Revisiting the Sunspot Number

A 400-Year Perspective on the Solar Cycle
  • Frédéric Clette
  • Leif Svalgaard
  • José M. Vaquero
  • Edward W. Cliver
Part of the Space Sciences Series of ISSI book series (SSSI, volume 53)

Abstract

Our knowledge of the long-term evolution of solar activity and of its primary modulation, the 11-year cycle, largely depends on a single direct observational record: the visual sunspot counts that retrace the last 4 centuries, since the invention of the astronomical telescope. Currently, this activity index is available in two main forms: the International Sunspot Number initiated by R. Wolf in 1849 and the Group Number constructed more recently by Hoyt and Schatten (Sol. Phys. 179:189–219, 1998a, 181:491–512, 1998b). Unfortunately, those two series do not match by various aspects, inducing confusions and contradictions when used in crucial contemporary studies of the solar dynamo or of the solar forcing on the Earth climate. Recently, new efforts have been undertaken to diagnose and correct flaws and biases affecting both sunspot series, in the framework of a series of dedicated Sunspot Number Workshops. Here, we present a global overview of our current understanding of the sunspot number calibration.

After retracing the construction of those two composite series, we present the new concepts and methods used to self-consistently re-calibrate the original sunspot series. While the early part of the sunspot record before 1800 is still characterized by large uncertainties due to poorly observed periods, the more recent sunspot numbers are mainly affected by three main inhomogeneities: in 1880–1915 for the Group Number and in 1947 and 1980–2014 for the Sunspot Number.

After establishing those new corrections, we then consider the implications on our knowledge of solar activity over the last 400 years. The newly corrected series clearly indicates a progressive decline of solar activity before the onset of the Maunder Minimum, while the slowly rising trend of the activity after the Maunder Minimum is strongly reduced, suggesting that by the mid 18th century, solar activity had already returned to levels equivalent to those observed in recent solar cycles in the 20th century. We finally conclude with future prospects opened by this epochal revision of the Sunspot Number, the first one since Wolf himself, and its reconciliation with the Group Number, a long-awaited modernization that will feed solar cycle research into the 21st century.

Keywords

Sun Sunspots Sunspot Number Solar cycle Solar activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.A. Abreu, J. Beer, F. Steinhilber, S.M. Tobias, N.O. Weiss, For how long will the current grand maximum of solar activity persist? Geophys. Res. Lett. 35, 20109 (2008) ADSGoogle Scholar
  2. R. Arlt, Digitization of sunspot drawings by Staudacher, in 1749–1796. Sol. Phys. 247, 399–410 (2008) ADSGoogle Scholar
  3. R. Arlt, The solar butterfly diagram in the 18th century. Sol. Phys. 255, 143–153 (2009a) ADSGoogle Scholar
  4. R. Arlt, The solar observations at Armagh Observatory in 1795–1797. Astron. Nachr. 330, 311–316 (2009b) ADSGoogle Scholar
  5. R. Arlt, The sunspot observations by Samuel Heinrich Schwabe. Astron. Nachr. 332, 805–814 (2011) ADSGoogle Scholar
