mingins J, Dann R (1993) Preliminary studies of β-lactoglobulin adsorbed on polystryrene latex. In: Dickinson E, Walstra P (eds) Food colloids and polymers: stability and mechanical properties. Royal Society of Chemistry, Cambridge, UK, pp 96–112

    Google Scholar 

  • Malone ME, Appelqvist IAM, Norton IT (2003a) Oral behaviour of food hydrocolloids and emulsions. Part 1. Lubrication and deposition considerations. Food Hydrocoll 17:763–773

    Article  CAS  Google Scholar 

  • Malone ME, Appelqvist IAM, Norton IT (2003b) Oral behaviour of food hydrocolloids and emulsions. Part 2. Taste and aroma release. Food Hydrocoll 17:775–784

    Article  CAS  Google Scholar 

  • Marinova KG, Basheva ES, Nenova B, Temelska M, Mirarefi AY, Campbell B, Ivanov IV (2009) Physicochemical factors controlling the foamability and foam stability of milk proteins: sodium caseinate and whey protein concentrates. Food Hydrocoll 23:1864–1876

    Article  CAS  Google Scholar 

  • Martin AH, Grolle K, Bos MA, Stuart MA, van Vliet T (2002) Network forming properties of various proteins adsorbed at the air/water interface in relation to foam stability. J Colloid Interface Sci 254:175–183

    Article  CAS  Google Scholar 

  • McClements DJ (2005) Food emulsions: principles, practices and techniques, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • McClements DJ, Monahan FJ, Kinsella JE (1993) Disulfide bond formation affects stability of whey protein isolate emulsions. J Food Sci 58:1036–1039

    Article  CAS  Google Scholar 

  • McClements DJ, Decker EA, Park Y (2009) Controlling lipid bioavailability through physicochemical and structural approaches. Crit Rev Food Sci Nutr 49:48–67

    Article  Google Scholar 

  • McKenzie HA (1971) β-lactoglobulin. In: McKenzie HA (ed) Milk proteins, vol 2. Academic, New York, pp 257–330

    Chapter  Google Scholar 

  • McKenzie HA, Sawyer WH (1967) Effect of pH on β-lactoglobulin. Nature 214:1101–1104

    Article  CAS  Google Scholar 

  • Monahan FJ, McClements DJ, Kinsella JE (1995) Polymerization of whey proteins in whey protein-stabilized emulsions. J Agric Food Chem 41:1826–1829

    Article  Google Scholar 

  • Moro A, Báez GD, Busti PA, Ballerini GA, Delorenzi NJ (2011) Effects of heat-treated β-lactoglobulin and its aggregates on foaming properties. Food Hydrocoll 25:1009–1015

    Article  CAS  Google Scholar 

  • Morr CV (1982) Functional properties of milk proteins and their use as food ingredients. In: Fox PF (ed) Developments in dairy chemistry—I. Elsevier Applied Science, London, pp 375–399

    Google Scholar 

  • Morr CV, Ha EYW (1993) Whey protein concentrates and isolates: processing and functional properties. Crit Rev Food Sci Nutr 33:431–476

    Article  CAS  Google Scholar 

  • Mulvihill DM (1989) Caseins and caseinates: manufacture. In: Fox PF (ed) Developments in dairy chemistry—IV. Elsevier Applied Science, London, pp 97–130

    Google Scholar 

  • Mulvihill DM, Ennis MP (2003) Functional milk proteins: production and utilization. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry: proteins, vol 1. Kluwer Academic, New York, pp 1175–1228

    Chapter  Google Scholar 

  • Mulvihill DM, Fox PF (1989) Physicochemical and functional properties of milk proteins. In: Fox PF (ed) Developments in dairy chemistry. Elsevier Applied Science, London, pp 131–172

    Google Scholar 

  • Mun S, Decker EA, McClements DJ (2007) Influence of emulsifier type on in vitro digestibility of lipid droplets by pancreatic lipase. Food Res Int 40:770–781

    Article  CAS  Google Scholar 

  • Murray BS, Ettelaie R (2004) Foam stability: proteins and nanoparticles. Curr Opin Colloid Interface Sci 9:314–320

    Article  CAS  Google Scholar 

  • Ng-Kwai-Hang KF (2003) Milk proteins/heterogeneity, fractionation and isolation. In: Fuquay J, Fox P, Roginsky H (eds) Encyclopedia of dairy sciences. Academic, Amsterdam, pp 1881–1894