  6. R. Arlt, A. Abdolvand, First solar butterfly diagram from Schwabe’s observations in 1825–1867, in Physics of Sun and Star Spots, ed. by D.P. Choudhary, K.G. Strassmeier. IAU Symposium 273, Ventura, California, USA, August 22–26, 2010. Proc. of IAU Symposium, vol. 273 (Cambridge University Press, Cambridge, 2011), pp. 286–289 Google Scholar
  7. R. Arlt, R. Leussu, N. Giese, K. Mursula, I.G. Usoskin, Sunspot positions and sizes for 1825–1867 from the observations by Samuel Heinrich Schwabe. Mon. Not. R. Astron. Soc. 433, 3165–3172 (2013) ADSGoogle Scholar
  8. K.T. Bachmann, H. Maymani, K. Nautiyal, V. te Velde, An analysis of solar-cycle temporal relationships among activity indicators. Adv. Space Res. 34, 274–281 (2004) ADSGoogle Scholar
  9. S. Basu, A.-M. Broomhall, W.J. Chaplin, Y. Elsworth, Thinning of the Sun’s magnetic layer: the peculiar solar minimum could have been predicted. Astrophys. J. 758, 43 (2012) ADSGoogle Scholar
  10. S. Basu, A.-M. Broomhall, W.J. Chaplin, Y. Elsworth, G.R. Davies, J. Schou, T.P. Larson, Comparing the internal structure of the Sun during the cycle 23 and cycle 24 minima. Astron. Soc. Pac. Conf. Ser. 478, 161 (2013) ADSGoogle Scholar
  11. D. Berghmans, R.A.M. van der Linden, P. Vanlommel, F. Clette, E. Robbrecht, History of the Sunspot Index: 25 years SIDC. Beitrage zur Geschichte der Geophysik und Kosmischen Physik VII(1), 7, 288 (2006) Google Scholar
  12. L. Bertello, R.K. Ulrich, J.E. Boyden, The Mount Wilson CaII K plage index time series. Sol. Phys. 264, 31–44 (2010) ADSGoogle Scholar
  13. A. Brandenburg, The case for a distributed solar dynamo shaped by near-surface shear. Astrophys. J. 625, 539–547 (2005) ADSGoogle Scholar
  14. W. Brunner, Letter to editor from Zurich Observatory. Terr. Magn. 41(2), 210 (1936) Google Scholar
  15. R. Casas, J.M. Vaquero, The sunspot catalogues of Carrington, Peters, and de la Rue: quality control and machine-readable versions. Sol. Phys. 289, 79–90 (2014) ADSGoogle Scholar
  16. R. Casas, J.M. Vaquero, M. Vázquez, Solar rotation in the 17th century. Sol. Phys. 234, 379–392 (2006) ADSGoogle Scholar
  17. F. Clette, L. Lefèvre, Are the sunspots really vanishing? Anomalies in solar cycle 23 and implications for long-term models and proxies. J. Space Weather Space Clim. 2, A260000 (2012) Google Scholar
  18. F. Clette, D. Berghmans, P. Vanlommel, R.A.M. Van der Linden, A. Koeckelenbergh, L. Wauters, From the Wolf number to the international sunspot index: 25 years of SIDC. Adv. Space Res. 40, 919–928 (2007) ADSGoogle Scholar
  19. E.W. Cliver, Carrington, Schwabe, and the gold medal, Eos. Trans. Am. Geophys. Union 86, 413–418 (2005) ADSGoogle Scholar
  20. E.W. Cliver, L. Svalgaard, in Origins of the Wolf Sunspot Number Series: Geomagnetic Underpinning, AGU Fall Meeting, Abstract SH13A-1109 (2007) Google Scholar
  21. E.W. Cliver, F. Clette, L. Svalgaard, Recalibrating the Sunspot Number (SSN): The SSN workshops. Cent. Eur. Astrophys. Bull. 37(2), 401–416 (2013) ADSGoogle Scholar
  22. A. Cristo, J.M. Vaquero, F. Sánchez-Bajo, HSUNSPOTS: a tool for the analysis of historical sunspot drawings. J. Atmos. Sol.-Terr. Phys. 73, 187–190 (2011) ADSGoogle Scholar
  23. M.J. Crowe, K.R. Lafortune, Herschel, (Friedrich) William [Wilhelm], in The Biographical Encyclopedia of Astronomers, ed. by T. Hockey (Springer, Berlin, 2007), pp. 494–496 Google Scholar
  24. W. de la Rue, B. Stewart, B. Loewy, Researches on solar physics. heliographical positions and areas of sun-spots observed with the kew photoheliograph during the years 1862 and 1863. Philos. Trans. R. Soc. Lond. 159, 1–110 (1869) Google Scholar
  25. G. de Toma, G.A. Chapman, D.G. Preminger, A.M. Cookson, Analysis of sunspot area over two solar cycles. Astrophys. J. 770, 89 (2013a) (13 pp.) ADSGoogle Scholar
  26. G. de Toma, G.A. Chapman, A.M. Cookson, D. Preminger, Temporal stability of sunspot umbral intensities: 1986–2012. Astrophys. J. Lett. 771, L22 (2013b) (4 pp.) ADSGoogle Scholar
  27. J.A. Eddy, The Maunder minimum. Science 192, 1189–1202 (1976) ADSGoogle Scholar
  28. P. Foukal, An explanation of the differences between the sunspot area scales of the Royal Greenwich and Mt. Wilson Observatories, and the SOON program. Sol. Phys. 289, 1517–1529 (2013) ADSGoogle Scholar
  29. T.K. Friedli, Erste beobachtungen am Wolfschen Normal refraktor in Schliern b, Köniz. Mitt. Rudolf-Wolf-Ges. 3(9), 3–46 (1997) Google Scholar
  30. T.K. Friedli, H.U. Keller, Rudolf Wolf als Pionier der Sonnenfleckenforschung. Vierteljahrsschr. Nat.forsch. Ges. Zür. 138(4), 267–281 (1993) Google Scholar
  31. G. Galilei, J.C. Scheiner, On Sunspot Translated and Introduced by, Reeves, E. and van Helden, A. (The University of Chicago Press, Chicago and London, 2010) Google Scholar
  32. M.N. Gnevyshev, A.I. Ohl, Astron. Zh. 25, 18 (1948) Google Scholar
  33. D.H. Hathaway, Royal Observatory, Greenwich—USAF/NOAA Sunspot Data (2014). http://solarscience.msfc.nasa.gov/greenwch.shtml
  34. D.H. Hathaway, R.M. Wilson, E.J. Reichmann, Group sunspot numbers: sunspot cycle characteristics. Sol. Phys. 211, 357–370 (2002) ADSGoogle Scholar
  35. J.L. Heilbron, The Sun in the Church (Harvard University Press, Cambridge, 1999), 366 p. Google Scholar
  36. A. Hempelmann, W. Weber, Correlation between the sunspot number, the total solar irradiance, and the terrestrial insolation. Sol. Phys. 277, 417–430 (2012) ADSGoogle Scholar
  37. C.H. Hossfield, A history of the Zurich and American relative sunspot number indices. J. Am. Assoc. Var. Star Obs. 31, 48–53 (2002) ADSGoogle Scholar
  38. D.V. Hoyt, K.H. Schatten, A new look at Wolf sunspot numbers in the late 1700’s. Sol. Phys. 138, 387–397 (1992a) ADSGoogle Scholar
  39. D.V. Hoyt, K.H. Schatten, New information on solar activity, 1779–1818, from Sir William Herschel’s unpublished notebooks. Astrophys. J. 384, 361–384 (1992b) ADSGoogle Scholar
  40. D.V. Hoyt, K.H. Schatten, Overlooked sunspot observations by Hevelius in the early Maunder Minimum, 1653–1684. Sol. Phys. 160, 371–378 (1995a) ADSGoogle Scholar
  41. D.V. Hoyt, K.H. Schatten, Observations of sunspots by Flamsteed during the Maunder Minimum. Sol. Phys. 160, 379–385 (1995b) ADSGoogle Scholar
  42. D.V. Hoyt, K.H. Schatten, A new interpretation of Christian Horrebow’s sunspot observations from 1761 to 1777. Sol. Phys. 160, 387–392 (1995c) ADSGoogle Scholar
  43. D.V. Hoyt, K.H. Schatten, A revised listing of the number of sunspot groups made by Pastorff, 1819 to 1833. Sol. Phys. 160, 393–399 (1995d) ADSGoogle Scholar
  44. D.V. Hoyt, K.H. Schatten, How well was the Sun observed during the Maunder minimum? Sol. Phys. 165, 181–192 (1996) ADSGoogle Scholar
  45. D.V. Hoyt, K.H. Schatten, The Role of the Sun in Climate Change (Oxford University Press, New York, 1997) Google Scholar
  46. D.V. Hoyt, K.H. Schatten, Group sunspot numbers: a new solar activity reconstruction. Sol. Phys. 179, 189–219 (1998a) ADSGoogle Scholar
  47. D.V. Hoyt, K.H. Schatten, Group sunspot numbers: a new solar activity reconstruction. Sol. Phys. 181, 491–512 (1998b) ADSGoogle Scholar