    Google Scholar 

  • Nicorescu I, Loisel C, Riaublanc A, Vial C, Djelveh G, Cuvelier G, Legrand J (2009) Effect of dynamic heat treatment on the physical properties of whey protein foams. Food Hydrocoll 23:1209–1219

    Article  CAS  Google Scholar 

  • Oliveira KMG, Valente-Mesquita VL, Botelho MM, Sawyer L, Ferreira ST, Polikarpov I (2001) Crystal structures of bovine β-lactoglobulin in the orthorhombic space group C2221. Structural differences between genetic variants a and B and features of the Tanford transition. Eur J Biochem 268:477–483

    CAS  Google Scholar 

  • Papiz MZ, Sawyer L, Eliopoulos EE, North ACT, Findley JBC, Sivapradadarao R, Jones TA, Newcomer ME, Kraulis PJ (1986) The structure of β-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324:383–385

    Article  CAS  Google Scholar 

  • Pereira LGC, Johansson C, Radke CJ, Blanch HW (2003) Surface forces and drainage kinetics of protein-stabilized aqueous films. Langmuir 19:7503–7513

    Article  CAS  Google Scholar 

  • Phillips LG, Schulman W, Kinsella JE (1990) pH and heat-treatment effects on foaming of wheyprotein isolate. J Food Sci 55:1116–1119

    Article  Google Scholar 

  • Phillips LG, Hawks SE, German JB (1995) Structural characteristics and foaming properties of β-lactoglobulin: effects of shear rate and temperature. J Agric Food Chem 43:613–619

    Article  CAS  Google Scholar 

  • Prud’homme RK, Khan SA (1996) Foams: theory, measurements, and applications. Marcel Dekker, New York

    Google Scholar 

  • Ridout MJ, Mackie AR, Wilde PJ (2004) Rheology of mixed β-casein/β-lactoglobulin films at the air–water interface. J Agric Food Chem 52:3930–3937

    Article  CAS  Google Scholar 

  • Robson EW, Dalgleish DG (1987) Interfacial composition of sodium caseinate emulsions. J Food Sci 52:1694–1698

    Article  CAS  Google Scholar 

  • Rullier B, Novales B, Axelos MAV (2008) Effect of protein aggregates on foaming properties of β-lactoglobulin. Colloids Surf A 330:96–102

    Article  CAS  Google Scholar 

  • Saint-Jalmes A, Peugeot M-L, Ferraz H, Langevin D (2005) Differences between protein and surfactant foams: microscopic properties, stability and coarsening. Colloids Surf A 263:219–225

    Article  CAS  Google Scholar 

  • Sarkar A (2010) Behaviour of milk protein-stabilized oil-in-water emulsions in simulated physiological fluids. Ph.D. Thesis, Massey University, Palmerston North

    Google Scholar 

  • Sarkar A, Goh KKT, Singh H (2009a) Colloidal stability and interactions of milk-protein-stabilized emulsions in an artificial saliva. Food Hydrocoll 23:1270–1278

    Article  CAS  Google Scholar 

  • Sarkar A, Goh KKT, Singh RP, Singh H (2009b) Behaviour of an oil-in-water emulsion stabilized by β-lactoglobulin in an in vitro gastric model. Food Hydrocoll 23:1563–1569

    Article  CAS  Google Scholar 

  • Sarkar A, Goh KKT, Singh H (2010a) Properties of oil-in-water emulsions stabilized by β-lactoglobulin in simulated gastric fluid as influenced by ionic strength and presence of mucin. Food Hydrocoll 24:534–541

    Article  CAS  Google Scholar 

  • Sarkar A, Horne DS, Singh H (2010b) Interactions of milk protein stabilized oil-in-water emulsions with bile salts in a simulated upper intestinal model. Food Hydrocoll 24:142–151

    Article  CAS  Google Scholar 

  • Sarkar A, Horne DS, Singh H (2010c) Pancreatin-induced coalescence of oil-in-water emulsions in an in vitro duodenal model. Int Dairy J 20:589–597

    Article  CAS  Google Scholar 

  • Sawyer L, Papiz MZ, North ACT, Eliopoulos EE (1985) Structure and function of bovine β-lactoglobulin. Biochem Soc Trans 13:265–266