  48. D.V. Hoyt, K.H. Schatten, E. Nesme-Ribes, The one hundredth year of Rudolf Wolf’s death: Do we have the correct reconstruction of solar activity? Geophys. Res. Lett. 21, 2067–2070 (1994) ADSGoogle Scholar
  49. K. Hufbauer, Exploring the Sun: Solar Science since Galileo (Johns Hopkins University Press, Baltimore, 1991) Google Scholar
  50. J. Javaraiah, Long-term variations in the growth and decay rates of sunspot groups. Sol. Phys. 270, 463–483 (2011) ADSGoogle Scholar
  51. M.J. Johnson, Address delivered by the President, M.J. Johnson, Esq. on presenting the Medal of the Society to M. Schwabe. Mon. Not. R. Astron. Soc. 17, 126–132 (1857) Google Scholar
  52. R.W. Johnson, Power law relating 10.7 cm flux to sunspot number. Astrophys. Space Sci. 332, 73–79 (2011) ADSGoogle Scholar
  53. H. Kant, Scheiner, Christoph, in The Biographical Encyclopedia of Astronomers, ed. by T. Hockey (Springer, Berlin, 2007), p. 1018 Google Scholar
  54. H.U. Keller, T.K. Friedli, The sunspot-activity in the years 1976–1995. Mitt. Rudolf-Wolf-Ges. 3(7), 1–46 (1995) Google Scholar
  55. K.O. Kiepenheuer, Solar site testing, in Le choix des sites d’observatoires astronomiques (site testing), ed. by J. Rösch. IAU Symposium, vol. 19 (1962), pp. 193–219 Google Scholar
  56. A. Kilcik, V.B. Yurchyshyn, V. Abramenko, P.R. Goode, A. Ozguc, J.P. Rozelot, W. Cao, Time distributions of large and small sunspot groups over four solar cycles. Astrophys. J. 731, 30 (2011) ADSGoogle Scholar
  57. M. Kopecky, B. Ruzickova-Topolova, G.V. Kuklin, On the relative inhomogeneity of long-term series of sunspot indices. Bull. Astron. Inst. Czechoslov. 31, 267–283 (1980) ADSGoogle Scholar
  58. N.A. Krivova, L. Balmaceda, S.K. Solanki, Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron. Astrophys. 467, 335–346 (2007) ADSGoogle Scholar
  59. J.F. Lalande, Astronomie (1771), Paris, 4 Vols. Google Scholar
  60. L. Lefèvre, F. Clette, A global small sunspot deficit at the base of the index anomalies of solar cycle 23. Astron. Astrophys. 536, L11 (2011) ADSGoogle Scholar
  61. V. Letfus, Solar activity in the sixteenth and seventeenth centuries—A revision. Sol. Phys. 145, 377–388 (1993) ADSGoogle Scholar
  62. V. Letfus, Daily relative sunspot numbers 1749–1848: reconstruction of missing observations. Sol. Phys. 184, 201–211 (1999) ADSGoogle Scholar
  63. V. Letfus, Relative sunspot numbers in the first half of eighteenth century. Sol. Phys. 194, 175–184 (2000) ADSGoogle Scholar
  64. R. Leussu, I.G. Usoskin, R. Arlt, K. Mursula, Inconsistency of the Wolf sunspot number series around 1848. Astron. Astrophys. 559, A28 (2013) ADSGoogle Scholar
  65. W. Livingston, M. Penn, Are sunspots different during this solar minimum? EOS Trans. 90, 257–258 (2009) ADSGoogle Scholar
  66. Locarno, Specola Solare Ticinese Drawings, Archive (2014). http://www.specola.ch/e/drawings.html
  67. M. Lockwood, Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions. Living Rev. Sol. Phys. 10, 4 (2013) ADSGoogle Scholar
  68. M. Lockwood, A.P. Rouillard, I.D. Finch, The rise and fall of open solar flux during the current grand solar maximum. Astrophys. J. 700, 937–944 (2009) ADSGoogle Scholar
  69. M. Lockwood, M.J. Owens, L. Barnard, Centennial variations in sunspot number, open solar flux, and streamer belt width: 1. Correction of the sunspot number record since 1874. J. Geophys. Res. Space Phys. 119 (2014, in press). doi: 10.1002/2014JA019970, http://onlinelibrary.wiley.com/doi/10.1002/2014JA019970/pdf
  70. E. Loomis, Am. J. Sci. Ser 50, 153 (1870) Google Scholar
  71. R. Lukianova, K. Mursula, Changed relation between sunspot numbers, solar UV/EUV radiation and TSI during the declining phase of solar cycle 23. J. Atmos. Sol.-Terr. Phys. 73, 235–240 (2011) ADSGoogle Scholar
  72. E.F. MacPike, Hevelius, Flamsteed and Halley: Three Contemporary Astronomers and Their Mutual Relations (Taylor and Francis, London, 1937) MATHGoogle Scholar
  73. E. Manfredi, De Gnomone Meridiano Bononiensi ad Divi Petronii, Laeli a Vulpa, Bononiae (1736, 397 pp.) Google Scholar
  74. W.M. Mitchell, The history of the discovery of the solar spots. Pop. Astron. 24, 22–31, 82–96, 149–162, 206–218, 290–303, 341–354, 428–440, 488–499 (1916) ADSGoogle Scholar
  75. A. Muñoz-Jaramillo, D. Nandy, P.C.H. Martens, A.R. Yeates, A double-ring algorithm for modeling solar active regions: unifying kinematic dynamo models and surface flux-transport simulations. Astrophys. J. 720, L20–L25 (2010) ADSGoogle Scholar
  76. A. Muñoz-Jaramillo, D. Nandy, P.C.H. Martens, Magnetic quenching of turbulent diffusivity: reconciling mixing-length theory estimates with kinematic dynamo models of the solar cycle. Astrophys. J. 727, L23 (2011) ADSGoogle Scholar
  77. Y.A. Nagovitsyn, A.A. Pevtsov, W.C. Livingston, On a possible explanation of the long-term decrease in sunspot field strength. Astrophys. J. 758, L20 (2012) ADSGoogle Scholar
  78. H. Nevanlinna, New geomagnetic activity index series published for 1844–1880. EOS Trans. 76, 233 (1995) ADSGoogle Scholar
  79. H. Nevanlinna, E. Kataja, An extension of the geomagnetic activity index series aa for two solar cycles (1844–1868). Geophys. Res. Lett. 20, 2703–2706 (1993) ADSGoogle Scholar
  80. S.M. Ostrow, M. PoKempner, The differences in the relationship between ionospheric critical frequencies and sunspot number for different sunspot cycles. J. Geophys. Res. 57(4), 473–481 (1952). doi: 10.1029/JZ057i004p00473 ADSGoogle Scholar
  81. M.J. Owens, M. Lockwood, Cyclic loss of open solar flux since 1868: The link to heliospheric current sheet tilt and implications for the Maunder Minimum. J. Geophys. Res. 117, 4102 (2012) Google Scholar
  82. D.G. Parker, J.M. Pap, R.K. Ulrich, L.E. Floyd, D.K. Prinz, in Developing New Mount Wilson Magnetic Indices to Model Solar UV Variations, SPD meeting #28, #02.54. Bulletin of the American Astronomical Society, vol. 29 (American Astronomical Society, Washington, 1997), p. 902 Google Scholar
  83. M.J. Penn, W. Livingston, Long-term evolution of sunspot magnetic fields. IAU Symp. 273, 126–133 (2011) ADSGoogle Scholar
  84. K. Petrovay, Solar cycle prediction. Living Rev. Sol. Phys. 7, 6 (2010) ADSGoogle Scholar
  85. A.A. Pevtsov, L. Bertello, A.G. Tlatov, A. Kilcik, Y.A. Nagovitsyn, E.W. Cliver, Cyclic and long-term variation of sunspot magnetic fields. Sol. Phys. 289, 593–602 (2014) ADSGoogle Scholar
  86. J.C. Ribes, E. Nesme-Ribes, The solar sunspot cycle in the Maunder minimum AD1645 to AD1715. Astron. Astrophys. 276, 549–563 (1993) ADSGoogle Scholar
  87. M. Rybanský, V. Rušin, M. Minarovjech, L. Klocok, E.W. Cliver, Reexamination of the coronal index of solar activity. J. Geophys. Res. 110, 8106 (2005) Google Scholar
  88. B.E. Schaefer, Visibility of sunspots. Astrophys. J. 411, 909–919 (1993) ADSGoogle Scholar