    Article  CAS  Google Scholar 

  • Schmidt DG, Poll JK (1991) Enzymatic hydrolysis of whey proteins. Hydrolysis of α-lactalbumin and β-lactoglobulin in buffer solutions by proteolytic enzymes. Neth Milk Dairy J 45:225–240

    CAS  Google Scholar 

  • Schmitt C, Bovay C, Rouvet M, Shojaei-Rami S, Kolodziejczyk E (2007) Whey protein soluble aggregates from heating with NaCl: physicochemical, interfacial, and foaming properties. Langmuir 23:4155–4166

    Article  CAS  Google Scholar 

  • Schokker EP, Singh H, Creamer LK (2000) Heat-induced aggregation of β-lactoglobulin a and B with α-lactalbumin. Int Dairy J 10:843–853

    Article  CAS  Google Scholar 

  • Shimizu M, Kamiya T, Yamauchi K (1981) The adsorption of whey proteins on the surface of emulsified fat. Agric Biol Chem 45:2491–2496

    Article  CAS  Google Scholar 

  • Shimizu M, Saito M, Yamauchi K (1985) Emulsifying and structural-properties of beta-lactoglobulin at different pHs. Agric Biol Chem 49:189–194

    Article  CAS  Google Scholar 

  • Silletti E, Vingerhoeds MH, Norde W, van Aken GA (2007) The role of electrostatics in saliva-induced emulsion flocculation. Food Hydrocoll 21:596–606

    Article  CAS  Google Scholar 

  • Singh AM, Dalgleish DG (1998) The emulsifying properties of hydrolyzates of whey proteins. J Dairy Sci 81:918–924

    Google Scholar 

  • Singh H (2005) Milk protein functionality in food colloids. In: Dickinson E (ed) Food colloids: interactions, microstructure and processing. Royal Society of Chemistry, Cambridge, pp 179–193

    Google Scholar 

  • Singh H (2011) Aspects of milk protein-stabilised emulsions. Food Hydrocoll 25:1938–1944

    Article  CAS  Google Scholar 

  • Singh H, Sarkar A (2011) Behaviour of protein-stabilised emulsions under various physiological conditions. Adv Colloid Interface Sci 165:47–57

    Article  CAS  Google Scholar 

  • Singh H, Ye A (2013) Structural and biochemical factors affecting the digestion of protein-stabilized emulsions. Curr Opin Colloid Interface Sci 18:360–370

    Article  CAS  Google Scholar 

  • Singh H, Ye A, Horne D (2009) Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Prog Lipid Res 48:92–100

    Article  CAS  Google Scholar 

  • Srinivasan M, Singh H, Munro PA (1996) Sodium caseinate-stabilized emulsions: factors affecting coverage and composition of surface proteins. J Agric Food Chem 44:3807–3811

    Article  CAS  Google Scholar 

  • Srinivasan M, Singh H, Munro PA (1999) Adsorption behaviour of sodium and calcium caseinates in oil-in-water emulsions. Int Dairy J 9:337–341

    Article  CAS  Google Scholar 

  • Srinivasan M, Singh H, Munro PA (2001) Creaming stability of oil-in-water emulsions formed with sodium and calcium caseinates. J Food Sci 66:441–446

    Article  CAS  Google Scholar 

  • Swaisgood HE (1982) Chemistry of milk protein. In: Fox PF (ed) Developments in dairy chemistry—I. Elsevier Applied Science, London, pp 1–59

    Google Scholar 

  • Swaisgood HE (1992) Chemistry of the caseins. In: Fox PF (ed) Advanced dairy chemistry—I. Elsevier Applied Science, Barking, pp 63–110

    Google Scholar 

  • Unterhaslberger G, Schmitt C, Shojaei-Rami S, Sanchez C (2007) β-lactoglobulin aggregates from heating with charged cosolutes: formation, characterization and foaming. In: Colloids F (ed) Self assembly and material science. Royal Society of Chemistry, Cambridge, pp 175–192

    Google Scholar 

  • van Aken GA (2004) Coalescence mechanisms in protein-stabilized emulsions. In: Friberg SE, Larsson K, Sjöblom J (eds) Food emulsions. Marcel Dekker, New York, pp 299–325

    Google Scholar 

  • van Aken GA, Blijdenstein TBJ, Hotrum NE (2003) Colloidal destabilisation mechanisms in protein-stabilised emulsions. Curr Opin Colloid Interface Sci 8:371–379