  89. B.E. Schaefer, Automatic inflation in the AAVSO sunspot number. J. Am. Assoc. Var. Star Obs. 26, 40–46 (1997a) ADSGoogle Scholar
  90. B.E. Schaefer, Improvements for the AAVSO sunspot number. J. Am. Assoc. Var. Star Obs. 26, 47–49 (1997b) ADSGoogle Scholar
  91. K.H. Schatten, Modeling a shallow solar dynamo. Sol. Phys. 255, 3–38 (2009) ADSGoogle Scholar
  92. C.J. Schrijver, W.C. Livingston, T.N. Woods, R.A. Mewaldt, The minimal solar activity in 2008–2009 and its implications for long-term climate modeling. Geophys. Res. Lett. 38, 6701 (2011) ADSGoogle Scholar
  93. M. Schwabe, Sonnen-Beobachtungen im Jahre 1843. Astron. Nachr. 21, 233 (1844) ADSGoogle Scholar
  94. N.K. Sethi, M.K. Goel, K.K. Mahajan, Solar cycle variations of f°F2 from IGY to 1990. Ann. Geophys. 20, 1677–1685 (2002). doi: 10.5194/angeo-20-1677-2002 ADSGoogle Scholar
  95. A.I. Shapiro, W. Schmutz, E. Rozanov, M. Schoell, M. Haberreiter, A.V. Shapiro, S. Nyeki, A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron. Astrophys. 529, A67 (2011) ADSGoogle Scholar
  96. A.H. Shapley, Reduction of sunspot-number observations. Publ. Astron. Soc. Pac. 61, 13–21 (1949) ADSGoogle Scholar
  97. J.W. Shirley, Thomas Harriot: A Biography (Clarendon Press, Oxford, 1983) Google Scholar
  98. S.K. Solanki, N.A. Krivova, Solar irradiance variations: from current measurements to long-term estimates. Sol. Phys. 224, 197–208 (2004) ADSGoogle Scholar
  99. S.K. Solanki, I.G. Usoskin, B. Kromer, M. Schüssler, J. Beer, Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084–1087 (2004) ADSGoogle Scholar
  100. C.P. Sonett, The great solar anomaly ca. 1780–1800—an error in compiling the record. J. Geophys. Res. 88, 3225–3228 (1983) ADSGoogle Scholar
  101. Sonne, Fachgruppe Sonne (2014). http://www.vds-sonne.de/index.php
  102. G. Spörer, Vierteljahrsschr. Astron. Ges. 22, 323 (1887) Google Scholar
  103. J.O. Stenflo, Basal magnetic flux and the local solar dynamo. Astron. Astrophys. 547, A93 (2012) ADSGoogle Scholar
  104. L. Svalgaard, Updating the historical sunspot record, in SOHO-23: Understanding a Peculiar Solar Minimum, Proceedings of a workshop held 21–25 September 2009 in Northeast Harbor, Maine, USA, ed. by S.R. Cranmer, J.T. Hoeksema, J.L. Kohl. ASP Conference Series, vol. 428 (Astronomical Society of the Pacific, San Francisco, 2010), p. 297 Google Scholar
  105. L. Svalgaard, Solar activity—past, present, future. J. Space Weather Space Clim. 3, A24 (2013a) ADSGoogle Scholar
  106. L. Svalgaard, Building a Sunspot Group Number Backbone Series SSN-Workshop 3 (Tucson) (2013b). http://www.leif.org/research/SSN/Svalgaard11.pdf
  107. L. Svalgaard, Corrections of errors in scale values for magnetic elements for Helsinki. Ann. Geophys. 32, 633–641 (2014a). doi: 10.5194/angeo-32-633-2014 ADSGoogle Scholar
  108. L. Svalgaard, What can geomagnetism can tell us about the solar cycle? Space Sci. Rev. (2014b, this volume) Google Scholar
  109. L. Svalgaard, E.W. Cliver, in Calibrating the Sunspot Number: Using “the Magnetic Needle”, AGU Spring Meeting Abstracts 5454B-02 (2007) Google Scholar
  110. L. Svalgaard, H.S. Hudson, The solar microwave flux and the sunspot number, in SOHO-23: Understanding a Peculiar Solar Minimum, Proceedings of a Workshop Held 21–25 September 2009 in Northeast Harbor, Maine, USA, ed. by S.R. Cranmer, J.T. Hoeksema, J.L. Kohl. ASP Conference Series, vol. 428 (Astronomical Society of the Pacific, San Francisco, 2010), p. 325 Google Scholar
  111. K.F. Tapping, D. Boteler, P. Charbonneau, A. Crouch, A. Manson, H. Paquette, Solar magnetic activity and total irradiance since the Maunder minimum. Sol. Phys. 246, 309–326 (2007) ADSGoogle Scholar
  112. T.N. Thiele, De Macularum Solis antiquioribus quibusdam obstervationibus Hafniae institutis, scripsit Th.N. Thiele, astr. stud. Astron. Nachr. 50, 257 (1859) ADSGoogle Scholar
  113. A.G. Tlatov, Long-term variations in sunspot characteristics. Geomagn. Aeron. 53, 953–956 (2013) ADSGoogle Scholar
  114. A.G. Tlatov, V.V. Vasileva, V.V. Makarova, P.A. Otkidychev, Applying an automatic image-processing method to synoptic observations. Sol. Phys. 289, 1403–1412 (2014) ADSGoogle Scholar
  115. I.G. Usoskin, K. Mursula, G.A. Kovaltsov, Was one sunspot cycle lost in late XVIII century? Astron. Astrophys. 370, L31–L34 (2001) ADSGoogle Scholar
  116. I.G. Usoskin, K. Mursula, G.A. Kovaltsov, Reconstruction of monthly and yearly group sunspot numbers from sparse daily observations. Sol. Phys. 218, 295–305 (2003) ADSGoogle Scholar
  117. I.G. Usoskin, K. Mursula, R. Arlt, G.A. Kovaltsov, A solar cycle lost in 1793–1800: Early sunspot observations resolve the old mystery. Astrophys. J. 700, L154–L157 (2009) ADSGoogle Scholar
  118. I.G. Usoskin, S.K. Solanki, G.A. Kovaltsov, Grand minima of solar activity during the last millennia. IAU Symp. 286, 372–382 (2012) ADSGoogle Scholar
  119. I.G. Usoskin, G. Hulot, Y. Gallet, R. Roth, A. Licht, F. Joos, G.A. Kovaltsov, E. Thébault, A. Khokhlov, Evidence for distinct modes of solar activity. Astron. Astrophys. 562, L10 (2014) ADSGoogle Scholar
  120. J.M. Vaquero, On the solar activity during the year 1784. Sol. Phys. 219, 379–384 (2004) ADSGoogle Scholar
  121. J.M. Vaquero, Historical sunspot observations: a review. Adv. Space Res. 40, 929–941 (2007) ADSGoogle Scholar
  122. J.M. Vaquero, M.C. Gallego, Reconstructing past solar activity using meridian solar observations: the case of the Royal Observatory of the Spanish Navy (1833–1840). Adv. Space Res. 53, 1162–1168 (2014) ADSGoogle Scholar
  123. J.M. Vaquero, R.M. Trigo, Revised group sunspot number values for 1640, 1652, and 1741. Sol. Phys. 289, 803–808 (2014) ADSGoogle Scholar
  124. J.M. Vaquero, M. Vázquez, The Sun Recorded Through History. Astrophysics and Space Science Library, vol. 361 (Springer, Berlin, 2009), 382 p. Google Scholar
  125. J.M. Vaquero, F. Sánchez-Bajo, M.C. Gallego, On the reliability of the de la Rue sunspots areas measurements. Sol. Phys. 209, 311–319 (2002) ADSGoogle Scholar
  126. J.M. Vaquero, M.C. Gallego, R.M. Trigo, The sunspot numbers during 1736–1739 revisited. Adv. Space Res. 40, 1895–1903 (2007a) ADSGoogle Scholar
  127. J.M. Vaquero, M.C. Gallego, F. Sánchez-Bajo, Improving sunspot records: observations by M. Hell revisited. Observatory 127, 221–224 (2007b) ADSGoogle Scholar
  128. J.M. Vaquero, M.C. Gallego, I.G. Usoskin, G.A. Kovaltsov, Revisited sunspot data: a new scenario for the onset of the Maunder minimum. Astrophys. J. Lett. 731, L24 (2011) ADSGoogle Scholar
  129. J.M. Vaquero, R.M. Trigo, M.C. Gallego, A simple method to check the reliability of annual sunspot number in the historical period 1610–1847. Sol. Phys. 277, 389–395 (2012) ADSGoogle Scholar
  130. L.E.A. Vieira, S.K. Solanki, N.A. Krivova, I. Usoskin, Evolution of the solar irradiance during the Holocene. Astron. Astrophys. 531, A6 (2011) ADSGoogle Scholar
  131. M. Waldmeier, Astron. Mitteil. Eidgn. Sternw. Zürich, No. 152 (1948) Google Scholar