    Article  CAS  Google Scholar 

  • van Aken GA, Vingerhoeds MH, De Hoog EHA (2005) Colloidal behaviour of food emulsions under oral conditions. In: Dickinson E (ed) Food colloids: interactions, microstructure and processing. Royal Society of Chemistry, Cambridge, pp 356–366

    Chapter  Google Scholar 

  • Vingerhoeds MH, Blijdenstein TBJ, Zoet FD, van Aken GA (2005) Emulsion flocculation induced by saliva and mucin. Food Hydrocoll 19:915–922

    Article  CAS  Google Scholar 

  • Vingerhoeds MH, Silletti E, de Groot J, Schipper RG, van Aken GA (2009) Relating the effect of saliva-induced emulsion flocculation on rheological properties and retention on the tongue surface with sensory perception. Food Hydrocoll 23:773–785

    Article  CAS  Google Scholar 

  • Wahlgren MC, Arnebrant T, Paulsson MA (1993) The adsorption from solutions of β-lactoglobulin mixed with lactoferrin or lysozyme onto silica and methylated silica surfaces. J Colloid Interface Sci 158:46–53

    Article  CAS  Google Scholar 

  • Weaire D, Hutzler S (1999) The physics of foams. Clarendon, Oxford

    Google Scholar 

  • Weisbrodt NW (2001) Swallowing. In: Johnson LR (ed) Gastrointestinal physiology. Mosby, St. Louis, pp 27–35

    Google Scholar 

  • Wickham M, Garrood M, Leney J, Wilson PDG, Fillery-Travis A (1998) Modification of a phospholipid stabilized emulsion interface by bile salt: effect on pancreatic lipase activity. J Lipid Res 39:623–632

    CAS  Google Scholar 

  • Wong DWS, Camirand WM, Pavlath AE (1996) Structures and functionalities of milk proteins. Crit Rev Food Sci Nutr 36:807–844

    Article  CAS  Google Scholar 

  • Wooster TJ, Augustin MA (2007) Rheology of whey protein–dextran conjugate films at the air/water interface. Food Hydrocoll 21:1072–1080

    Article  CAS  Google Scholar 

  • Yang J, Dunker AK, Powers JR, Clark S, Swanson BG (2001) β-lactoglobulin molten globule induced by high pressure. J Agric Food Chem 49:3236–3243

    Article  CAS  Google Scholar 

  • Ye A (2008) Interfacial composition and stability of emulsions made with mixtures of commercial sodium caseinate and whey protein concentrate. Food Chem 110:946–952

    Article  CAS  Google Scholar 

  • Ye A, Singh H (2000) Influence of calcium chloride addition on the properties of emulsions stabilized by whey protein concentrate. Food Hydrocoll 14:337–346

    Article  CAS  Google Scholar 

  • Ye A, Singh H (2001) Interfacial composition and stability of sodium caseinate emulsions as influenced by calcium ions. Food Hydrocoll 15:195–207

    Article  CAS  Google Scholar 

  • Ye A, Singh H (2006a) Adsorption behaviour of lactoferrin in oil-in-water emulsions as influenced by interactions with β-lactoglobulin. J Colloid Interface Sci 295:249–254

    Article  CAS  Google Scholar 

  • Ye A, Singh H (2006b) Heat stability of oil-in-water emulsions formed with intact or hydrolysed whey proteins: influence of polysaccharides. Food Hydrocoll 20:269–276

    Article  CAS  Google Scholar 

  • Ye A, Singh H (2007) Formation of multilayers at the interface of oil-in-water emulsion via interactions between lactoferrin and β-lactoglobulin. Food Biophys 2:125–132

    Article  Google Scholar 

  • Zhang Z, Dalgleish DG, Goff HD (2004) Effect of pH and ionic strength on competitive protein adsorption to air/water interfaces in aqueous foams made with mixed milk proteins. Colloids Surf B 34:113–121

    Article  CAS  Google Scholar 

  • Zhu H, Damodaran S (1994) Heat-induced conformational changes in whey protein isolate and its relation to foaming properties. J Agric Food Chem 42:846–855

    Article  CAS  Google Scholar 

  • Ziegler GR, Foegeding EA (1990) The gelation of proteins. Adv Food Nutr Res 34:203–208

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harjinder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sarkar, A., Singh, H. (2016). Emulsions and Foams Stabilised by Milk Proteins. In: McSweeney, P., O'Mahony, J. (eds) Advanced Dairy Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2800-2_5

Download citation

Publish with us

Policies and ethics