  132. M. Waldmeier, The sunspot-activity in the years 1610–1960 (Schulthess & Co., Swiss Federal Observatory, Zürich, 1961) Google Scholar
  133. M. Waldmeier, Die Beziehung zwischen der Sonnenflecken-relativ-zahl und der Gruppenzahl. Astr. Mitteil. Eidgn. Sternw Zürich No. 285 (1968) Google Scholar
  134. Y.-M. Wang, J.L. Lean, N.R. Sheeley Jr., Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys. J. 625, 522–538 (2005) ADSGoogle Scholar
  135. D.M. Willis, H.E. Coffey, R. Henwood, E.H. Erwin, D.V. Hoyt, M.N. Wild, W.F. Denig, The Greenwich photo-heliographic results (1874–1976): summary of the observations, applications, datasets, definitions and errors. Sol. Phys. 288, 117–139 (2013) ADSGoogle Scholar
  136. R.M. Wilson, D.H. Hathaway, On the Relation Between Sunspot Area and Sunspot Number. NASA STI/Recon Technical Report N, 6, 20186 (2006) Google Scholar
  137. R. Wolf, Sonnenflecken Beobachtungen in der zweiten Hälfte des Jahres 1850. Mitt. Nat.forsch. Ges. Bern 207, 89–95 (1851) Google Scholar
  138. R. Wolf, Mitteilungen über die Sonnenflecken, I. Astron. Mitteil. Eidgn. Sternw. Zürich 1, 3–13 (1856) ADSGoogle Scholar
  139. R. Wolf, Mitteilungen über die Sonnenflecken, IV. Astron. Mitteil. Eidgn. Sternw. Zürich 1, 51–78 (1857) ADSGoogle Scholar
  140. R. Wolf, Abstract of his latest results. Mon. Not. R. Astron. Soc. 21, 77–78 (1861a) ADSGoogle Scholar
  141. R. Wolf, Mittheilungen über die Sonnenflecken, XII. Astron. Mitteil. Eidgn. Sternw. Zürich 2, 41–82 (1861b) ADSGoogle Scholar
  142. R. Wolf, Mittheilungen über die Sonnenflecken, XIII. Astron. Mitteil. Eidgn. Sternw. Zürich 2, 83–118 (1861c) ADSGoogle Scholar
  143. R. Wolf, Mittheilungen über die Sonnenflecken, XIV. Astron. Mitteil. Eidgn. Sternw. Zürich 2, 119–132 (1862) ADSGoogle Scholar
  144. R. Wolf, Astronomische Mittheilungen, XXXV. Astron. Mitteil. Eidgn. Sternw. Zürich 4, 173–250 (1874) ADSGoogle Scholar
  145. R. Wolf, Astronomische Mittheilungen, XXXVIII. Astron. Mitteil. Eidgn. Sternw. Zürich 4, 375–405 (1875) ADSGoogle Scholar
  146. R. Wolf, Astronomische Mittheilungen, LI. Astron. Mitteil. Eidgn. Sternw. Zürich 6, 1–32 (1880) ADSGoogle Scholar
  147. R. Wolf, Astronomische Mittheilungen, LVI. Astron. Mitteil. Eidgn. Sternw. Zürich 6, 177–220 (1882) ADSGoogle Scholar
  148. A. Wolfer, Astronomische Mittheilungen, LXXXVI. Astron. Mitteil. Eidgn. Sternw. Zürich 9, 187–232 (1895) ADSGoogle Scholar
  149. A. Wolfer, Revision of Wolf’s sunspot relative numbers. Pop. Astron. 10, 449–458 (1902) ADSGoogle Scholar
  150. A. Wolfer, Astronomische Mittheilungen, XCVIII. Astron. Mitteil. Eidgn. Sternw. Zürich 10, 251–281 (1907) ADSGoogle Scholar
  151. N.V. Zolotova, D.I. Ponyavin, Was the unusual solar cycle at the end of the XVIII century a result of phase asynchronization? Astron. Astrophys. 470, L17–L20 (2007) ADSGoogle Scholar
  152. N.V. Zolotova, D.I. Ponyavin, Enigma of the solar cycle 4 still not resolved. Astrophys. J. 736, 115 (2011) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Frédéric Clette
    • 1
  • Leif Svalgaard
    • 2
  • José M. Vaquero
    • 3
  • Edward W. Cliver
    • 4
  1. 1.World Data Center SILSOObservatoire Royal de BelgiqueBrusselsBelgium
  2. 2.W.W. Hansen Experimental Physics LaboratoryStanford UniversityStanfordUSA
  3. 3.Departamento de FísicaUniversidad de ExtremaduraMéridaSpain
  4. 4.National Solar ObservatorySunspotUSA

Personalised recommendations